TranslateProject/translated/tech/20180306 How to apply Machine Learning to IoT using Android Things and TensorFlow.md
2018-05-14 22:34:57 +08:00

14 KiB
Raw Blame History

如何使用 Android Things 和 TensorFlow 在物联网上应用机器学习 ============================================================ 

这个项目探索了如何将机器学习应用到物联网上。具体来说,物联网平台我们将使用 Android Things,而机器学习引擎我们将使用 Google TensorFlow

Machine Learning with Android Things

现如今,机器学习是物联网上使用的最热门的主题之一。给机器学习的最简单的定义,可能就是 维基百科上的定义:机器学习是计算机科学中,让计算机不需要显式编程就能去“学习”(即,逐步提升在特定任务上的性能)使用数据的一个领域。

换句话说就是,经过训练之后,那怕是它没有针对它们进行特定的编程,这个系统也能够预测结果。另一方面,我们都知道物联网和联网设备的概念。其中一个前景看好的领域就是如何在物联网上应用机器学习,构建专业的系统,这样就能够去开发一个能够“学习”的系统。此外,还可以使用这些知识去控制和管理物理对象。

这里有几个应用机器学习和物联网产生重要价值的领域,以下仅提到了几个感兴趣的领域,它们是:

  • 在工业物联网IIoT中的预见性维护

  • 消费物联网中,机器学习可以让设备更智能,它通过调整使设备更适应我们的习惯

在本教程中,我们希望去探索如何使用 Android Things 和 TensorFlow 在物联网上应用机器学习。这个 Adnroid Things 物联网项目的基本想法是,探索如何去构建一个能够识别前方道路上基本形状(比如箭头)的无人驾驶汽车。我们已经介绍了 如何使用 Android Things 去构建一个无人驾驶汽车,因此,在开始这个项目之前,我们建议你去阅读那个教程。

这个机器学习和物联网项目包含如下的主题:

  • 如何使用 Docker 配置 TensorFlow 环境

  • 如何训练 TensorFlow 系统

  • 如何使用 Android Things 去集成 TensorFlow

  • 如何使用 TensorFlow 的成果去控制无人驾驶汽车

这个项目起源于 Android Things TensorFlow 图像分类器

我们开始吧!

如何使用 Tensorflow 图像识别

在开始之前,需要安装和配置 TensorFlow 环境。我不是机器学习方面的专家,因此,我需要快速找到并且准备去使用一些东西,因此,我们可以构建 TensorFlow 图像识别器。为此,我们使用 Docker 去运行一个 TensorFlow 镜像。以下是操作步骤:

  1. 克隆 TensorFlow 仓库:

    git clone https://github.com/tensorflow/tensorflow.git
    cd /tensorflow
    git checkout v1.5.0
    
  2. 创建一个目录(/tf-data),它将用于保存这个项目中使用的所有文件。

  3. 运行 Docker

    docker run -it \
    --volume /tf-data:/tf-data \
    --volume /tensorflow:/tensorflow \
    --workdir /tensorflow tensorflow/tensorflow:1.5.0 bash
    

    使用这个命令,我们运行一个交互式 TensorFlow 环境,可以在使用项目期间挂载一些目录。

如何训练 TensorFlow 去识别图像

在 Android Things 系统能够识别图像之前,我们需要去训练 TensorFlow 引擎,以使它能够构建它的模型。为此,我们需要去收集一些图像。正如前面所言,我们需要使用箭头来控制 Android Things 无人驾驶汽车,因此,我们至少要收集四种类型的箭头:

  • 向上的箭头

  • 向下的箭头

  • 向左的箭头

  • 向右的箭头

为训练这个系统,需要使用这四类不同的图像去创建一个“知识库”。在 /tf-data 目录下创建一个名为 images 的目录,然后在它下面创建如下名字的四个子目录:

  • up-arrow

  • down-arrow

  • left-arrow

  • right-arrow

现在,我们去找图片。我使用的是 Google 图片搜索,你也可以使用其它的方法。为了简化图片下载过程,你可以安装一个 Chrome 下载插件,这样你只需要点击就可以下载选定的图片。别忘了多下载一些图片,这样训练效果更好,当然,这样创建模型的时间也会相应增加。

扩展阅读 如何使用 API 去集成 Android Things 如何与 Firebase 一起使用 Android Things

打开浏览器,开始去查找四种箭头的图片:

TensorFlow image classifier Save

每个类别我下载了 80 张图片。不用管图片文件的扩展名。

为所有类别的图片做一次如下的操作(在 Docker 界面下):

python /tensorflow/examples/image_retraining/retrain.py \ 
--bottleneck_dir=tf_files/bottlenecks \
--how_many_training_steps=4000 \
--output_graph=/tf-data/retrained_graph.pb \
--output_labels=/tf-data/retrained_labels.txt \
--image_dir=/tf-data/images

这个过程你需要耐心等待,它需要花费很长时间。结束之后,你将在 /tf-data 目录下发现如下的两个文件:

  1. retrained_graph.pb

  2. retrained_labels.txt

第一个文件包含了 TensorFlow 训练过程产生的结果模型,而第二个文件包含了我们的四个图片类相关的标签。

如何测试 Tensorflow 模型

如果你想去测试这个模型,去验证它是否能按预期工作,你可以使用如下的命令:

python scripts.label_image \
--graph=/tf-data/retrained-graph.pb \
--image=/tf-data/images/[category]/[image_name.jpg]

优化模型

在 Android Things 项目中使用我们的 TensorFlow 模型之前,需要去优化它:

python /tensorflow/python/tools/optimize_for_inference.py \
--input=/tf-data/retrained_graph.pb \
--output=/tf-data/opt_graph.pb \
--input_names="Mul" \
--output_names="final_result"

