mirror of
https://github.com/LCTT/TranslateProject.git
synced 2025-01-13 22:30:37 +08:00
60be9dbaa7
@stevenzdg988 https://linux.cn/article-13212-1.html
316 lines
10 KiB
Markdown
316 lines
10 KiB
Markdown
[#]: collector: (lujun9972)
|
||
[#]: translator: (stevenzdg988)
|
||
[#]: reviewer: (wxy)
|
||
[#]: publisher: (wxy)
|
||
[#]: url: (https://linux.cn/article-13212-1.html)
|
||
[#]: subject: (Improve your time management with Jupyter)
|
||
[#]: via: (https://opensource.com/article/20/9/calendar-jupyter)
|
||
[#]: author: (Moshe Zadka https://opensource.com/users/moshez)
|
||
|
||
使用 Jupyter 改善你的时间管理
|
||
======
|
||
|
||
> 在 Jupyter 里使用 Python 来分析日历,以了解你是如何使用时间的。
|
||
|
||
![](https://img.linux.net.cn/data/attachment/album/202103/18/095530cxx6663ptypyzvmx.jpg)
|
||
|
||
[Python][2] 在探索数据方面具有令人难以置信的可扩展性。利用 [Pandas][3] 或 [Dask][4],你可以将 [Jupyter][5] 扩展到大数据领域。但是小数据、个人资料、私人数据呢?
|
||
|
||
JupyterLab 和 Jupyter Notebook 为我提供了一个绝佳的环境,可以让我审视我的笔记本电脑生活。
|
||
|
||
我的探索是基于以下事实:我使用的几乎每个服务都有一个 Web API。我使用了诸多此类服务:待办事项列表、时间跟踪器、习惯跟踪器等。还有一个几乎每个人都会使用到:_日历_。相同的思路也可以应用于其他服务,但是日历具有一个很酷的功能:几乎所有 Web 日历都支持的开放标准 —— CalDAV。
|
||
|
||
### 在 Jupyter 中使用 Python 解析日历
|
||
|
||
大多数日历提供了导出为 CalDAV 格式的方法。你可能需要某种身份验证才能访问这些私有数据。按照你的服务说明进行操作即可。如何获得凭据取决于你的服务,但是最终,你应该能够将这些凭据存储在文件中。我将我的凭据存储在根目录下的一个名为 `.caldav` 的文件中:
|
||
|
||
```
|
||
import os
|
||
with open(os.path.expanduser("~/.caldav")) as fpin:
|
||
username, password = fpin.read().split()
|
||
```
|
||
|
||
切勿将用户名和密码直接放在 Jupyter Notebook 的笔记本中!它们可能会很容易因 `git push` 的错误而导致泄漏。
|
||
|
||
下一步是使用方便的 PyPI [caldav][6] 库。我找到了我的电子邮件服务的 CalDAV 服务器(你可能有所不同):
|
||
|
||
```
|
||
import caldav
|
||
client = caldav.DAVClient(url="https://caldav.fastmail.com/dav/", username=username, password=password)
|
||
```
|
||
|
||
CalDAV 有一个称为 `principal`(主键)的概念。它是什么并不重要,只要知道它是你用来访问日历的东西就行了:
|
||
|
||
```
|
||
principal = client.principal()
|
||
calendars = principal.calendars()
|
||
```
|
||
|
||
从字面上讲,日历就是关于时间的。访问事件之前,你需要确定一个时间范围。默认一星期就好:
|
||
|
||
```
|
||
from dateutil import tz
|
||
import datetime
|
||
now = datetime.datetime.now(tz.tzutc())
|
||
since = now - datetime.timedelta(days=7)
|
||
```
|
||
|
||
大多数人使用的日历不止一个,并且希望所有事件都在一起出现。`itertools.chain.from_iterable` 方法使这一过程变得简单:
|
||
|
||
```
|
||
import itertools
|
||
|
||
raw_events = list(
|
||
itertools.chain.from_iterable(
|
||
calendar.date_search(start=since, end=now, expand=True)
|
||
for calendar in calendars
|
||
)
|
||
)
|
||
```
|
||
|
||
将所有事件读入内存很重要,以 API 原始的本地格式进行操作是重要的实践。这意味着在调整解析、分析和显示代码时,无需返回到 API 服务刷新数据。
