160 KiB
建立一项数据科学组合:讲一个关于数据的故事
这是如何建立科学组合系列文章中的第一篇。如果你喜欢这篇文章并且想知道此系列的下一篇文章何时发表,你可以在页面底部订阅。
数据科学公司们在采用一个想法时越来越看重组合结果。其中一个原因就是运用组合是分析一个人真实技能的最好方式。对你来说好消息解释组合是完全可以被你掌控的。如果你针对一些事情做了一些工作,你就能的奥一个令那些公司印象深刻的组合结果。
建立一个高质量组合的第一步就是知道展示什么技能。那些公司们主要希望数据科学工作者拥有的技能,或者说他们主要希望组合所展示的技能是:
- 表达能力
- 合作能力
- 专业技能
- 解释数据的能力
- 有目标和有积极性的
任何一个好的组合都由多个工程构成,每一个工程都会展示1-2个上面所说的点。这是涵盖了“如何完成一个完整的科学组合”系列文章的第一篇。在这篇文章中,我们将会涵括如何完成你的第一项数据科学组合工程,并且对此进行有效的解释。在ui后,你将会得到一个帮助展示你表达能力和解释数据能力的工程。
讲述一个关于数据的故事
于数据科学表达是基础。你将会发现数据的内含,并且找出一个高效的方式来向他人表达,之后向他们展示你所开展的课题。数据科学最关键的手法之一就是能够讲述一个关于使用数据的清晰的故事。一个好的故事能够使你得到的结果更加引人注目,并且能是别人理解你的想法。
数据科学中的故事是一个讲述关于你发现了什么,你怎么发现它的,并且它意味着什么的故事。例如假使发现你公司的收入相对去年减少了百分之二十。这并不能够确定原因或者表达为什么收入会减少并且在尝试修复它。
讲述关于数据的故事主要包含:
- 理解并确定内容
- 从多角度发觉
- 使用有趣的表示方法
- 使用多种数据来源
- 有一致的叙述
用来讲述关于数据的故事最有效率的工具就是Jupyter notebook。如果你不熟悉,此处有一个好的教程。 Jupyter notebook 允许你交互式的发掘数据,并且将你的结果分享到多个网站,包括Github,分享你的结果有助于合作研究和其他人拓展你的分析。
我们将使用Jupyter notebook,Python库和matplotlib在这篇文章中。
为你的数据科学工程选择一个主题
建立一个工程的第一步就是觉得你的主题。你需要你的主题是你兴趣所在的,并且有动力去挖掘。当人们为了完成一个项目而完成和当人们完成项目是因为有兴趣去进行数据挖掘时的区别是很明显的。这个步骤是值得花费时间的,所以确保你找到了你真正感兴趣的东西。
一个寻找主题的好的方法就是浏览不同的数据组并且寻找感兴趣的部分。这里有一些作为起点的好的网站:
- Data.gov - 包含了政府据。
- /r/datasets – 一个有着上百个有趣数据组的reddit(reddit是一个类似于贴吧、论坛的网站)。
- Awesome datasets – 一个数据组的列表,位于Github上。
- rs.io – 一个有着上百个有趣数据组的博客。
真实世界中的数据科学,经常无法找到合适的单个数据组。你可能需要合并多个独立的数据源,或者做数量庞大的数据清理。如果主题非常吸引你,这是值得这样做的,并且也能更好的展示你的技能。
关于这篇文章的主题,我们将使用纽约市公立学校的数据,我们可以在这里找到它。
选择主题
对于完成项目来说这是十分重要的。因为主题能很好的限制项目的范围,并且使它能够是我们知道它可以被完成。比起一个没有足够动力完成的工程来说添加到一个完成的工程更加容易。
所以,我们将关注高中的学术评估测试,伴随着多种人口统计和它们的其它数据。关于SAT,或者说学习评估测试,是美国高中生进入大学前的测试。大学在做判定时将成绩录入账号,所以高分是十分重要的。考试分为三个阶段,每个阶段总分为800。全部分数为2400(即使这个前后更改了几次,在数据中总分还是2400)。高中经常通过平均STA分数进行排名,并且SAT是评判高中有多好的标准。
因为由关于STA分数对于美国中某些种族群体是不公平的。,所以这个纽约市数据分析能够帮助对SAT的公平性有轻许帮助。
我们有SAT成绩的数据组这里,并且数据组中包含了每所高中的信息这里。这些将总成我们的工程的基础,但是我们将将如更多的信息来创建有趣的分析。
补充数据
如果你已经有了一个很好的主题,拓展其它可以提升主题或者更深入挖掘数据的的数据组是被推荐的。十分适合在前期做这些工作,那么你将会有尽可能多的数据来构建你的工程。有着越少的数据意味着你太早的放弃了你的工程。
在包含人口统计信息和测试成绩的网站上这里有一些相关的数据组。
这些是我们将会用到的所有数据组:
-
SAT scores by school – 纽约市每所高中的STA成绩。
-
School attendance – 纽约市每所学校的出勤信息。
-
Math test results – 纽约市每所学校的数学成绩。
-
Class size - 纽约市每所学校课堂人数信息。
-
AP test results – Advanced Placement exam results for each high school. Passing AP exams can get you college credit in the US.
