11 KiB
我最喜欢的 Go 构建选项
这些方便的 Go 构建选项可以帮助你更好地理解 Go 的编译过程。
(图源 Opensource.com)
学习一门新的编程语言最令人欣慰的部分之一,就是最终运行一个可执行文件,并获得符合预期的输出。当我开始学习 Go 这门编程语言时,我先是阅读一些样本程序来熟悉语法,然后是尝试写一些小的测试程序。随着时间的推移,这种方法帮助我熟悉了编译和构建程序的过程。
Go 的构建选项提供了方法来更好地控制构建过程。它们还可以提供额外的信息,帮助把这个过程分成更小的部分。在这篇文章中,我将演示我所使用的一些选项。注意:我使用的 build 和 compile 这两个词是同一个意思。
开始使用 Go
我使用的 Go 版本是 1.16.7。但是,这里给出的命令应该也能在最新的版本上运行。如果你没有安装 Go,你可以从 Go 官网 上下载它,并按照说明进行安装。你可以通过打开一个提示符命令,并键入下面的命令来验证你所安装的版本:
$ go version
你应该会得到类似下面这样的输出,具体取决于你安装的版本:
go version go1.16.7 linux/amd64
Go 程序的基本编译和执行
我将从一个在屏幕上简单打印 “Hello World” 的 Go 程序示例开始,就像下面这样:
$ cat hello.go
package main
import "fmt"
func main() {
fmt.Println("Hello World")
}
在讨论更高级的选项之前,我将解释如何编译这个 Go 示例程序。我使用了 build
命令,后面跟着 Go 程序的源文件名,本例中是 hello.go
,就像下面这样:
$ go build hello.go
如果一切工作正常,你应该看到在你的当前目录下创建了一个名为 hello
的可执行文件。你可以通过使用 file
命令验证它是 ELF 二进制可执行格式(在 Linux 平台上)。你也可以直接执行它,你会看到它输出 “Hello World”。
$ ls
hello hello.go
$ file ./hello
./hello: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked, not stripped
$ ./hello
Hello World
Go 提供了一个方便的 run
命令,以便你只是想看看程序是否能正常工作,并获得预期的输出,而不想生成一个最终的二进制文件。请记住,即使你在当前目录中没有看到可执行文件,Go 仍然会在某个地方编译并生成可执行文件并运行它,然后把它从系统中删除。我将在本文后面的章节中解释。
$ go run hello.go
Hello World
$ ls
hello.go
更多细节
运行我的程序时,上面的命令使我如鱼得水,不费吹灰之力。然而,如果你想知道 Go 在编译这些程序的过程中做了什么,Go 提供了一个 -x
选项,它可以打印出 Go 为产生可执行文件所做的一切。
简单看一下你就会发现,Go 在 /tmp
内创建了一个临时工作目录,并生成了可执行文件,然后把它移到了 Go 源程序所在的当前目录。
$ go build -x hello.go
WORK=/tmp/go-build1944767317
mkdir -p $WORK/b001/
<< snip >>
mkdir -p $WORK/b001/exe/
cd .
/usr/lib/golang/pkg/tool/linux_amd64/link -o $WORK \
/b001/exe/a.out -importcfg $WORK/b001 \
/importcfg.link -buildmode=exe -buildid=K26hEYzgDkqJjx2Hf-wz/\
nDueg0kBjIygx25rYwbK/W-eJaGIOdPEWgwC6o546 \
/K26hEYzgDkqJjx2Hf-wz -extld=gcc /root/.cache/go-build /cc \
/cc72cb2f4fbb61229885fc434995964a7a4d6e10692a23cc0ada6707c5d3435b-d
/usr/lib/golang/pkg/tool/linux_amd64/buildid -w $WORK \
/b001/exe/a.out # internal
mv $WORK/b001/exe/a.out hello
rm -r $WORK/b001/
这有助于解决程序运行后,在当前目录下没有生成可执行文件的问题。使用 -x
显示可执行文件确实在 /tmp
工作目录下创建并被执行。然而,与 build
命令不同的是,可执行文件并没有移动到当前目录,这使得看起来没有可执行文件被创建。
$ go run -x hello.go
mkdir -p $WORK/b001/exe/
cd .