那个就是我们全部的模型。我们将使用这个模型,把 TensorFlow 与 Android Things 集成到一起,在物联网或者更多任务上应用机器学习。目标是使用 Android Things 应用程序智能识别箭头图片,并反应到接下来的无人驾驶汽车的方向控制上。

如果你想去了解关于 TensorFlow 以及如何生成模型的更多细节,请查看官方文档以及这篇 教程

如何使用 Android Things 和 TensorFlow 在物联网上应用机器学习

TensorFlow 的数据模型准备就绪之后,我们继续下一步:如何将 Android Things 与 TensorFlow 集成到一起。为此,我们将这个任务分为两步来完成:

  1. 硬件部分,我们将把电机和其它部件连接到 Android Things 开发板上

  2. 实现这个应用程序

Android Things 示意图

在深入到如何连接外围部件之前,先列出在这个 Android Things 项目中使用到的组件清单:

  1. Android Things 开发板(树莓派 3

  2. 树莓派摄像头

  3. 一个 LED 灯

  4. LN298N 双 H 桥电机驱动模块(连接控制电机)

  5. 一个带两个轮子的无人驾驶汽车底盘

我不再重复 如何使用 Android Things 去控制电机 了,因为在以前的文章中已经讲过了。

下面是示意图:

Integrating Android Things with IoT Save

上图中没有展示摄像头。最终成果如下图:

Integrating Android Things with TensorFlow Save

使用 TensorFlow 实现 Android Things 应用程序

最后一步是实现 Android Things 应用程序。为此,我们可以复用 Github 上名为 TensorFlow 图片分类器示例 的示例代码。开始之前,先克隆 Github 仓库,这样你就可以修改源代码。

这个 Android Things 应用程序与原始的应用程序是不一样的,因为:

  1. 它不使用按钮去开启摄像头图像捕获

  2. 它使用了不同的模型

  3. 它使用一个闪烁的 LED 灯来提示,摄像头将在 LED 停止闪烁后拍照

  4. 当 TensorFlow 检测到图像时(箭头)它将控制电机。此外,在第 3 步的循环开始之前,它将打开电机 5 秒钟。

为了让 LED 闪烁,使用如下的代码:

private Handler blinkingHandler = new Handler();
private Runnable blinkingLED = new Runnable() {
  @Override
  public void run() {
    try {
     // If the motor is running the app does not start the cam
     if (mc.getStatus())
       return ;

     Log.d(TAG, "Blinking..");
     mReadyLED.setValue(!mReadyLED.getValue());
     if (currentValue <= NUM_OF_TIMES) {
       currentValue++;
       blinkingHandler.postDelayed(blinkingLED, 
                       BLINKING_INTERVAL_MS);
     }
     else {
      mReadyLED.setValue(false);
      currentValue = 0;
      mBackgroundHandler.post(mBackgroundClickHandler);
     }
   } catch (IOException e) {
     e.printStackTrace();
   }
  }
};

当 LED 停止闪烁后,应用程序将捕获图片。

现在需要去关心如何根据检测到的图片去控制电机。修改这个方法:

@Override
public void onImageAvailable(ImageReader reader) {
  final Bitmap bitmap;
   try (Image image = reader.acquireNextImage()) {
     bitmap = mImagePreprocessor.preprocessImage(image);
   }

   final List<Classifier.Recognition> results = 
      mTensorFlowClassifier.doRecognize(bitmap);

   Log.d(TAG, 
    "Got the following results from Tensorflow: " + results);

   // Check the result
   if (results == null || results.size() == 0) {
     Log.d(TAG, "No command..");
     blinkingHandler.post(blinkingLED);
     return ;
    }

    Classifier.Recognition rec = results.get(0);
    Float confidence = rec.getConfidence();
    Log.d(TAG, "Confidence " + confidence.floatValue());

    if (confidence.floatValue() &lt; 0.55) {
     Log.d(TAG, "Confidence too low..");
     blinkingHandler.post(blinkingLED);
     return ;
    }

    String command = rec.getTitle();
    Log.d(TAG, "Command: " + rec.getTitle());

    if (command.indexOf("down") != -1)
       mc.backward();
    else if (command.indexOf("up") != -1)
       mc.forward();
    else if (command.indexOf("left") != -1)
       mc.turnLeft();
    else if (command.indexOf("right") != -1)
       mc.turnRight();
}

在这个方法中,当 TensorFlow 返回捕获的图片匹配到的可能的标签之后,应用程序将比较这个结果与可能的方向,并因此来控制电机。

最后,将去使用前面创建的模型了。拷贝 assets 文件夹下的 opt_graph.pb 和 reatrained_labels.txt 去替换现在的文件。

打开 Helper.java 并修改如下的行:

public static final int IMAGE_SIZE = 299;
private static final int IMAGE_MEAN = 128;
private static final float IMAGE_STD = 128;
private static final String LABELS_FILE = "retrained_labels.txt";
public static final String MODEL_FILE = "file:///android_asset/opt_graph.pb";
public static final String INPUT_NAME = "Mul";
public static final String OUTPUT_OPERATION = "output";
public static final String OUTPUT_NAME = "final_result";

运行这个应用程序,并给摄像头展示几种箭头,以检查它的反应。无人驾驶汽车将根据展示的箭头进行移动。

总结

教程到此结束,我们讲解了如何使用 Android Things 和 TensorFlow 在物联网上应用机器学习。我们使用图片去控制无人驾驶汽车的移动。


via: https://www.survivingwithandroid.com/2018/03/apply-machine-learning-iot-using-android-things-tensorflow.html

作者:Francesco Azzola 译者:qhwdw 校对:校对者ID

本文由 LCTT 原创编译,Linux中国 荣誉推出