mirror of
https://github.com/LCTT/TranslateProject.git
synced 2025-01-13 22:30:37 +08:00
179 lines
6.8 KiB
Markdown
179 lines
6.8 KiB
Markdown
[#]: subject: "A guide to web scraping in Python using Beautiful Soup"
|
||
[#]: via: "https://opensource.com/article/21/9/web-scraping-python-beautiful-soup"
|
||
[#]: author: "Ayush Sharma https://opensource.com/users/ayushsharma"
|
||
[#]: collector: "lujun9972"
|
||
[#]: translator: "MjSeven"
|
||
[#]: reviewer: "wxy"
|
||
[#]: publisher: "wxy"
|
||
[#]: url: "https://linux.cn/article-14086-1.html"
|
||
|
||
Python Beautiful Soup 刮取简易指南
|
||
======
|
||
|
||
> Python 中的 Beautiful Soup 库可以很方便的从网页中提取 HTML 内容。
|
||
|
||
![](https://img.linux.net.cn/data/attachment/album/202112/16/142118cmffvtfrmh1h3ufv.jpg)
|
||
|
||
今天我们将讨论如何使用 Beautiful Soup 库从 HTML 页面中提取内容,之后,我们将使用它将其转换为 Python 列表或字典。
|
||
|
||
### 什么是 Web 刮取,为什么我需要它?
|
||
|
||
答案很简单:并非每个网站都有获取内容的 API。你可能想从你最喜欢的烹饪网站上获取食谱,或者从旅游博客上获取照片。如果没有 API,提取 HTML(或者说 <ruby>刮取<rt>scraping</rt></ruby> 可能是获取内容的唯一方法。我将向你展示如何使用 Python 来获取。
|
||
|
||
**并非所以网站都喜欢被刮取,有些网站可能会明确禁止。请于网站所有者确认是否同意刮取。**
|
||
|
||
### Python 如何刮取网站?
|
||
|
||
使用 Python 进行刮取,我们将执行三个基本步骤:
|
||
|
||
1. 使用 `requests` 库获取 HTML 内容
|
||
2. 分析 HTML 结构并识别包含我们需要内容的标签
|
||
3. 使用 Beautiful Soup 提取标签并将数据放入 Python 列表中
|
||
|
||
### 安装库
|
||
|
||
首先安装我们需要的库。`requests` 库从网站获取 HTML 内容,Beautiful Soup 解析 HTML 并将其转换为 Python 对象。在 Python3 中安装它们,运行:
|
||
|
||
```
|
||
pip3 install requests beautifulsoup4
|
||
```
|
||
|
||
### 提取 HTML
|
||
|
||
在本例中,我将选择刮取网站的 [Techhology][2] 部分。如果你跳转到此页面,你会看到带有标题、摘录和发布日期的文章列表。我们的目标是创建一个包含这些信息的文章列表。
|
||
|
||
网站页面的完整 URL 是:
|
||
|
||
```
|
||
https://notes.ayushsharma.in/technology
|
||
```
|
||
|
||
我们可以使用 `requests` 从这个页面获取 HTML 内容:
|
||
|
||
```
|
||
#!/usr/bin/python3
|
||
import requests
|
||
|
||
url = 'https://notes.ayushsharma.in/technology'
|
||
|
||
data = requests.get(url)
|
||
|
||
print(data.text)
|
||
```
|
||
|
||
变量 `data` 将包含页面的 HTML 源代码。
|
||
|
||
### 从 HTML 中提取内容
|
||
|
||
为了从 `data` 中提取数据,我们需要确定哪些标签具有我们需要的内容。
|
||
|
||
如果你浏览 HTML,你会发现靠近顶部的这一段:
|
||
|
||
```
|
||
<div class="col">
|
||
<a href="/2021/08/using-variables-in-jekyll-to-define-custom-content" class="post-card">
|
||
<div class="card">
|
||
<div class="card-body">
|
||
<h5 class="card-title">Using variables in Jekyll to define custom content</h5>
|
||
<small class="card-text text-muted">I recently discovered that Jekyll's config.yml can be used to define custom
|
||
variables for reusing content. I feel like I've been living under a rock all this time. But to err over and
|
||
over again is human.</small>
|
||
</div>
|
||
<div class="card-footer text-end">
|
||
<small class="text-muted">Aug 2021</small>
|
||
</div>
|
||
</div>
|
||
</a>
|
||
</div>
|
||
```
|
||
|
||
这是每篇文章在整个页面中重复的部分。我们可以看到 `.card-title` 包含文章标题,`.card-text` 包含摘录,`.card-footer > small` 包含发布日期。
|
||
|
||
让我们使用 Beautiful Soup 提取这些内容。
|
||
|
||
```
|
||
#!/usr/bin/python3
|
||
import requests
|
||
from bs4 import BeautifulSoup
|
||
from pprint import pprint
|
||
|
||
url = 'https://notes.ayushsharma.in/technology'