|
||
|
||
但 “原始” 真的是原始,事件是以特定格式的字符串出现的:
|
||
|
||
```
|
||
print(raw_events[12].data)
|
||
```
|
||
|
||
```
|
||
BEGIN:VCALENDAR
|
||
VERSION:2.0
|
||
PRODID:-//CyrusIMAP.org/Cyrus
|
||
3.3.0-232-g4bdb081-fm-20200825.002-g4bdb081a//EN
|
||
BEGIN:VEVENT
|
||
DTEND:20200825T230000Z
|
||
DTSTAMP:20200825T181915Z
|
||
DTSTART:20200825T220000Z
|
||
SUMMARY:Busy
|
||
UID:
|
||
1302728i-040000008200E00074C5B7101A82E00800000000D939773EA578D601000000000
|
||
000000010000000CD71CC3393651B419E9458134FE840F5
|
||
END:VEVENT
|
||
END:VCALENDAR
|
||
```
|
||
|
||
幸运的是,PyPI 可以再次使用另一个辅助库 [vobject][7] 解围:
|
||
|
||
```
|
||
import io
|
||
import vobject
|
||
|
||
def parse_event(raw_event):
|
||
data = raw_event.data
|
||
parsed = vobject.readOne(io.StringIO(data))
|
||
contents = parsed.vevent.contents
|
||
return contents
|
||
```
|
||
|
||
```
|
||
parse_event(raw_events[12])
|
||
```
|
||
|
||
```
|
||
{'dtend': [<DTEND{}2020-08-25 23:00:00+00:00>],
|
||
'dtstamp': [<DTSTAMP{}2020-08-25 18:19:15+00:00>],
|
||
'dtstart': [<DTSTART{}2020-08-25 22:00:00+00:00>],
|
||
'summary': [<SUMMARY{}Busy>],
|
||
'uid': [<UID{}1302728i-040000008200E00074C5B7101A82E00800000000D939773EA578D601000000000000000010000000CD71CC3393651B419E9458134FE840F5>]}
|
||
```
|
||
|
||
好吧,至少好一点了。
|
||
|
||
仍有一些工作要做,将其转换为合理的 Python 对象。第一步是 _拥有_ 一个合理的 Python 对象。[attrs][8] 库提供了一个不错的开始:
|
||
|
||
```
|
||
import attr
|
||
from __future__ import annotations
|
||
@attr.s(auto_attribs=True, frozen=True)
|
||
class Event:
|
||
start: datetime.datetime
|
||
end: datetime.datetime
|
||
timezone: Any
|
||
summary: str
|
||
```
|
||
|
||
是时候编写转换代码了!
|
||
|
||
第一个抽象从解析后的字典中获取值,不需要所有的装饰:
|
||
|
||
```
|
||
def get_piece(contents, name):
|
||
return contents[name][0].value
|
||
get_piece(_, "dtstart")
|
||
datetime.datetime(2020, 8, 25, 22, 0, tzinfo=tzutc())
|
||
```
|
||
|
||
日历事件总有一个“开始”、有一个“结束”、有一个 “持续时间”。一些谨慎的解析逻辑可以将两者协调为同一个 Python 对象:
|
||
|
||
```
|
||
def from_calendar_event_and_timezone(event, timezone):
|
||
contents = parse_event(event)
|
||
start = get_piece(contents, "dtstart")
|
||
summary = get_piece(contents, "summary")
|
||
try:
|
||
end = get_piece(contents, "dtend")
|
||
except KeyError:
|
||
end = start + get_piece(contents, "duration")
|
||
return Event(start=start, end=end, summary=summary, timezone=timezone)
|
||
```
|
||
|
||
将事件放在 _本地_ 时区而不是 UTC 中很有用,因此使用本地时区:
|
||
|
||
```
|
||
my_timezone = tz.gettz()
|
||
from_calendar_event_and_timezone(raw_events[12], my_timezone)
|
||