-
AP test results - 高阶位考试,在美国,通过AP测试就能获得大学学分。 译者注:高阶位考试(AP)是美国和加拿大的一个由大学委员会创建的计划,该计划为高中学生提供大学水平的课程和考试。 美国学院和大学可以授予在考试中获得高分的学生的就学和课程学分。
-
Graduation outcomes – 由百分之几的学生毕业了,和其它去向信息。
-
Demographics – 每个学校的人口统计信息。
-
School survey – 学校的家长、教师,学生的问卷。
-
School district maps – 包含学校的区域布局信息,因此我们能将它们在地图上标出。
这些数据组合之间是相互关联的,并且我们能够在开始分析之前进行合并。
获取背景信息
在开始分析数据之前,搜索一些背景信息是有必要的。我们知道这些有用的信息:
- 纽约市被分为五个不同的辖区
- 纽约市的学校坐落在学校区域内,每个都学校区域都可能包含数十所学校。
- 数据组中的并不全是高中,所以我们需要对数据进行一些清理工作。
- 纽约市的每所学校都有自己单独的编码,被称为‘DBN’,或者区域行政编号。
- 为了通过区域进行合并数据,我们可以使用地图区域信息来绘制逐区差异。
理解数据
为了真正的理解数据信息,你将需要花费时间挖掘和阅读数据。因此,每一个数据链接的描述信息都沿着相关列。假如我们拥有高中SAT成绩信息,包含图像和其它信息的数据组。
我们可以运行一些代码来读取数据。我们将使用Jupyter notebook来挖掘数据。下面的代码将会执行一下操作:
- 循环通过我们下载的所有数据文件。
- 将文件读取到Pandas DataFrame。
- 将所有数据框架导入Python数据库中。
In [100]:
import pandas
import numpy as np
files = ["ap_2010.csv", "class_size.csv", "demographics.csv", "graduation.csv", "hs_directory.csv", "math_test_results.csv", "sat_results.csv"]
data = {}
for f in files:
d = pandas.read_csv("schools/{0}".format(f))
data[f.replace(".csv", "")] = d
一旦我们将数据读入,我们就可以使用数据框架中的头部方法打印每个数据框架的前五行。
In [103]:
for k,v in data.items():
print("\n" + k + "\n")
print(v.head())
math_test_results
DBN Grade Year Category Number Tested Mean Scale Score Level 1 # \
0 01M015 3 2006 All Students 39 667 2
1 01M015 3 2007 All Students 31 672 2
2 01M015 3 2008 All Students 37 668 0
3 01M015 3 2009 All Students 33 668 0
4 01M015 3 2010 All Students 26 677 6
Level 1 % Level 2 # Level 2 % Level 3 # Level 3 % Level 4 # Level 4 % \
0 5.1% 11 28.2% 20 51.3% 6 15.4%
1 6.5% 3 9.7% 22 71% 4 12.9%
2 0% 6 16.2% 29 78.4% 2 5.4%
3 0% 4 12.1% 28 84.8% 1 3%
4 23.1% 12 46.2% 6 23.1% 2 7.7%
Level 3+4 # Level 3+4 %
0 26 66.7%
1 26 83.9%
2 31 83.8%
3 29 87.9%
4 8 30.8%
ap_2010
DBN SchoolName AP Test Takers \
0 01M448 UNIVERSITY NEIGHBORHOOD H.S. 39
1 01M450 EAST SIDE COMMUNITY HS 19
2 01M515 LOWER EASTSIDE PREP 24
3 01M539 NEW EXPLORATIONS SCI,TECH,MATH 255
4 02M296 High School of Hospitality Management s
Total Exams Taken Number of Exams with scores 3 4 or 5
0 49 10
1 21 s
2 26 24
3 377 191
4 s s
sat_results
DBN SCHOOL NAME \
0 01M292 HENRY STREET SCHOOL FOR INTERNATIONAL STUDIES
1 01M448 UNIVERSITY NEIGHBORHOOD HIGH SCHOOL
2 01M450 EAST SIDE COMMUNITY SCHOOL
3 01M458 FORSYTH SATELLITE ACADEMY
4 01M509 MARTA VALLE HIGH SCHOOL
Num of SAT Test Takers SAT Critical Reading Avg. Score SAT Math Avg. Score \
0 29 355 404
1 91 383 423
2 70 377 402
3 7 414 401
4 44 390 433
SAT Writing Avg. Score
0 363
1 366
2 370
3 359
4 384
class_size
CSD BOROUGH SCHOOL CODE SCHOOL NAME GRADE PROGRAM TYPE \
0 1 M M015 P.S. 015 Roberto Clemente 0K GEN ED
1 1 M M015 P.S. 015 Roberto Clemente 0K CTT
2 1 M M015 P.S. 015 Roberto Clemente 01 GEN ED
3 1 M M015 P.S. 015 Roberto Clemente 01 CTT
4 1 M M015 P.S. 015 Roberto Clemente 02 GEN ED
CORE SUBJECT (MS CORE and 9-12 ONLY) CORE COURSE (MS CORE and 9-12 ONLY) \
0 - -
1 - -
2 - -
3 - -
4 - -
SERVICE CATEGORY(K-9* ONLY) NUMBER OF STUDENTS / SEATS FILLED \
0 - 19.0
1 - 21.0
2 - 17.0
3 - 17.0
4 - 15.0
NUMBER OF SECTIONS AVERAGE CLASS SIZE SIZE OF SMALLEST CLASS \
0 1.0 19.0 19.0
1 1.0 21.0 21.0
2 1.0 17.0 17.0
3 1.0 17.0 17.0
4 1.0 15.0 15.0
SIZE OF LARGEST CLASS DATA SOURCE SCHOOLWIDE PUPIL-TEACHER RATIO
0 19.0 ATS NaN
1 21.0 ATS NaN
2 17.0 ATS NaN
3 17.0 ATS NaN
4 15.0 ATS NaN
demographics
DBN Name schoolyear fl_percent frl_percent \
0 01M015 P.S. 015 ROBERTO CLEMENTE 20052006 89.4 NaN
1 01M015 P.S. 015 ROBERTO CLEMENTE 20062007 89.4 NaN
2 01M015 P.S. 015 ROBERTO CLEMENTE 20072008 89.4 NaN
3 01M015 P.S. 015 ROBERTO CLEMENTE 20082009 89.4 NaN
4 01M015 P.S. 015 ROBERTO CLEMENTE 20092010 96.5
total_enrollment prek k grade1 grade2 ... black_num black_per \
0 281 15 36 40 33 ... 74 26.3
1 243 15 29 39 38 ... 68 28.0
2 261 18 43 39 36 ... 77 29.5
3 252 17 37 44 32 ... 75 29.8
4 208 16 40 28 32 ... 67 32.2
hispanic_num hispanic_per white_num white_per male_num male_per female_num \
0 189 67.3 5 1.8 158.0 56.2 123.0
1 153 63.0 4 1.6 140.0 57.6 103.0
2 157 60.2 7 2.7 143.0 54.8 118.0
3 149 59.1 7 2.8 149.0 59.1 103.0
4 118 56.7 6 2.9 124.0 59.6 84.0
female_per
0 43.8
1 42.4
2 45.2
3 40.9
4 40.4
[5 rows x 38 columns]
graduation
Demographic DBN School Name Cohort \
0 Total Cohort 01M292 HENRY STREET SCHOOL FOR INTERNATIONAL 2003
1 Total Cohort 01M292 HENRY STREET SCHOOL FOR INTERNATIONAL 2004
2 Total Cohort 01M292 HENRY STREET SCHOOL FOR INTERNATIONAL 2005
3 Total Cohort 01M292 HENRY STREET SCHOOL FOR INTERNATIONAL 2006
4 Total Cohort 01M292 HENRY STREET SCHOOL FOR INTERNATIONAL 2006 Aug
Total Cohort Total Grads - n Total Grads - % of cohort Total Regents - n \
0 5 s s s
1 55 37 67.3% 17
2 64 43 67.2% 27
3 78 43 55.1% 36
4 78 44 56.4% 37
Total Regents - % of cohort Total Regents - % of grads \
0 s s
1 30.9% 45.9%
2 42.2% 62.8%
3 46.2% 83.7%
4 47.4% 84.1%
... Regents w/o Advanced - n \
0 ... s
1 ... 17
2 ... 27
3 ... 36
4 ... 37
Regents w/o Advanced - % of cohort Regents w/o Advanced - % of grads \
0 s s
1 30.9% 45.9%
2 42.2% 62.8%
3 46.2% 83.7%
4 47.4% 84.1%
Local - n Local - % of cohort Local - % of grads Still Enrolled - n \
0 s s s s
1 20 36.4% 54.1% 15
2 16 25% 37.200000000000003% 9
3 7 9% 16.3% 16
4 7 9% 15.9% 15
Still Enrolled - % of cohort Dropped Out - n Dropped Out - % of cohort
0 s s s
1 27.3% 3 5.5%
2 14.1% 9 14.1%
3 20.5% 11 14.1%
4 19.2% 11 14.1%
[5 rows x 23 columns]
hs_directory
dbn school_name boro \
0 17K548 Brooklyn School for Music & Theatre Brooklyn
1 09X543 High School for Violin and Dance Bronx
2 09X327 Comprehensive Model School Project M.S. 327 Bronx
3 02M280 Manhattan Early College School for Advertising Manhattan
4 28Q680 Queens Gateway to Health Sciences Secondary Sc... Queens
building_code phone_number fax_number grade_span_min grade_span_max \
0 K440 718-230-6250 718-230-6262 9 12
1 X400 718-842-0687 718-589-9849 9 12
2 X240 718-294-8111 718-294-8109 6 12
3 M520 718-935-3477 NaN 9 10
4 Q695 718-969-3155 718-969-3552 6 12
expgrade_span_min expgrade_span_max \
0 NaN NaN
1 NaN NaN
2 NaN NaN
3 9 14.0
4 NaN NaN
... \
0 ...