|
||
data = requests.get(url)
|
||
|
||
my_data = []
|
||
|
||
html = BeautifulSoup(data.text, 'html.parser')
|
||
articles = html.select('a.post-card')
|
||
|
||
for article in articles:
|
||
|
||
title = article.select('.card-title')[0].get_text()
|
||
excerpt = article.select('.card-text')[0].get_text()
|
||
pub_date = article.select('.card-footer small')[0].get_text()
|
||
|
||
my_data.append({"title": title, "excerpt": excerpt, "pub_date": pub_date})
|
||
|
||
pprint(my_data)
|
||
```
|
||
|
||
以上代码提取文章信息并将它们放入 `my_data` 变量中。我使用了 `pprint` 来美化输出,但你可以在代码中忽略它。将上面的代码保存在一个名为 `fetch.py` 的文件中,然后运行它:
|
||
|
||
```
|
||
python3 fetch.py
|
||
```
|
||
|
||
如果一切顺利,你应该会看到:
|
||
|
||
```
|
||
[{'excerpt': "I recently discovered that Jekyll's config.yml can be used to"
|
||
"define custom variables for reusing content. I feel like I've"
|
||
'been living under a rock all this time. But to err over and over'
|
||
'again is human.',
|
||
'pub_date': 'Aug 2021',
|
||
'title': 'Using variables in Jekyll to define custom content'},
|
||
{'excerpt': "In this article, I'll highlight some ideas for Jekyll"
|
||
'collections, blog category pages, responsive web-design, and'
|
||
'netlify.toml to make static website maintenance a breeze.',
|
||
'pub_date': 'Jul 2021',
|
||
'title': 'The evolution of ayushsharma.in: Jekyll, Bootstrap, Netlify,'
|
||
'static websites, and responsive design.'},
|
||
{'excerpt': "These are the top 5 lessons I've learned after 5 years of"
|
||
'Terraform-ing.',
|
||
'pub_date': 'Jul 2021',
|
||
'title': '5 key best practices for sane and usable Terraform setups'},
|
||
|
||
... (truncated)
|
||
```
|
||
|
||
以上是全部内容!在这 22 行代码中,我们用 Python 构建了一个网络刮取器,你可以在 [我的示例仓库中找到源代码][7]。
|
||
|
||
### 总结
|
||
|
||
对于 Python 列表中的网站内容,我们现在可以用它做一些很酷的事情。我们可以将它作为 JSON 返回给另一个应用程序,或者使用自定义样式将其转换为 HTML。随意复制粘贴以上代码并在你最喜欢的网站上进行试验。
|
||
|
||
玩的开心,继续编码吧。
|
||
|
||
_本文最初发表在[作者个人博客][8]上,经授权改编。_
|
||
|
||
--------------------------------------------------------------------------------
|
||
|
||
via: https://opensource.com/article/21/9/web-scraping-python-beautiful-soup
|
||
|
||
作者:[Ayush Sharma][a]
|
||
选题:[lujun9972][b]
|
||
译者:[MjSeven](https://github.com/MjSeven)
|
||
校对:[wxy](https://github.com/wxy)
|
||
|
||
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
|
||
|
||
[a]: https://opensource.com/users/ayushsharma
|
||
[b]: https://github.com/lujun9972
|
||
[1]: https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/browser_screen_windows_files.png?itok=kLTeQUbY (Computer screen with files or windows open)
|
||
[2]: https://notes.ayushsharma.in/technology
|
||
[3]: http://december.com/html/4/element/div.html
|
||
[4]: http://december.com/html/4/element/a.html
|
||
[5]: http://december.com/html/4/element/h5.html
|
||
[6]: http://december.com/html/4/element/small.html
|
||
[7]: https://gitlab.com/ayush-sharma/example-assets/-/blob/fd7d2dfbfa3ca34103402993b35a61cbe943bcf3/programming/beautiful-soup/fetch.py
|
||
[8]: https://notes.ayushsharma.in/2021/08/a-guide-to-web-scraping-in-python-using-beautifulsoup
|