mirror of
https://github.com/LCTT/TranslateProject.git
synced 2025-01-07 22:11:09 +08:00
397 lines
14 KiB
Markdown
397 lines
14 KiB
Markdown
[#]: subject: "Data Visualisation in R: Graphs"
|
||
[#]: via: "https://www.opensourceforu.com/2022/07/data-visualisation-in-r-graphs/"
|
||
[#]: author: "Shakthi Kannan https://www.opensourceforu.com/author/shakthi-kannan/"
|
||
[#]: collector: "lkxed"
|
||
[#]: translator: " "
|
||
[#]: reviewer: " "
|
||
[#]: publisher: " "
|
||
[#]: url: " "
|
||
|
||
Data Visualisation in R: Graphs
|
||
======
|
||
In this tenth article in the R series, we will continue to explore data visualisation in R with the lattice and ggplot2 packages.
|
||
|
||
![Data-Visualisation-in-R-Graphs-Featured-image][1]
|
||
|
||
We will be using the R version 4.1.2 installed on Parabola GNU/Linux-libre (x86-64) for the example code snippets in this article.
|
||
|
||
```
|
||
$ R --version
|
||
R version 4.1.2 (2021-11-01) -- “Bird Hippie”
|
||
Copyright (C) 2021 The R Foundation for Statistical Computing
|
||
Platform: x86_64-pc-linux-gnu (64-bit)
|
||
```
|
||
|
||
R is free software and comes with absolutely no warranty. You are welcome to redistribute it under the terms of the GNU General Public License versions 2 or 3. For more information about these matters, see https://www.gnu.org/licenses/.
|
||
|
||
### Lattice
|
||
|
||
#### Line chart
|
||
|
||
Consider the consumer prices (annual per cent) inflation data for India between 1960 and 2022 available from the World Bank. You can use the years in the x-axis, and the inflation on the y-axis to produce a line chart using the xyplot function, as shown below:
|
||
|
||
```
|
||
> x<-c(1960:2020)
|
||
|
||
> y<-c(1.77,1.69,3.63,2.94,13.35,9.47,10.80,13.06,3.23,-0.58,5.09,3.07,6.44,16.94,28.59,5.74,
|
||
|
||
-7.63,8.30,2.52,6.27,11.34,13.11,7.89,11.86,8.31,5.55,8.72,8.80,9.38,7.07,8.97,13.87,11.78,6.32,10.24,10.22,8.97,7.16,13.23,4.66,4.00,3.77,4.29,3.80,3.76,4.24,5.79,6.37,8.34,10.88,11.98,8.85,9.31,11.06,6.64,4.90,4.94,3.32,3.94,3.72,6.62)
|
||
|
||
> d <- data.frame(x,y)
|
||
|
||
> xyplot(y~x, data=d, type=”l”, main=”Inflation, consumer prices (annual %)”)
|
||
```
|
||
|
||
The line chart is shown in Figure 1.
|
||
|
||
![Figure 1: Line chart][2]
|
||
|
||
The *xyplot* accepts the following arguments:
|
||
|
||
| Argument | Description |
|
||
| :- | :- |
|
||
| data | A data frame containing values |
|
||
| groups | A grouping variable in the data |
|
||
| main | The title of the chart |
|
||
| strip | A logical condition on whether to draw strips |
|
||
| x | The primary numeric variable |
|
||
| xlab | The label for x-axis |
|
||
| xlim | A numeric vector that specifies left and right limits for x-axis |
|
||
| ylab | The label for y-axis |
|
||
| ylim | A numeric vector of length two that mentions lower and upper limits for y-axis |
|
||
|
||
**The barchart function**
|
||
|
||
The *bar chart* function produces a bar chart for the given data. In the following example, we specify a function to the axis argument to use the year on the x-axis.