1 ...
2 ...
3 ...
4 ...
priority02 \
0 Then to New York City residents
1 Then to New York City residents who attend an ...
2 Then to Bronx students or residents who attend...
3 Then to New York City residents who attend an ...
4 Then to Districts 28 and 29 students or residents
priority03 \
0 NaN
1 Then to Bronx students or residents
2 Then to New York City residents who attend an ...
3 Then to Manhattan students or residents
4 Then to Queens students or residents
priority04 priority05 \
0 NaN NaN
1 Then to New York City residents NaN
2 Then to Bronx students or residents Then to New York City residents
3 Then to New York City residents NaN
4 Then to New York City residents NaN
priority06 priority07 priority08 priority09 priority10 \
0 NaN NaN NaN NaN NaN
1 NaN NaN NaN NaN NaN
2 NaN NaN NaN NaN NaN
3 NaN NaN NaN NaN NaN
4 NaN NaN NaN NaN NaN
Location 1
0 883 Classon Avenue\nBrooklyn, NY 11225\n(40.67...
1 1110 Boston Road\nBronx, NY 10456\n(40.8276026...
2 1501 Jerome Avenue\nBronx, NY 10452\n(40.84241...
3 411 Pearl Street\nNew York, NY 10038\n(40.7106...
4 160-20 Goethals Avenue\nJamaica, NY 11432\n(40...
[5 rows x 58 columns]
我们可以开始在数据组合中观察有用的部分:
- Most of the datasets contain a
DBN
column - 大部分数据组包含DBN列。
- 一些条目看起来在地图上标出会很有趣,特别是
Location 1
,这列对应的信息会多一些。 - 有些数据组会出现每所学校对应多行数据(DBN数据重复),这意味着我们要进行预处理。
Unifying the data
统一数据
为了使工作更简单,我们将需要将全部零散的数据组统一为一个。这将使我们能够快速跨数据组对比数据列。因此,我们需要找到相同的列将他们统一起来。请查看上面的输出数据,当DBN出现在多个数据组中时它很可能成为共同列。
如果我们用google搜索DBN New York City Schools
, 我们在此得到了结果。它解释了DBN是每个学校独特的编码。我们将挖掘数据组,特别是政府数据组。这通常需要做一些工作来找出每列的含义,或者每个数据组是的意图。
现在这两个数据组的主要的问题是,class_size
, 和 hs_directory
数据组, 没有 DBN
列。在hs_directory
数据中是dbn,那么我们只需重命名即可,或者将它复制到新的名为DBN的列中。在class_size
数据中,我们将需要尝试不同的方法。
DBN列:
In 5:
data["demographics"]["DBN"].head()
Out5:
0 01M015
1 01M015
2 01M015
3 01M015
4 01M015
Name: DBN, dtype: object
如果我们看向class_size
数据,我们将看到前五行:
In 4:
data["class_size"].head()
Out4:
CSD | BOROUGH | SCHOOL CODE | SCHOOL NAME | GRADE | PROGRAM TYPE | CORE SUBJECT (MS CORE and 9-12 ONLY) | CORE COURSE (MS CORE and 9-12 ONLY) | SERVICE CATEGORY(K-9* ONLY) | NUMBER OF STUDENTS / SEATS FILLED | NUMBER OF SECTIONS | AVERAGE CLASS SIZE | SIZE OF SMALLEST CLASS | SIZE OF LARGEST CLASS | DATA SOURCE | SCHOOLWIDE PUPIL-TEACHER RATIO | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | M | M015 | P.S. 015 Roberto Clemente | 0K | GEN ED | - | - | - | 19.0 | 1.0 | 19.0 | 19.0 | 19.0 | ATS | NaN |
1 | 1 | M | M015 | P.S. 015 Roberto Clemente | 0K | CTT | - | - | - | 21.0 | 1.0 | 21.0 | 21.0 | 21.0 | ATS | NaN |
2 | 1 | M | M015 | P.S. 015 Roberto Clemente | 01 | GEN ED | - | - | - | 17.0 | 1.0 | 17.0 | 17.0 | 17.0 | ATS | NaN |
3 | 1 | M | M015 | P.S. 015 Roberto Clemente | 01 | CTT | - | - | - | 17.0 | 1.0 | 17.0 | 17.0 | 17.0 | ATS | NaN |
4 | 1 | M | M015 | P.S. 015 Roberto Clemente | 02 | GEN ED | - | - | - | 15.0 | 1.0 | 15.0 | 15.0 | 15.0 | ATS | NaN |
正如上面所见,DBN实际上是CSD
, BOROUGH
, 和 SCHOOL CODE
的组合。对那些不熟悉纽约市的人来说,纽约由五个行政区组成。每个行政区是一个组织团体,并且有着美国城市一样的面积。DBN全称为行政区域编号。看起来就像CSD是区域,BOROUGH是行政区,并且当与SCHOOL CODE合并时就组成了DBN。这里并没有系统的方法寻找像这个数据这样的内在规律,并且这需要一些探索和努力来发现。
现在我们已经知道了DBN的组成,那么我们就可以将它加入到class_size和hs_directory数据组中了:
In [ ]:
data["class_size"]["DBN"] = data["class_size"].apply(lambda x: "{0:02d}{1}".format(x["CSD"], x["SCHOOL CODE"]), axis=1)
data["hs_directory"]["DBN"] = data["hs_directory"]["dbn"]
加入问卷
最可能值得一看的数据组之一就是学生、家长和老师关于学校质量的问卷了。这些问卷包含了每所学校的安全度,教学水平等。之前我们所合并了数据组,让我们们添加问卷数据。在真实世界的数据科学工程中,你将要经常会在分析过程中碰到有趣的数据,并且希望合并它。使用灵活的工具就像Jupyter notebook 将允许你快速添加一些新的代码,并且重新开始你的分析。
因此,我们将添加问卷数据到我们的data文件夹,并且合并所有之前的数据。问卷数据分为两个文件,一个包含所有的学校,一个包含75号区域的学校。我们将需要写一些代码来合并它们。之后的代码我们将:
- 读取所有学校的问卷,并使用windows-1252作为编码。
- 使用windows-1252编码读取所有75号区域学校的问卷。
- 添加标签来表明每个数据组包含哪个区域的学校。
- 使用数据框架concat方法合并数据组为一个。
In [66]:
survey1 = pandas.read_csv("schools/survey_all.txt", delimiter="\t", encoding='windows-1252')
survey2 = pandas.read_csv("schools/survey_d75.txt", delimiter="\t", encoding='windows-1252')
survey1["d75"] = False
survey2["d75"] = True
survey = pandas.concat([survey1, survey2], axis=0)
一旦我们将问卷合并,这里将会有一些混乱。我们希望我们合并的数据组列数最少,那么我们将可以轻易的进行列之间的对比并找出期间的关联。不幸的是,问卷数据有很多列并不是很有用:
In 16:
survey.head()
Out16:
N_p | N_s | N_t | aca_p_11 | aca_s_11 | aca_t_11 | aca_tot_11 | bn | com_p_11 | com_s_11 | ... | t_q8c_1 | t_q8c_2 | t_q8c_3 | t_q8c_4 | t_q9 | t_q9_1 | t_q9_2 | t_q9_3 | t_q9_4 | t_q9_5 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 90.0 | NaN | 22.0 | 7.8 | NaN | 7.9 | 7.9 | M015 | 7.6 | NaN | ... | 29.0 | 67.0 | 5.0 | 0.0 | NaN | 5.0 | 14.0 | 52.0 | 24.0 | 5.0 |
1 | 161.0 | NaN | 34.0 | 7.8 | NaN | 9.1 | 8.4 | M019 | 7.6 | NaN | ... | 74.0 | 21.0 | 6.0 | 0.0 | NaN | 3.0 | 6.0 | 3.0 | 78.0 | 9.0 |