/usr/lib/golang/pkg/tool/linux_amd64/link -o $WORK/b001 \
/exe/hello -importcfg $WORK/b001/importcfg.link -s -w -buildmode=exe -buildid=hK3wnAP20DapUDeuvAAS/E_TzkbzwXz6tM5dEC8Mx \
/7HYBzuaDGVdaZwSMEWAa/hK3wnAP20DapUDeuvAAS -extld=gcc \
/root/.cache/go-build/75/ \
7531fcf5e48444eed677bfc5cda1276a52b73c62ebac3aa99da3c4094fa57dc3-d
$WORK/b001/exe/hello
Hello World
模仿编译而不产生可执行文件
假设你不想编译程序并产生一个实际的二进制文件,但你确实想看到这个过程中的所有步骤。你可以通过使用 -n
这个构建选项来做到这一点,该选项会打印出通常的执行步骤,而不会实际创建二进制文件。
$ go build -n hello.go
保存临时目录
很多工作都发生在 /tmp
工作目录中,一旦可执行文件被创建和运行,它就会被删除。但是如果你想看看哪些文件是在编译过程中创建的呢?Go 提供了一个 -work
选项,它可以在编译程序时使用。-work
选项除了运行程序外,还打印了工作目录的路径,但它并不会在这之后删除工作目录,所以你可以切换到该目录,检查在编译过程中创建的所有文件。
$ go run -work hello.go
WORK=/tmp/go-build3209320645
Hello World
$ find /tmp/go-build3209320645
/tmp/go-build3209320645
/tmp/go-build3209320645/b001
/tmp/go-build3209320645/b001/importcfg.link
/tmp/go-build3209320645/b001/exe
/tmp/go-build3209320645/b001/exe/hello
$ /tmp/go-build3209320645/b001/exe/hello
Hello World
其他编译选项
如果说,你想手动编译程序,而不是使用 Go 的 build
和 run
这两个方便的命令,最后得到一个可以直接由你的操作系统(这里指 Linux)运行的可执行文件。那么,你该怎么做呢?这个过程可以分为两部分:编译和链接。你可以使用 tool
选项来看看它是如何工作的。
首先,使用 tool compile
命令产生结果的 ar
归档文件,它包含了 .o
中间文件。接下来,对这个 hello.o
文件执行 tool link
命令,产生最终的可执行文件,然后你就可以运行它了。
$ go tool compile hello.go
$ file hello.o
hello.o: current ar archive
$ ar t hello.o
__.PKGDEF
_go_.o
$ go tool link -o hello hello.o
$ file hello
hello: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked, not stripped
$ ./hello
Hello World
如果你想进一步查看基于 hello.o
文件产生可执行文件的链接过程,你可以使用 -v
选项,它会搜索每个 Go 可执行文件中包含的 runtime.a
文件。
$ go tool link -v -o hello hello.o
HEADER = -H5 -T0x401000 -R0x1000
searching for runtime.a in /usr/lib/golang/pkg/linux_amd64/runtime.a
82052 symbols, 18774 reachable
1 package symbols, 1106 hashed symbols, 77185 non-package symbols, 3760 external symbols
81968 liveness data
交叉编译选项
现在我已经解释了 Go 程序的编译过程,接下来,我将演示 Go 如何通过在实际的 build
命令之前提供 GOOS
和 GOARCH
这两个环境变量,来允许你构建针对不同硬件架构和操作系统的可执行文件。
这有什么用呢?举个例子,你会发现为 ARM(arch64)架构制作的可执行文件不能在 Intel(x86_64)架构上运行,而且会产生一个 Exec 格式错误。
下面的这些选项使得生产跨平台的二进制文件变得小菜一碟:
$ GOOS=linux GOARCH=arm64 go build hello.go
$ file ./hello
./hello: ELF 64-bit LSB executable, ARM aarch64, version 1 (SYSV), statically linked, not stripped
$ ./hello
bash: ./hello: cannot execute binary file: Exec format error
$ uname -m
x86_64
你可以阅读我之前的博文,了解更多我在 使用 Go 进行交叉编译 方面的经验。
查看底层汇编指令
源代码并不会直接转换为可执行文件,尽管它生成了一种中间汇编格式,然后最终被汇编为可执行文件。在 Go 中,这被映射为一种中间汇编格式,而不是底层硬件汇编指令。
要查看这个中间汇编格式,请在使用 build
命令时,提供 -gcflags
选项,后面跟着 -S
。这个命令将会显示使用到的汇编指令:
$ go build -gcflags="-S" hello.go
# command-line-arguments
"".main STEXT size=138 args=0x0 locals=0x58 funcid=0x0
0x0000 00000 (/test/hello.go:5) TEXT "".main(SB), ABIInternal, $88-0
0x0000 00000 (/test/hello.go:5) MOVQ (TLS), CX
0x0009 00009 (/test/hello.go:5) CMPQ SP, 16(CX)
0x000d 00013 (/test/hello.go:5) PCDATA $0, $-2
0x000d 00013 (/test/hello.go:5) JLS 128
<< snip >>
你也可以使用 objdump -s
选项,来查看已经编译好的可执行程序的汇编指令,就像下面这样:
$ ls
hello hello.go
$ go tool objdump -s main.main hello
TEXT main.main(SB) /test/hello.go
hello.go:5 0x4975a0 64488b0c25f8ffffff MOVQ FS:0xfffffff8, CX
hello.go:5 0x4975a9 483b6110 CMPQ 0x10(CX), SP
hello.go:5 0x4975ad 7671 JBE 0x497620
hello.go:5 0x4975af 4883ec58 SUBQ $0x58, SP
hello.go:6 0x4975d8 4889442448 MOVQ AX, 0x48(SP)
<< snip >>
分离二进制文件以减少其大小
Go 的二进制文件通常比较大。例如, 一个简单的 Hello World 程序将会产生一个 1.9M 大小的二进制文件。
$ go build hello.go
$
$ du -sh hello
1.9M hello
$
$ file hello
hello: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked, not stripped
$
为了减少生成的二进制文件的大小,你可以分离执行过程中不需要的信息。使用 -ldflags
和 -s -w
选项可以使生成的二进制文件略微变小为 1.3M。
$ go build -ldflags="-s -w" hello.go
$
$ du -sh hello
1.3M hello
$
$ file hello
hello: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked, stripped
$
总结
我希望这篇文章向你介绍了一些方便的 Go 编译选项,同时帮助了你更好地理解 Go 编译过程。关于构建过程的其他信息和其他有趣的选项,请参考 Go 命令帮助:
$ go help build
via: https://opensource.com/article/22/4/go-build-options
作者:Gaurav Kamathe 选题:lkxed 译者:lkxed 校对:校对者ID