|
||
|
||
![Figure 2: Bar chart][3]
|
||
|
||
```
|
||
> barchart(y~x|x, data=d, horizontal=FALSE, axis=function(side, ...) { if (side==”bottom”) panel.axis(at=seq_along(d$x), label=d$x, outside=TRUE, rot=0, tck=0) else axis.default(side, ...)}, main=”Inflation, consumer prices (annual %)”)
|
||
```
|
||
|
||
The additional set of arguments available to the xyplot and barchart are listed below:
|
||
|
||
| Argument | Description |
|
||
| :- | :- |
|
||
| box.ratio | Specifies the ratio of the width of rectangles in barchart |
|
||
| panel | Plots x and y variables in each panel |
|
||
| default.prepanel | A default function as a fallback to the prepanel function |
|
||
| auto.key | Used to produce a suitable legend |
|
||
| aspect | The physical aspect ratio of the panels |
|
||
| axis | A function responsible for drawing the axis annotation |
|
||
| horizontal | The orientation of the bar chart |
|
||
| subscripts | A logical flag to pass a ‘subscripts’ vector to the panel function |
|
||
| subset | A set of rows from the data is used in the plot |
|
||
|
||
**Scatter plot**
|
||
|
||
You can also display individual charts on a panel grid. For example, the all India consumer price index (rural/urban) data set up to November 2021 is available from https://data.gov.in/catalog/all-india-consumer-price-index-ruralurban-0 for the different states in India. We can read the data from the downloaded file using the read.csv function, as shown below:
|
||
|
||
```
|
||
> cpi <- read.csv(file=”CPI.csv”, sep=”,”)
|
||
```
|
||
|
||
```
|
||
> head(cpi)
|
||
Sector Year Name Andhra.Pradesh Arunachal.Pradesh Assam Bihar
|
||
1 Rural 2011 January 104 NA 104 NA
|
||
2 Urban 2011 January 103 NA 103 NA
|
||
3 Rural+Urban 2011 January 103 NA 104 NA
|
||
4 Rural 2011 February 107 NA 105 NA
|
||
5 Urban 2011 February 106 NA 106 NA
|
||
6 Rural+Urban 2011 February 105 NA 105 NA
|
||
Chattisgarh Delhi Goa Gujarat Haryana Himachal.Pradesh Jharkhand Karnataka
|
||
1 105 NA 103 104 104 104 105 104
|
||
2 104 NA 103 104 104 103 104 104
|
||
3 104 NA 103 104 104 103 105 104
|
||
4 107 NA 105 106 106 05 107 106
|
||
5 106 NA 105 107 107 105 107 108
|
||
6 105 NA 104 105 106 104 106 106
|
||
```
|
||
|
||
The aggregate function can be used to obtain the values for the state of Andhra Pradesh as follows:
|
||
|
||
```
|
||
ap <- aggregate(x=cpi$Andhra.Pradesh, by=list(cpi$Year), FUN=sum)
|
||
|
||
> head(ap)
|
||
Group.1 x
|
||
1 2011 3911.28
|
||
2 2012 4255.40
|
||
3 2013 4516.60
|
||
4 2014 4673.60
|
||
5 2015 4822.20
|
||
6 2016 4921.50
|
||
```
|
||
|
||
A simple scatter plot can be displayed for the consumer price indexes using the following arguments to the xyplot function:
|
||
|
||
```
|
||
> xyplot(x~Group.1, ap, main=”Andhra Pradesh Consumer Price Index upto November 2021”, xlab=”Year”, ylab=”Consumer Price Index”)
|
||
```
|
||
|
||
The corresponding scatter plot illustration is shown in Figure 3.
|
||
|
||
![Figure 3: Scatter plot][4]
|
||
|
||
#### Panel grid
|
||
|
||
You can also visualise the values per year (Group.1) using the xyplot:
|
||
|
||
```
|
||
> xyplot(x~Group.1|Group.1, ap, groups=Group.1, main=”Andhra Pradesh Consumer Price Index upto November 2021”, xlab=”Year”, ylab=”Consumer Price Index”, auto.key=TRUE)
|
||
```
|
||
|
||
The output chart produced by R is as shown in Figure 4.
