TranslateProject/published/20181004 PyTorch 1.0 Preview Release- Facebook-s newest Open Source AI.md

169 lines
6.6 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

PyTorch 1.0 预览版发布Facebook 最新 AI 开源框架
======
Facebook 在人工智能项目中广泛使用自己的开源 AI 框架 PyTorch最近他们已经发布了 PyTorch 1.0 的预览版本。
如果你尚不了解,[PyTorch][1] 是一个基于 Python 的科学计算库。
PyTorch 利用 [GPU 超强的运算能力][2] 来实现复杂的 [张量][3] 计算 和 [深度神经网络][4]。 因此, 它被世界各地的研究人员和开发人员广泛使用。
这一新的可以投入使用的 [预览版][5] 已于 2018 年 10 月 2 日周二在旧金山 [The Midway][7] 举办的 [PyTorch 开发人员大会][6] 宣布。
### PyTorch 1.0 候选版本的亮点
![PyTorhc is Python based open source AI framework from Facebook][8]
候选版本中的一些主要新功能包括:
#### 1、 JIT
JIT 是一个编译工具集,使研究和生产更加接近。 它包含一个基于 Python 语言的叫做 Torch Script 的脚本语言,也有能使现有代码与它自己兼容的方法。
#### 2、 全新的 torch.distributed 库: “C10D”
“C10D” 能够在不同的后端上启用异步操作, 并在较慢的网络上提高性能。
#### 3、 C++ 前端 (实验性功能)
虽然它被特别提到是一个不稳定的 API (估计是在预发行版中), 这是一个 PyTorch 后端的纯 C++ 接口, 遵循 API 和建立的 Python 前端的体系结构,以实现高性能、低延迟的研究和开发直接安装在硬件上的 C++ 应用程序。
想要了解更多,可以在 GitHub 上查看完整的 [更新说明][9]。
第一个 PyTorch 1.0 的稳定版本将在夏季发布。LCTT 译注:此信息可能有误)
### 在 Linux 上安装 PyTorch
为了安装 PyTorch v1.0rc0 开发人员建议使用 [conda][10] 同时也可以按照[本地安装页面][11]所示,使用其他方法可以安装,所有必要的细节详见文档。
#### 前提
* Linux
* Pip
* Python
* [CUDA][12] (对于使用 Nvidia GPU 的用户)
我们已经知道[如何安装和使用 Pip][13],那就让我们来了解如何使用 Pip 安装 PyTorch。
请注意PyTorch 具有 GPU 和仅限 CPU 的不同安装包。你应该安装一个适合你硬件的安装包。
#### 安装 PyTorch 的旧版本和稳定版
如果你想在 GPU 机器上安装稳定版0.4 版本),使用:
```
pip install torch torchvision
```
使用以下两个命令,来安装仅用于 CPU 的稳定版:
```
pip install http://download.pytorch.org/whl/cpu/torch-0.4.1-cp27-cp27mu-linux_x86_64.whl
pip install torchvision
```
#### 安装 PyTorch 1.0 候选版本
使用如下命令安装 PyTorch 1.0 RC GPU 版本:
```
pip install torch_nightly -f https://download.pytorch.org/whl/nightly/cu92/torch_nightly.html
```
如果没有GPU并且更喜欢使用 仅限 CPU 版本,使用如下命令:
```
pip install torch_nightly -f https://download.pytorch.org/whl/nightly/cpu/torch_nightly.html
```
#### 验证 PyTorch 安装
使用如下简单的命令,启动终端上的 python 控制台:
```
python
```
现在,按行输入下面的示例代码以验证您的安装:
```
from __future__ import print_function
import torch
x = torch.rand(5, 3)
print(x)
```
你应该得到如下输出:
```
tensor([[0.3380, 0.3845, 0.3217],
[0.8337, 0.9050, 0.2650],
[0.2979, 0.7141, 0.9069],
[0.1449, 0.1132, 0.1375],
[0.4675, 0.3947, 0.1426]])
```
若要检查是否可以使用 PyTorch 的 GPU 功能, 可以使用以下示例代码:
```
import torch
torch.cuda.is_available()
```
输出结果应该是:
```
True
```
支持 PyTorch 的 AMD GPU 仍在开发中, 因此, 尚未按[报告][14]提供完整的测试覆盖,如果您有 AMD GPU ,请在[这里][15]提出建议。
现在让我们来看看一些广泛使用 PyTorch 的研究项目:
### 基于 PyTorch 的持续研究项目
* [Detectron][16]: Facebook AI 研究院的软件系统, 可以智能地进行对象检测和分类。它之前是基于 Caffe2 的。今年早些时候Caffe2 和 PyTorch [合力][17]创建了一个研究 + 生产的 PyTorch 1.0
* [Unsupervised Sentiment Discovery][18]: 广泛应用于社交媒体的一些算法
* [vid2vid][19]: 逼真的视频到视频的转换
* [DeepRecommender][20] 我们在过去的[网飞的 AI 文章][21]中介绍了这些系统是如何工作的
领先的 GPU 制造商英伟达在[更新][22]这方面最近的发展,你也可以阅读正在进行的合作的研究。
### 我们应该如何应对这种 PyTorch 的能力?
想到 Facebook 在社交媒体算法中应用如此令人惊叹的创新项目, 我们是否应该感激这一切或是感到惊恐?这几乎是[天网][23]! 这一新改进的发布的 PyTorch 肯定会推动事情进一步向前! 在下方评论,随时与我们分享您的想法!
--------------------------------------------------------------------------------
via: https://itsfoss.com/pytorch-open-source-ai-framework/
作者:[Avimanyu Bandyopadhyay][a]
选题:[lujun9972](https://github.com/lujun9972)
译者:[distant1219](https://github.com/distant1219)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://itsfoss.com/author/avimanyu/
[1]: https://pytorch.org/
[2]: https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
[3]: https://en.wikipedia.org/wiki/Tensor
[4]: https://www.techopedia.com/definition/32902/deep-neural-network
[5]: https://code.fb.com/ai-research/facebook-accelerates-ai-development-with-new-partners-and-production-capabilities-for-pytorch-1-0
[6]: https://pytorch.fbreg.com/
[7]: https://www.themidwaysf.com/
[8]: https://4bds6hergc-flywheel.netdna-ssl.com/wp-content/uploads/2018/10/pytorch.jpeg
[9]: https://github.com/pytorch/pytorch/releases/tag/v1.0rc0
[10]: https://conda.io/
[11]: https://pytorch.org/get-started/locally/
[12]: https://www.pugetsystems.com/labs/hpc/How-to-install-CUDA-9-2-on-Ubuntu-18-04-1184/
[13]: https://itsfoss.com/install-pip-ubuntu/
[14]: https://github.com/pytorch/pytorch/issues/10657#issuecomment-415067478
[15]: https://rocm.github.io/install.html#installing-from-amd-rocm-repositories
[16]: https://github.com/facebookresearch/Detectron
[17]: https://caffe2.ai/blog/2018/05/02/Caffe2_PyTorch_1_0.html
[18]: https://github.com/NVIDIA/sentiment-discovery
[19]: https://github.com/NVIDIA/vid2vid
[20]: https://github.com/NVIDIA/DeepRecommender/
[21]: https://itsfoss.com/netflix-open-source-ai/
[22]: https://news.developer.nvidia.com/pytorch-1-0-accelerated-on-nvidia-gpus/
[23]: https://en.wikipedia.org/wiki/Skynet_(Terminator)