2 | 367.0 | NaN | 42.0 | 8.6 | NaN | 7.5 | 8.0 | M020 | 8.3 | NaN | ... | 33.0 | 35.0 | 20.0 | 13.0 | NaN | 3.0 | 5.0 | 16.0 | 70.0 | 5.0 |
3 | 151.0 | 145.0 | 29.0 | 8.5 | 7.4 | 7.8 | 7.9 | M034 | 8.2 | 5.9 | ... | 21.0 | 45.0 | 28.0 | 7.0 | NaN | 0.0 | 18.0 | 32.0 | 39.0 | 11.0 |
4 | 90.0 | NaN | 23.0 | 7.9 | NaN | 8.1 | 8.0 | M063 | 7.9 | NaN | ... | 59.0 | 36.0 | 5.0 | 0.0 | NaN | 10.0 | 5.0 | 10.0 | 60.0 | 15.0 |
5 rows × 2773 columns
我们可以通过查看数据文件夹中伴随问卷数据下载下来的文件来解决这个问题。它告诉我们们数据中重要的部分是哪些:
我们可以去除survey
数据组中多余的列:
In 17:
survey["DBN"] = survey["dbn"]
survey_fields = ["DBN", "rr_s", "rr_t", "rr_p", "N_s", "N_t", "N_p", "saf_p_11", "com_p_11", "eng_p_11", "aca_p_11", "saf_t_11", "com_t_11", "eng_t_10", "aca_t_11", "saf_s_11", "com_s_11", "eng_s_11", "aca_s_11", "saf_tot_11", "com_tot_11", "eng_tot_11", "aca_tot_11",]
survey = survey.loc[:,survey_fields]
data["survey"] = survey
survey.shape
Out17:
(1702, 23)
请确保理你已经了解了每个数据组的内容和相关联的列,者能节约你之后大量的时间和精力:
精简数据组
如果我们看向某些数据组,包括class_size
,我们将立刻发现问题:
In 18:
data["class_size"].head()
Out18:
CSD | BOROUGH | SCHOOL CODE | SCHOOL NAME | GRADE | PROGRAM TYPE | CORE SUBJECT (MS CORE and 9-12 ONLY) | CORE COURSE (MS CORE and 9-12 ONLY) | SERVICE CATEGORY(K-9* ONLY) | NUMBER OF STUDENTS / SEATS FILLED | NUMBER OF SECTIONS | AVERAGE CLASS SIZE | SIZE OF SMALLEST CLASS | SIZE OF LARGEST CLASS | DATA SOURCE | SCHOOLWIDE PUPIL-TEACHER RATIO | DBN | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | M | M015 | P.S. 015 Roberto Clemente | 0K | GEN ED | - | - | - | 19.0 | 1.0 | 19.0 | 19.0 | 19.0 | ATS | NaN | 01M015 |
1 | 1 | M | M015 | P.S. 015 Roberto Clemente | 0K | CTT | - | - | - | 21.0 | 1.0 | 21.0 | 21.0 | 21.0 | ATS | NaN | 01M015 |
2 | 1 | M | M015 | P.S. 015 Roberto Clemente | 01 | GEN ED | - | - | - | 17.0 | 1.0 | 17.0 | 17.0 | 17.0 | ATS | NaN | 01M015 |
3 | 1 | M | M015 | P.S. 015 Roberto Clemente | 01 | CTT | - | - | - | 17.0 | 1.0 | 17.0 | 17.0 | 17.0 | ATS | NaN | 01M015 |
4 | 1 | M | M015 | P.S. 015 Roberto Clemente | 02 | GEN ED | - | - | - | 15.0 | 1.0 | 15.0 | 15.0 | 15.0 | ATS | NaN | 01M015 |
每所高中都有许多行(正如你所见的重复的DBN
和SCHOOL NAME
)。然而,如果我们看向sat_result
数据组,每所高中只有一行:
In 21:
data["sat_results"].head()
Out21:
DBN | SCHOOL NAME | Num of SAT Test Takers | SAT Critical Reading Avg. Score | SAT Math Avg. Score | SAT Writing Avg. Score | |
---|---|---|---|---|---|---|
0 | 01M292 | HENRY STREET SCHOOL FOR INTERNATIONAL STUDIES | 29 | 355 | 404 | 363 |
1 | 01M448 | UNIVERSITY NEIGHBORHOOD HIGH SCHOOL | 91 | 383 | 423 | 366 |
2 | 01M450 | EAST SIDE COMMUNITY SCHOOL | 70 | 377 | 402 | 370 |
3 | 01M458 | FORSYTH SATELLITE ACADEMY | 7 | 414 | 401 | 359 |
4 | 01M509 | MARTA VALLE HIGH SCHOOL | 44 | 390 | 433 | 384 |
为了合并这些数据组,我们将需要找到方法精简数据组到如class_size
般一行对应一所高中。否则,我们将不能将SAT成绩与班级大小进行比较。我们通过先更好的理解数据,然后做一些合并来完成。class_size
数据组像GRADE
和PROGRAM TYPE
,每个学校有多个数据对应。为了将每个范围内的数据变为一个数据,我们将大部分重复行过滤掉,在下面的代码中我们将会:
- 只从
class_size
中选择GRADE
范围为09-12
的行。 - 只从
class_size
中选择PROGRAM TYPE
是GEN ED
的值。 - 将
class_size
以DBN
分组,然后取每列的平均值。重要的是,我们将找到每所学校班级大小平均值。 - 重置索引,将
DBN
重新加到列中。
In [68]:
class_size = data["class_size"]
class_size = class_size[class_size["GRADE "] == "09-12"]
class_size = class_size[class_size["PROGRAM TYPE"] == "GEN ED"]
class_size = class_size.groupby("DBN").agg(np.mean)
class_size.reset_index(inplace=True)
data["class_size"] = class_size
精简其它数据组
接下来,我们将需要精简demographic
数据组。这里有每个学校收集多年的数据,所以这里每所学校有许多重复的行。我们将只选取schoolyear
最近的可用行:
In [69]:
demographics = data["demographics"]
demographics = demographics[demographics["schoolyear"] == 20112012]
data["demographics"] = demographics
我们需要精简math_test_results
数据组。这个数据组被Grade
和Year
划分。我们将只选取一年选取一个年级。
In [70]:
data["math_test_results"] = data["math_test_results"][data["math_test_results"]["Year"] == 2011]
data["math_test_results"] = data["math_test_results"][data["math_test_results"]["Grade"] == '8']
最后,graduation
需要被精简:
In [71]:
data["graduation"] = data["graduation"][data["graduation"]["Cohort"] == "2006"]
data["graduation"] = data["graduation"][data["graduation"]["Demographic"] == "Total Cohort"]
在完成工程的主要部分之前数据清理和挖掘是十分重要的。有一个高质量的,一致的数据组将会使你的分析更加快速。
计算变量
计算变量可以通过使我们的比较更加快速来加快分析速度,并且能是我们做到本无法做到的比较。我们能做的第一件事就是从分开的列SAT Math Avg. Score
, SAT Critical Reading Avg. Score
, and SAT Writing Avg. Score
计算SAT成绩:
- 将SAT列数值从字符转转化为数字。
- 将所有列相加以得到
sat_score
,即SAT成绩。
In [72]:
cols = ['SAT Math Avg. Score', 'SAT Critical Reading Avg. Score', 'SAT Writing Avg. Score']
for c in cols:
data["sat_results"][c] = data["sat_results"][c].convert_objects(convert_numeric=True)