|
||
|
||
![Figure 4: Grouping chart][5]
|
||
|
||
In addition to the above listed plotting functions, lattice provides the bwplot function for box-and-whisker plots, and the stripplot function for one-dimensional scatter plots.
|
||
|
||
### ggplot2
|
||
|
||
The ggplot2 R package implements a grammar of graphics that specifies how to plot data. You can install the package using the following command:
|
||
|
||
```
|
||
> install.packages(“ggplot2”)
|
||
|
||
*** installing help indices
|
||
*** copying figures
|
||
** building package indices
|
||
** installing vignettes
|
||
** testing if installed package can be loaded from temporary location
|
||
** testing if installed package can be loaded from final location
|
||
** testing if installed package keeps a record of temporary installation path
|
||
* DONE (ggplot2)
|
||
```
|
||
|
||
The library needs to be loaded into the R session before you can use its functions:
|
||
|
||
```
|
||
library(ggplot2)
|
||
```
|
||
|
||
#### Scatter plot
|
||
|
||
The same consumer prices (annual per cent) inflation data for India can be plotted using the quick plot or qplot function from the ggplot2 package in R. For example:
|
||
|
||
```
|
||
> x<-c(1960:2020)
|
||
> y<-c(1.77,1.69,3.63,2.94,13.35,9.47,10.80,13.06,3.23,-0.58,5.09,3.07,6.44,16.94,28.59,5.74,-7.63,8.30,2.52,6.27,11.34,13.11,7.89,11.86,8.31,5.55,8.72,8.80,9.38,7.07,8.97,13.87,11.78,6.32,10.24,10.22,8.97,7.16,13.23,4.66,4.00,3.77,4.29,3.80,3.76,4.24,5.79,6.37,8.34,10.88,11.98,8.85,9.31,11.06,6.64,4.90,4.94,3.32,3.94,3.72,6.62)
|
||
> d <- data.frame(x,y)
|
||
> qplot(x=x, y=y, data=d, xlab=”Year”, ylab=”Inflation”, main=”Inflation, consumer prices (annual %)”)
|
||
```
|
||
|
||
The simple scatter plot is shown in Figure 5.
|
||
|
||
![Figure 5: Simple qplot][6]
|
||
|
||
We can also store the results of the plot to a variable and ask R to provide a summary of the same, as shown below:
|
||
|
||
```
|
||
> ex1 <- qplot(x=x, y=y, data=d)
|
||
> summary(ex1)
|
||
data: x, y [61x2]
|
||
mapping: x = ~x, y = ~y
|
||
faceting: <ggproto object: Class FacetNull, Facet, gg>
|
||
compute_layout: function
|
||
draw_back: function
|
||
draw_front: function
|
||
draw_labels: function
|
||
draw_panels: function
|
||
finish_data: function
|
||
init_scales: function
|
||
map_data: function
|
||
params: list
|
||
setup_data: function
|
||
setup_params: function
|
||
shrink: TRUE
|
||
train_scales: function
|
||
vars: function
|
||
super: <ggproto object: Class FacetNull, Facet, gg>
|
||
-----------------------------------
|
||
geom_point: na.rm = FALSE
|
||
stat_identity: na.rm = FALSE
|
||
position_identity
|
||
```
|
||
|
||
#### Line chart
|
||
|
||
We can generate a line chart by specifying the geom attribute as ‘line’, as shown below:
|
||
|
||
```
|
||
> qplot(x=x, y=y, data=d, xlab=”Year”, ylab=”Inflation”, main=”Inflation, consumer prices (annual %)”, geom=”line”)
|
||
```
|
||
|
||
The corresponding line graph is shown in Figure 6.
