mirror of
https://github.com/LCTT/TranslateProject.git
synced 2025-01-01 21:50:13 +08:00
88 lines
3.6 KiB
Markdown
88 lines
3.6 KiB
Markdown
[#]: subject: "Using a Machine Learning Model to Make Predictions"
|
||
[#]: via: "https://www.opensourceforu.com/2022/05/using-a-machine-learning-model-to-make-predictions/"
|
||
[#]: author: "Jishnu Saurav Mittapalli https://www.opensourceforu.com/author/jishnu-saurav-mittapalli/"
|
||
[#]: collector: "lkxed"
|
||
[#]: translator: "geekpi"
|
||
[#]: reviewer: " "
|
||
[#]: publisher: " "
|
||
[#]: url: " "
|
||
|
||
使用机器学习模型进行预测
|
||
======
|
||
机器学习基本上是人工智能的一个子集,它使用以前存在的数据对新数据进行预测。当然,现在我们所有人都知道这个道理了!这篇文章展示了如何将 Python 中开发的机器学习模型作为 Java 代码的一部分来进行预测。
|
||
|
||
![Machine-learning][1]
|
||
|
||
本文假设你熟悉基本的开发技巧并理解机器学习。我们将从训练我们的模型开始,然后在 Python 中制作一个机器学习模型。
|
||
|
||
我以一个洪水预测模型为例。首先,导入以下库:
|
||
|
||
```
|
||
import pandas as pd
|
||
import numpy as np
|
||
import matplotlib.pyplot as plt
|
||
```
|
||
|
||
当我们成功地导入了这些库,我们就需要输入数据集,如下面的代码所示。为了预测洪水,我使用的是河流水位数据集。
|
||
|
||
```
|
||
from google.colab import files
|
||
uploaded = files.upload()
|
||
for fn in uploaded.keys(): print(‘User uploaded file “{name}” with length {length} bytes’.format(
|
||
name=fn, length=len(uploaded[fn])))
|
||
Choose files No file chosen
|
||
```
|
||
|
||
只有在当前浏览器会话中执行了该单元格时,上传部件才可用。请重新运行此单元,上传文件 *“Hoppers Crossing-Hourly-River-Level.csv”*,大小 2207036 字节。
|
||
|
||
完成后,我们就可以使用 *sklearn 库*来训练我们的模型。为此,我们首先需要导入该库和算法模型,如图 1 所示。
|
||
|
||
![Figure 1: Training the model][2]
|
||
|
||
```
|
||
from sklearn.linear_model import LinearRegression
|
||
regressor = LinearRegression()
|
||
regressor.fit(X_train, y_train)
|
||
```
|
||
|
||
完成后,我们就训练好了我们的模型,现在可以进行预测了,如图 2 所示。
|
||
|
||
![Figure 2: Making predictions][3]
|
||
|
||
### 在 Java 中使用 ML 模型
|
||
|
||
我们现在需要做的是把 ML 模型转换成一个可以被 Java 程序使用的模型。有一个叫做 sklearn2pmml 的库可以帮助我们做到这一点:
|
||
|
||
```
|
||
# Install the library
|
||
pip install sklearn2pmml
|
||
```
|
||
|
||
库安装完毕后,我们就可以转换我们已经训练好的模型,如下图所示:
|
||
|
||
```
|
||
sklearn2pmml(pipeline, ‘model.pmml’, with_repr = True)
|
||
```
|
||
|
||
这就完成了!我们现在可以在我们的 Java 代码中使用生成的 `model.pmml` 文件来进行预测。请试一试吧!
|
||
|
||
(LCTT 译注:Java 中有第三方库 [jpmml/jpmml-evaluator][4],它能帮助你使用生成的 `model.pmml` 进行预测。)
|
||
|
||
--------------------------------------------------------------------------------
|
||
|
||
via: https://www.opensourceforu.com/2022/05/using-a-machine-learning-model-to-make-predictions/
|
||
|
||
作者:[Jishnu Saurav Mittapalli][a]
|
||
选题:[lkxed][b]
|
||
译者:[geekpi](https://github.com/geekpi)
|
||
校对:[校对者ID](https://github.com/校对者ID)
|
||
|
||
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
|
||
|
||
[a]: https://www.opensourceforu.com/author/jishnu-saurav-mittapalli/
|
||
[b]: https://github.com/lkxed
|
||
[1]: https://www.opensourceforu.com/wp-content/uploads/2022/05/Machine-learning.jpg
|
||
[2]: https://www.opensourceforu.com/wp-content/uploads/2022/05/Figure-1Training-the-model.jpg
|
||
[3]: https://www.opensourceforu.com/wp-content/uploads/2022/05/Figure-2-Making-predictions.jpg
|
||
[4]: https://github.com/jpmml/jpmml-evaluator
|