data['sat_results']['sat_score'] = data['sat_results'][cols[0]] + data['sat_results'][cols[1]] + data['sat_results'][cols[2]]
接下来,我们将需要进行每所学校一致区域分析,所以我们将制作地图。这将是我们画出每所学校的位置,下面的代码,我们将会:
- 从
Location 1
列分析出经度和维度。 - 转化
lat
(经度)和lon
(维度)为数字。
In [73]:
data["hs_directory"]['lat'] = data["hs_directory"]['Location 1'].apply(lambda x: x.split("\n")[-1].replace("(", "").replace(")", "").split(", ")[0])
data["hs_directory"]['lon'] = data["hs_directory"]['Location 1'].apply(lambda x: x.split("\n")[-1].replace("(", "").replace(")", "").split(", ")[1])
for c in ['lat', 'lon']:
data["hs_directory"][c] = data["hs_directory"][c].convert_objects(convert_numeric=True)
现在,我们将输出每个数据组来查看我们有了什么数据:
In [74]:
for k,v in data.items():
print(k)
print(v.head())
math_test_results
DBN Grade Year Category Number Tested Mean Scale Score \
111 01M034 8 2011 All Students 48 646
280 01M140 8 2011 All Students 61 665
346 01M184 8 2011 All Students 49 727
388 01M188 8 2011 All Students 49 658
411 01M292 8 2011 All Students 49 650
Level 1 # Level 1 % Level 2 # Level 2 % Level 3 # Level 3 % Level 4 # \
111 15 31.3% 22 45.8% 11 22.9% 0
280 1 1.6% 43 70.5% 17 27.9% 0
346 0 0% 0 0% 5 10.2% 44
388 10 20.4% 26 53.1% 10 20.4% 3
411 15 30.6% 25 51% 7 14.3% 2
Level 4 % Level 3+4 # Level 3+4 %
111 0% 11 22.9%
280 0% 17 27.9%
346 89.8% 49 100%
388 6.1% 13 26.5%
411 4.1% 9 18.4%
survey
DBN rr_s rr_t rr_p N_s N_t N_p saf_p_11 com_p_11 eng_p_11 \
0 01M015 NaN 88 60 NaN 22.0 90.0 8.5 7.6 7.5
1 01M019 NaN 100 60 NaN 34.0 161.0 8.4 7.6 7.6
2 01M020 NaN 88 73 NaN 42.0 367.0 8.9 8.3 8.3
3 01M034 89.0 73 50 145.0 29.0 151.0 8.8 8.2 8.0
4 01M063 NaN 100 60 NaN 23.0 90.0 8.7 7.9 8.1
... eng_t_10 aca_t_11 saf_s_11 com_s_11 eng_s_11 aca_s_11 \
0 ... NaN 7.9 NaN NaN NaN NaN
1 ... NaN 9.1 NaN NaN NaN NaN
2 ... NaN 7.5 NaN NaN NaN NaN
3 ... NaN 7.8 6.2 5.9 6.5 7.4
4 ... NaN 8.1 NaN NaN NaN NaN
saf_tot_11 com_tot_11 eng_tot_11 aca_tot_11
0 8.0 7.7 7.5 7.9
1 8.5 8.1 8.2 8.4
2 8.2 7.3 7.5 8.0
3 7.3 6.7 7.1 7.9
4 8.5 7.6 7.9 8.0
[5 rows x 23 columns]
ap_2010
DBN SchoolName AP Test Takers \
0 01M448 UNIVERSITY NEIGHBORHOOD H.S. 39
1 01M450 EAST SIDE COMMUNITY HS 19
2 01M515 LOWER EASTSIDE PREP 24
3 01M539 NEW EXPLORATIONS SCI,TECH,MATH 255
4 02M296 High School of Hospitality Management s
Total Exams Taken Number of Exams with scores 3 4 or 5
0 49 10
1 21 s
2 26 24
3 377 191
4 s s
sat_results
DBN SCHOOL NAME \
0 01M292 HENRY STREET SCHOOL FOR INTERNATIONAL STUDIES
1 01M448 UNIVERSITY NEIGHBORHOOD HIGH SCHOOL
2 01M450 EAST SIDE COMMUNITY SCHOOL
3 01M458 FORSYTH SATELLITE ACADEMY
4 01M509 MARTA VALLE HIGH SCHOOL
Num of SAT Test Takers SAT Critical Reading Avg. Score \
0 29 355.0
1 91 383.0
2 70 377.0
3 7 414.0
4 44 390.0
SAT Math Avg. Score SAT Writing Avg. Score sat_score
0 404.0 363.0 1122.0
1 423.0 366.0 1172.0
2 402.0 370.0 1149.0
3 401.0 359.0 1174.0
4 433.0 384.0 1207.0
class_size
DBN CSD NUMBER OF STUDENTS / SEATS FILLED NUMBER OF SECTIONS \
0 01M292 1 88.0000 4.000000
1 01M332 1 46.0000 2.000000
2 01M378 1 33.0000 1.000000
3 01M448 1 105.6875 4.750000
4 01M450 1 57.6000 2.733333
AVERAGE CLASS SIZE SIZE OF SMALLEST CLASS SIZE OF LARGEST CLASS \
0 22.564286 18.50 26.571429
1 22.000000 21.00 23.500000
2 33.000000 33.00 33.000000
3 22.231250 18.25 27.062500
4 21.200000 19.40 22.866667
SCHOOLWIDE PUPIL-TEACHER RATIO
0 NaN
1 NaN
2 NaN
3 NaN
4 NaN
demographics
DBN Name schoolyear \
6 01M015 P.S. 015 ROBERTO CLEMENTE 20112012
13 01M019 P.S. 019 ASHER LEVY 20112012
20 01M020 PS 020 ANNA SILVER 20112012
27 01M034 PS 034 FRANKLIN D ROOSEVELT 20112012
35 01M063 PS 063 WILLIAM MCKINLEY 20112012
fl_percent frl_percent total_enrollment prek k grade1 grade2 \
6 NaN 89.4 189 13 31 35 28
13 NaN 61.5 328 32 46 52 54
20 NaN 92.5 626 52 102 121 87
27 NaN 99.7 401 14 34 38 36
35 NaN 78.9 176 18 20 30 21
... black_num black_per hispanic_num hispanic_per white_num \
6 ... 63 33.3 109 57.7 4
13 ... 81 24.7 158 48.2 28
20 ... 55 8.8 357 57.0 16
27 ... 90 22.4 275 68.6 8
35 ... 41 23.3 110 62.5 15
white_per male_num male_per female_num female_per
6 2.1 97.0 51.3 92.0 48.7
13 8.5 147.0 44.8 181.0 55.2
20 2.6 330.0 52.7 296.0 47.3
27 2.0 204.0 50.9 197.0 49.1
35 8.5 97.0 55.1 79.0 44.9
[5 rows x 38 columns]
graduation
Demographic DBN School Name Cohort \
3 Total Cohort 01M292 HENRY STREET SCHOOL FOR INTERNATIONAL 2006
10 Total Cohort 01M448 UNIVERSITY NEIGHBORHOOD HIGH SCHOOL 2006
17 Total Cohort 01M450 EAST SIDE COMMUNITY SCHOOL 2006
24 Total Cohort 01M509 MARTA VALLE HIGH SCHOOL 2006
31 Total Cohort 01M515 LOWER EAST SIDE PREPARATORY HIGH SCHO 2006
Total Cohort Total Grads - n Total Grads - % of cohort Total Regents - n \