|
||
|
||
![Figure 6: qplot line graph][7]
|
||
|
||
The ‘Bank Marketing Data Set’ for a Portuguese banking institution is available from the UCI machine learning repository available at https://archive.ics.uci.edu/ml/datasets/Bank+Marketing. The data can be used for public research use. There are four data sets available, and we will use the read.csv() function to import the data from a ‘bank.csv’ file into a data frame.
|
||
|
||
```
|
||
bank <- read.csv(file=”bank.csv”, sep=”;”)
|
||
|
||
> bank[1:3,]
|
||
age job marital education default balance housing loan contact day
|
||
1 30 unemployed married primary no 1787 no no cellular 19
|
||
2 33 services married secondary no 4789 yes yes cellular 11
|
||
3 35 management single tertiary no 1350 yes no cellular 16
|
||
month duration campaign pdays previous poutcome y
|
||
1 oct 79 1 -1 0 unknown no
|
||
2 may 220 1 339 4 failure no
|
||
3 apr 185 1 330 1 failure no
|
||
```
|
||
|
||
### Bar chart
|
||
|
||
The geometry argument can be specified as ‘bar’ to produce a bar chart, as indicated below:
|
||
|
||
```
|
||
> qplot(x=job, data=bank, geom=”bar”, weight=balance, ylab=”Balance”, xlab=”Category”)
|
||
```
|
||
|
||
The produced bar chart is shown in Figure 7.
|
||
|
||
![Figure 7: Bar chart][8]
|
||
|
||
We can also list a summary of the chart by storing the results of the plot to a variable, and invoking the summary function on the same. For example:
|
||
|
||
```
|
||
> barchart <- qplot(x=job, data=bank, geom=”bar”, weight=balance, ylab=”Balance”, xlab=”Category”)
|
||
|
||
> summary (barchart)
|
||
data: age, job, marital, education, default, balance, housing, loan,
|
||
contact, day, month, duration, campaign, pdays, previous, poutcome, y
|
||
[4521x17]
|
||
mapping: x = ~job, weight = ~balance
|
||
faceting: <ggproto object: Class FacetNull, Facet, gg>
|
||
compute_layout: function
|
||
draw_back: function
|
||
draw_front: function
|
||
draw_labels: function
|
||
draw_panels: function
|
||
finish_data: function
|
||
init_scales: function
|
||
map_data: function
|
||
params: list
|
||
setup_data: function
|
||
setup_params: function
|
||
shrink: TRUE
|
||
train_scales: function
|
||
vars: function
|
||
super: <ggproto object: Class FacetNull, Facet, gg>
|
||
-----------------------------------
|
||
geom_bar: width = NULL, na.rm = FALSE, orientation = NA
|
||
stat_count: width = NULL, na.rm = FALSE, orientation = NA
|
||
position_stack
|
||
```
|
||
|
||
The qplot function accepts the following arguments:
|
||
|
||
| Argument | Description |
|
||
| :- | :- |
|
||
| asp | The y/x aspect ratio |
|
||
| data | Optional data frame that contains x and y |
|
||
| geom | The geometry to use |
|
||
| main | The title of the chart |
|
||
| margin | Display margins |
|
||
| position | The adjustments to specify the position |
|
||
| x | X values |
|
||
| xlab | The x-axis label |
|
||
| xlim | The limits for the x-axis |
|
||
| y | Y values |
|
||
| ylab | The y-axis label |
|
||
| ylim | The limits for the y-axis |
|
||
|
||
#### ggplot
|
||
|
||
The ggplot function can be used to create a new ggplot object for input data, and also specify aesthetic mappings for the same.