3 78 43 55.1% 36
10 124 53 42.7% 42
17 90 70 77.8% 67
24 84 47 56% 40
31 193 105 54.4% 91
Total Regents - % of cohort Total Regents - % of grads \
3 46.2% 83.7%
10 33.9% 79.2%
17 74.400000000000006% 95.7%
24 47.6% 85.1%
31 47.2% 86.7%
... Regents w/o Advanced - n \
3 ... 36
10 ... 34
17 ... 67
24 ... 23
31 ... 22
Regents w/o Advanced - % of cohort Regents w/o Advanced - % of grads \
3 46.2% 83.7%
10 27.4% 64.2%
17 74.400000000000006% 95.7%
24 27.4% 48.9%
31 11.4% 21%
Local - n Local - % of cohort Local - % of grads Still Enrolled - n \
3 7 9% 16.3% 16
10 11 8.9% 20.8% 46
17 3 3.3% 4.3% 15
24 7 8.300000000000001% 14.9% 25
31 14 7.3% 13.3% 53
Still Enrolled - % of cohort Dropped Out - n Dropped Out - % of cohort
3 20.5% 11 14.1%
10 37.1% 20 16.100000000000001%
17 16.7% 5 5.6%
24 29.8% 5 6%
31 27.5% 35 18.100000000000001%
[5 rows x 23 columns]
hs_directory
dbn school_name boro \
0 17K548 Brooklyn School for Music & Theatre Brooklyn
1 09X543 High School for Violin and Dance Bronx
2 09X327 Comprehensive Model School Project M.S. 327 Bronx
3 02M280 Manhattan Early College School for Advertising Manhattan
4 28Q680 Queens Gateway to Health Sciences Secondary Sc... Queens
building_code phone_number fax_number grade_span_min grade_span_max \
0 K440 718-230-6250 718-230-6262 9 12
1 X400 718-842-0687 718-589-9849 9 12
2 X240 718-294-8111 718-294-8109 6 12
3 M520 718-935-3477 NaN 9 10
4 Q695 718-969-3155 718-969-3552 6 12
expgrade_span_min expgrade_span_max ... \
0 NaN NaN ...
1 NaN NaN ...
2 NaN NaN ...
3 9 14.0 ...
4 NaN NaN ...
priority05 priority06 priority07 priority08 \
0 NaN NaN NaN NaN
1 NaN NaN NaN NaN
2 Then to New York City residents NaN NaN NaN
3 NaN NaN NaN NaN
4 NaN NaN NaN NaN
priority09 priority10 Location 1 \
0 NaN NaN 883 Classon Avenue\nBrooklyn, NY 11225\n(40.67...
1 NaN NaN 1110 Boston Road\nBronx, NY 10456\n(40.8276026...
2 NaN NaN 1501 Jerome Avenue\nBronx, NY 10452\n(40.84241...
3 NaN NaN 411 Pearl Street\nNew York, NY 10038\n(40.7106...
4 NaN NaN 160-20 Goethals Avenue\nJamaica, NY 11432\n(40...
DBN lat lon
0 17K548 40.670299 -73.961648
1 09X543 40.827603 -73.904475
2 09X327 40.842414 -73.916162
3 02M280 40.710679 -74.000807
4 28Q680 40.718810 -73.806500
[5 rows x 61 columns]
合并数据组
现在我们已经完成了全部准备工作,我们可以用DBN
列将数据组合并在一起了。在最后,我们将会从原始数据组得到一个有着上百列的数据组。当我们合并它们。请注意有些数据组中会没有sat_result
中出现的高中。为了解决这个问题,我们需要使用outer
方法来合并缺少行的数据组,这样我们就不会丢失数据。在实际分析中,缺少数据是很常见的。能够展示解释和解决数据缺失的能力是科学投资组合的重要部分。
你可以在此阅读关于不同类型的join。
接下来的代码,我们将会:
- 循环通过
data
文件夹中的每一个条目。 - 输出条目中的DBN码。
- 决定join类别 -
inner
或outer
。 - 使用
DBN
列将条目合并到数据框架full
中。
In [75]:
flat_data_names = [k for k,v in data.items()]
flat_data = [data[k] for k in flat_data_names]
full = flat_data[0]
for i, f in enumerate(flat_data[1:]):
name = flat_data_names[i+1]
print(name)
print(len(f["DBN"]) - len(f["DBN"].unique()))
join_type = "inner"
if name in ["sat_results", "ap_2010", "graduation"]:
join_type = "outer"
if name not in ["math_test_results"]:
full = full.merge(f, on="DBN", how=join_type)
full.shape
survey
0
ap_2010
1
sat_results
0
class_size
0
demographics
0
graduation
0
hs_directory
0
Out[75]:
(374, 174)
喜欢这篇文章?通过数据查询学习数据科学!
- 从浏览器舒适的学习。
- 使用实际的数据组。
- 建立科学组合工程。
添加值
现在我们有了我们的full
数据框架,我们几乎拥有分析需要的所有数据。虽然这里有一些缺少的部分。我们可能将AP 考试结果与 SAT 成绩相关联,但是我们首先需要将这些列转化为数字,然后填充缺失的数据。
In [76]:
cols = ['AP Test Takers ', 'Total Exams Taken', 'Number of Exams with scores 3 4 or 5']
for col in cols:
full[col] = full[col].convert_objects(convert_numeric=True)
full[cols] = full[cols].fillna(value=0)
然后我们将需要计算表示哦学校所在区域的school_dist
列。这将是我们匹配学校区域并且使用我们之前下载的区域地图画出地区级别的地图。
In [77]:
full["school_dist"] = full["DBN"].apply(lambda x: x[:2])
最终,我们将需要用列的平均值填充缺失的数据到full
中。那么我们就可以计算关联了:
In [79]:
full = full.fillna(full.mean())
计算关联
一个好的方法来挖掘数据并查看哪些列与你所关心的问题有联系就是计算关联。这将告诉你哪列与你所关心的列更加有关联。你可以通过Pandas DataFrame 的corr方法来完成。越接近0则关联越小。越接近1则正相关越强,越接近-1则负关联越强:
In [80]:
full.corr()['sat_score']
Out[80]:
Year NaN
Number Tested 8.127817e-02
rr_s 8.484298e-02
rr_t -6.604290e-02
rr_p 3.432778e-02
N_s 1.399443e-01
N_t 9.654314e-03
N_p 1.397405e-01
saf_p_11 1.050653e-01
com_p_11 2.107343e-02
eng_p_11 5.094925e-02
aca_p_11 5.822715e-02
saf_t_11 1.206710e-01
com_t_11 3.875666e-02
eng_t_10 NaN
aca_t_11 5.250357e-02
saf_s_11 1.054050e-01
com_s_11 4.576521e-02
eng_s_11 6.303699e-02
aca_s_11 8.015700e-02
saf_tot_11 1.266955e-01
com_tot_11 4.340710e-02
eng_tot_11 5.028588e-02
aca_tot_11 7.229584e-02
AP Test Takers 5.687940e-01
Total Exams Taken 5.585421e-01
Number of Exams with scores 3 4 or 5 5.619043e-01
SAT Critical Reading Avg. Score 9.868201e-01
SAT Math Avg. Score 9.726430e-01
SAT Writing Avg. Score 9.877708e-01
...
SIZE OF SMALLEST CLASS 2.440690e-01
SIZE OF LARGEST CLASS 3.052551e-01
SCHOOLWIDE PUPIL-TEACHER RATIO NaN
schoolyear NaN
frl_percent -7.018217e-01
total_enrollment 3.668201e-01
ell_num -1.535745e-01
ell_percent -3.981643e-01
sped_num 3.486852e-02
sped_percent -4.413665e-01
asian_num 4.748801e-01
asian_per 5.686267e-01
black_num 2.788331e-02
black_per -2.827907e-01
hispanic_num 2.568811e-02
hispanic_per -3.926373e-01
white_num 4.490835e-01
white_per 6.100860e-01
male_num 3.245320e-01
male_per -1.101484e-01
female_num 3.876979e-01
female_per 1.101928e-01
Total Cohort 3.244785e-01
grade_span_max -2.495359e-17
expgrade_span_max NaN
zip -6.312962e-02
total_students 4.066081e-01
number_programs 1.166234e-01
lat -1.198662e-01
lon -1.315241e-01
Name: sat_score, dtype: float64
这给了我们一些我们需要探索的内在规律:
- total_enrollment 与
sat_score
强烈相关,这是令人惊讶的,因为你曾经认为越小的学校越专注与学生就会取得更高的成绩。 - 女生所占学校的比例(
female_per
) 与SAT成绩呈正相关,而男生所占学生比例(male_per
)成负相关。 - 没有问卷与SAT成绩成正相关。
- SAT成绩由明显的种族不平等(
white_per
,asian_per
,black_per
,hispanic_per
)。 ell_percent
与SAT成绩明显负相关。
每一个条目都是一个潜在的角度来挖掘和讲述一个关于数据的故事。
设置上下文
在我们开始数据挖掘之前,我们将希望设置上下文,不仅为了我们自己,也是为了其它阅读我们分析的人。一个好的方法就是建立挖掘图标或者地图。因此,我们将在地图标出所有学校的位置,这将有助于读者理解我们所探索的问题。
在下面的代码中,我们将会:
- 建立纽约市为中心的地图。
- 为城市里的每所高中添加一个标号。
- 显示地图。
In [82]:
import folium
from folium import plugins
schools_map = folium.Map(location=[full['lat'].mean(), full['lon'].mean()], zoom_start=10)
marker_cluster = folium.MarkerCluster().add_to(schools_map)
for name, row in full.iterrows():
folium.Marker([row["lat"], row["lon"]], popup="{0}: {1}".format(row["DBN"], row["school_name"])).add_to(marker_cluster)
schools_map.create_map('schools.html')
schools_map
这个地图十分有用,但是不容易查看纽约哪里学校最多。因此,我们将用热图来代替它:
In [84]:
schools_heatmap = folium.Map(location=[full['lat'].mean(), full['lon'].mean()], zoom_start=10)
schools_heatmap.add_children(plugins.HeatMap([[row["lat"], row["lon"]] for name, row in full.iterrows()]))
schools_heatmap.save("heatmap.html")
schools_heatmap
区域级别映射
热图能够很好的标出梯度,但是我们将需要更结构化的画出不同城市之间的SAT分数差距。学校地区是一个很好的方式图形化信息,就像每个区域都有自己的管理者。纽约市数十个学校区域,并且每个区域都是一个小的地理区域。
我们可以通过学校区域来计算SAT分数,然后将它们画在地图上。在下面的代码中,我们将会:
- 通过学校区域对
full
进行分组。 - 计算每个学校区域的每列的平均值。
- 去掉
school_dist
头部的0,然后我们就可以匹配地理数据了。
In [ ]:
district_data = full.groupby("school_dist").agg(np.mean)
district_data.reset_index(inplace=True)
district_data["school_dist"] = district_data["school_dist"].apply(lambda x: str(int(x)))
我们现在将可以画出SAT在每个学校区域的平均值了。因此,我们将会读取GeoJSON中的数据,转化为每个区域的形状,然后通过school_dist
列对每个区域图形和SAT成绩进行匹配。最终我们将创建一个图形:
In [85]:
def show_district_map(col):
geo_path = 'schools/districts.geojson'
districts = folium.Map(location=[full['lat'].mean(), full['lon'].mean()], zoom_start=10)
districts.geo_json(
geo_path=geo_path,
data=district_data,
columns=['school_dist', col],
key_on='feature.properties.school_dist',
fill_color='YlGn',
fill_opacity=0.7,
line_opacity=0.2,
)
districts.save("districts.html")
return districts
show_district_map("sat_score")
挖掘注册人数与SAT分数
现在我们已经依地区画出学校位置和STA成绩确定了上下文,浏览我们分析的人将会对数据的上下文有更好的理解。现在我们已经完成了基础工作,我们可以开始从我们上面寻找关联时所提到的角度分析了。第一个分析角度是学校注册学生人数与SAT成绩。
我们可以通过所有学校的注册学生与SAT成绩的散点图来分析。
In [87]:
%matplotlib inline
full.plot.scatter(x='total_enrollment', y='sat_score')
Out[87]:
<matplotlib.axes._subplots.AxesSubplot at 0x10fe79978>
如你所见,底部左边低注册人数低SAT成绩有一个集群。这个集群意外,SAT成绩与全部注册人数只有轻微正相关。画出的关联显示了意想不到的图形.