|
||
|
||
For the bank.csv data, we can tabulate the job and marital status together using the with function as follows:
|
||
|
||
```
|
||
> with(bank, table(job, marital))
|
||
marital
|
||
|
||
job divorced married single
|
||
admin. 69 266 143
|
||
blue-collar 79 693 174
|
||
entrepreneur 16 132 20
|
||
housemaid 13 84 15
|
||
management 119 557 293
|
||
retired 43 176 11
|
||
self-employed 15 127 41
|
||
services 62 236 119
|
||
student 0 10 74
|
||
technician 89 411 268
|
||
unemployed 22 75 31
|
||
unknown 1 30 7
|
||
```
|
||
|
||
You can now plot the above categorical data using ggplot, as follows:
|
||
|
||
```
|
||
> ggplot(bank, aes(x = job, fill = marital)) + geom_bar()
|
||
```
|
||
|
||
The resultant graph is shown in Figure 8.
|
||
|
||
![Figure 8: ggplot categorical graph][9]
|
||
|
||
The age distribution can be plotted as a density using the geom_density function as follows:
|
||
|
||
```
|
||
> ggplot(bank, aes(x = age)) + geom_density()
|
||
```
|
||
|
||
The corresponding graph is shown in Figure 9.
|
||
|
||
![Figure 9: ggplot density graph][10]
|
||
|
||
A box plot for the age and marital status can be visualised using the following arguments to ggplot:
|
||
|
||
```
|
||
> ggplot(bank, aes(x = age, y = marital)) + geom_boxplot() + coord_flip()
|
||
```
|
||
|
||
The output graph is as shown in Figure 10.
|
||
|
||
![Figure 10: ggplot boxplot graph][11]
|
||
|
||
The ggplot function accepts the following arguments:
|
||
|
||
| Argument | Description |
|
||
| :- | :- |
|
||
| data | The data frame for the plot |
|
||
| mapping | The aesthetic mappings to be used in the plot |
|
||
| environment | The globalenv() environment for the aesthetics |
|
||
|
||
Do try and explore more functions and charts in the graphics packages available in R.
|
||
|
||
--------------------------------------------------------------------------------
|
||
|
||
via: https://www.opensourceforu.com/2022/07/data-visualisation-in-r-graphs/
|
||
|
||
作者:[Shakthi Kannan][a]
|
||
选题:[lkxed][b]
|
||
译者:[译者ID](https://github.com/译者ID)
|
||
校对:[校对者ID](https://github.com/校对者ID)
|
||
|
||
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
|
||
|
||
[a]: https://www.opensourceforu.com/author/shakthi-kannan/
|
||
[b]: https://github.com/lkxed
|
||
[1]: https://www.opensourceforu.com/wp-content/uploads/2022/05/Data-Visualisation-in-R-Graphs-Featured-image.jpg
|
||
[2]: https://www.opensourceforu.com/wp-content/uploads/2022/05/Figure-1-Line-chart.jpg
|
||
[3]: https://www.opensourceforu.com/wp-content/uploads/2022/05/Figure-2-Bar-chart.jpg
|
||
[4]: https://www.opensourceforu.com/wp-content/uploads/2022/05/Figure-3-Scatter-plot.jpg
|
||
[5]: https://www.opensourceforu.com/wp-content/uploads/2022/05/Figure-4-Grouping-chart.jpg
|
||
[6]: https://www.opensourceforu.com/wp-content/uploads/2022/05/Figure-5-Simple-qplot.jpg
|
||
[7]: https://www.opensourceforu.com/wp-content/uploads/2022/05/Figure-6-qplot-line-graph.jpg
|
||
[8]: https://www.opensourceforu.com/wp-content/uploads/2022/05/Figure-7-Bar-chart.jpg
|
||
[9]: https://www.opensourceforu.com/wp-content/uploads/2022/05/Figure-8-ggplot-categorical-graph.jpg
|
||
[10]: https://www.opensourceforu.com/wp-content/uploads/2022/05/Figure-9-ggplot-density-graph.jpg
|
||
[11]: https://www.opensourceforu.com/wp-content/uploads/2022/05/Figure-10-ggplot-boxplot-graph.jpg
|