我们可以通过获取低注册人数且低SAT成绩的学校的名字进行进一步的分析。
In [88]:
full[(full["total_enrollment"] < 1000) & (full["sat_score"] < 1000)]["School Name"]
Out[88]:
34 INTERNATIONAL SCHOOL FOR LIBERAL ARTS
143 NaN
148 KINGSBRIDGE INTERNATIONAL HIGH SCHOOL
203 MULTICULTURAL HIGH SCHOOL
294 INTERNATIONAL COMMUNITY HIGH SCHOOL
304 BRONX INTERNATIONAL HIGH SCHOOL
314 NaN
317 HIGH SCHOOL OF WORLD CULTURES
320 BROOKLYN INTERNATIONAL HIGH SCHOOL
329 INTERNATIONAL HIGH SCHOOL AT PROSPECT
331 IT TAKES A VILLAGE ACADEMY
351 PAN AMERICAN INTERNATIONAL HIGH SCHOO
Name: School Name, dtype: object
在Google上进行了一些搜索确定了这些学校大多数是为了正在学习英语而开设的,所以由这低注册人数。这个挖掘向我们展示了并不是所有的注册人数都与SAT成绩有关联 - 这里是否由学习英语作为第二语言的学生。
挖掘英语学习者和SAT成绩
现在我们知道英语学习者所占学校学生比例与低的SAT成绩有关联,我们可以探索其中的规律。ell_percent
列表示一个学校英语学习者所占的比例。我们可以制作关于这个关联的散点图。
In [89]:
full.plot.scatter(x='ell_percent', y='sat_score')
Out[89]:
<matplotlib.axes._subplots.AxesSubplot at 0x10fe824e0>
看起来这里有一组学校有着高的ell_percentage
值并且有这低的SAT成绩。我们可以在区域层面调查这个关系,通过找出每个区域英语学习者所占的比例,并且查看是否与我们的区域层面SAT地图所匹配:
In [90]:
show_district_map("ell_percent")
Out[90]:
我们一可通过两个区域层面地图来查看,一个低ELL(English-language)学习者比例的地区更倾向有高SAT成绩,反之亦然。
关联问卷分数和SAT分数
学生、家长和老师的问卷结果如果与SAT分数有很大的关联的假设是合理的。就使例如具有高学术期望的学校倾向于有着更高的SAT分数是合理的。为了测这个理论,让我们画出SAT分数和多种问卷指标:
In [91]:
full.corr()["sat_score"][["rr_s", "rr_t", "rr_p", "N_s", "N_t", "N_p", "saf_tot_11", "com_tot_11", "aca_tot_11", "eng_tot_11"]].plot.bar()
Out[91]:
<matplotlib.axes._subplots.AxesSubplot at 0x114652400>
惊人的,关联最大的两个事实是N_p
和N_s
,分别是家长和学生回应的问卷。都与注册人数有着很强的关联,所以很可能偏离了ell_learner
。此外指标关联最强的就是saf_t_11
。就是学生、家长和老师对学校安全程度的感知。这说明了,越安全的学校,更能让学生在环境里安心学习。然而其它因子,像互动,交流和学术水平都与SAT分数无关,这也许表明了纽约在问卷中问了不理想的问题或者想错了因子(如果他们的目的是提高SAT分数的话)。
挖掘种族和SAT分数
其中一个就读就是调查种族和SAT分数的联系。这是一个大相关微分,并且将其画出来帮助我们理解到底发生了什么:
In [92]:
full.corr()["sat_score"][["white_per", "asian_per", "black_per", "hispanic_per"]].plot.bar()
Out[92]:
<matplotlib.axes._subplots.AxesSubplot at 0x108166ba8>
看起来更高的白种和亚洲学生与更高的SAT分数有关联,但是更高的黑人和西班牙裔与更低的SAT分数有关联。对于西班牙学生,这可能因为近年的移民还是英语学习者的事实。我们可以标出区层面的西班牙裔的比例并观察联系。
In [93]:
show_district_map("hispanic_per")
Out[93]:
看起来这里与英语学习者比例有关联,但是这将有必要做一些挖掘这种和在SAT分数上的其它种族差异。
SAT分数上的性别差异`
挖掘性别与SAT分数之间的关系是最后一个角度。我们注意学校更高的女生比例倾向于与更高的SAT分数有关联。我们可以可视化为一个条形图:
In [94]:
full.corr()["sat_score"][["male_per", "female_per"]].plot.bar()
Out[94]:
<matplotlib.axes._subplots.AxesSubplot at 0x10774d0f0>
为了在关联中挖掘更多,我们可以制作一个female_per
和sat_score
的散点图:
In [95]:
full.plot.scatter(x='female_per', y='sat_score')
Out[95]:
<matplotlib.axes._subplots.AxesSubplot at 0x104715160>
看起来这里有一个高女生比例高SAT成绩的簇(右上角)。我们可以获取簇中学校的名字:
In [96]:
full[(full["female_per"] > 65) & (full["sat_score"] > 1400)]["School Name"]
Out[96]:
3 PROFESSIONAL PERFORMING ARTS HIGH SCH
92 ELEANOR ROOSEVELT HIGH SCHOOL
100 TALENT UNLIMITED HIGH SCHOOL
111 FIORELLO H. LAGUARDIA HIGH SCHOOL OF
229 TOWNSEND HARRIS HIGH SCHOOL
250 FRANK SINATRA SCHOOL OF THE ARTS HIGH SCHOOL
265 BARD HIGH SCHOOL EARLY COLLEGE
Name: School Name, dtype: object
使用Google进行搜索可以得到这些是专注于表演艺术的精英学校。这些学校有着更高比例的女生和更高的SAT分数。这可能解释了更高的女生比例和SAT分数的关联,并且相反的更高的男生比例与更低的SAT分数。
AP成绩
至今,我们将关注人口统计角度。一个我们通过数据来看参加高阶测试的学生和SAT分数的角度。因为高学术获得者倾向于有着高的SAT分数说明了它们是有关联的。
In [98]:
full["ap_avg"] = full["AP Test Takers "] / full["total_enrollment"]
full.plot.scatter(x='ap_avg', y='sat_score')
Out[98]:
<matplotlib.axes._subplots.AxesSubplot at 0x11463a908>
看起来它们之间确实有着很强的关联。有趣的是右上角高SAT分数的学校有着高的AP测试通过比例:
In [99]:
full[(full["ap_avg"] > .3) & (full["sat_score"] > 1700)]["School Name"]
Out[99]:
92 ELEANOR ROOSEVELT HIGH SCHOOL
98 STUYVESANT HIGH SCHOOL
157 BRONX HIGH SCHOOL OF SCIENCE
161 HIGH SCHOOL OF AMERICAN STUDIES AT LE
176 BROOKLYN TECHNICAL HIGH SCHOOL
229 TOWNSEND HARRIS HIGH SCHOOL
243 QUEENS HIGH SCHOOL FOR THE SCIENCES A
260 STATEN ISLAND TECHNICAL HIGH SCHOOL
Name: School Name, dtype: object
功过google搜索解释了大多数高选择性的学校你需要经过测试才能进入。这就说明了为什么这些学校会有高的AP通过人数。
包装故事
在数据科学中,故事不可能真正完结。通过向其他人发布分析,你允许它们拓展并且运用你的分析到他们所感兴趣的方向。比如在本文中,这里有一些角度我们没有完成并且可以探索更加深入。
一个最好的方式开始讲述故事就是尝试拓展或者复制别人已经完成的分析。如果你觉得采取这个方式,你被欢迎拓展这篇文章的分析并得知你的收获。如果你确实这么做了,请在下面评论,那么我就可以看到了。
下一步
如果你做的足够多,你将很有希望对讲一个关于数据的故事和构建你的第一个数据科学组合有很好的理解。一旦你完成了你的数据科学工程,发表在Github上是一个好的想法,这样别人就能够与你一起合作。
如果你洗管这篇文章,你可能希望阅读我们‘Build a Data Science Portfolio’系列文章的其它部分:
- 如何建立一个数据科学博客.
- 建立一个机器学习工程.
- [将帮助你的到工作的数据科学组合的关键].
- [17 你能找到其它数据科学工程数据组的地方].
via: https://www.dataquest.io/blog/data-science-portfolio-project/
译者:[Yoo-4x]
校对:校对者ID