Event(start=datetime.datetime(2020, 8, 25, 22, 0, tzinfo=tzutc()), end=datetime.datetime(2020, 8, 25, 23, 0, tzinfo=tzutc()), timezone=tzfile('/etc/localtime'), summary='Busy')
|
||
```
|
||
|
||
既然事件是真实的 Python 对象,那么它们实际上应该具有附加信息。幸运的是,可以将方法添加到类中。
|
||
|
||
但是要弄清楚哪个事件发生在哪一天不是很直接。你需要在 _本地_ 时区中选择一天:
|
||
|
||
```
|
||
def day(self):
|
||
offset = self.timezone.utcoffset(self.start)
|
||
fixed = self.start + offset
|
||
return fixed.date()
|
||
Event.day = property(day)
|
||
```
|
||
|
||
```
|
||
print(_.day)
|
||
2020-08-25
|
||
```
|
||
|
||
事件在内部始终是以“开始”/“结束”的方式表示的,但是持续时间是有用的属性。持续时间也可以添加到现有类中:
|
||
|
||
```
|
||
def duration(self):
|
||
return self.end - self.start
|
||
Event.duration = property(duration)
|
||
```
|
||
|
||
```
|
||
print(_.duration)
|
||
1:00:00
|
||
```
|
||
|
||
现在到了将所有事件转换为有用的 Python 对象了:
|
||
|
||
```
|
||
all_events = [from_calendar_event_and_timezone(raw_event, my_timezone)
|
||
for raw_event in raw_events]
|
||
```
|
||
|
||
全天事件是一种特例,可能对分析生活没有多大用处。现在,你可以忽略它们:
|
||
|
||
```
|
||
# ignore all-day events
|
||
all_events = [event for event in all_events if not type(event.start) == datetime.date]
|
||
```
|
||
|
||
事件具有自然顺序 —— 知道哪个事件最先发生可能有助于分析:
|
||
|
||
```
|
||
all_events.sort(key=lambda ev: ev.start)
|
||
```
|
||
|
||
现在,事件已排序,可以将它们加载到每天:
|
||
|
||
```
|
||
import collections
|
||
events_by_day = collections.defaultdict(list)
|
||
for event in all_events:
|
||
events_by_day[event.day].append(event)
|
||
```
|
||
|
||
有了这些,你就有了作为 Python 对象的带有日期、持续时间和序列的日历事件。
|
||
|
||
### 用 Python 报到你的生活
|
||
|
||
现在是时候编写报告代码了!带有适当的标题、列表、重要内容以粗体显示等等,有醒目的格式是很意义。
|
||
|
||
这就是一些 HTML 和 HTML 模板。我喜欢使用 [Chameleon][9]:
|
||
|
||
```
|
||
template_content = """
|
||
<html><body>
|
||
<div tal:repeat="item items">
|
||
<h2 tal:content="item[0]">Day</h2>
|
||
<ul>
|
||
<li tal:repeat="event item[1]"><span tal:replace="event">Thing</span></li>
|
||
</ul>
|
||
</div>
|
||
</body></html>"""
|
||
```
|
||
|
||
Chameleon 的一个很酷的功能是使用它的 `html` 方法渲染对象。我将以两种方式使用它:
|
||
|
||
* 摘要将以粗体显示
|
||
* 对于大多数活动,我都会删除摘要(因为这是我的个人信息)
|
||
|
||
```
|
||
def __html__(self):
|
||
offset = my_timezone.utcoffset(self.start)
|
||
fixed = self.start + offset
|
||
start_str = str(fixed).split("+")[0]
|
||
summary = self.summary
|
||
if summary != "Busy":
|
||
summary = "<REDACTED>"
|
||
return f"<b>{summary[:30]}</b> -- {start_str} ({self.duration})"
|
||
Event.__html__ = __html__
|
||
```
|
||
|
||
为了简洁起见,将该报告切成每天的:
|
||
|
||
```
|
||
import chameleon
|
||
from IPython.display import HTML
|
||
template = chameleon.PageTemplate(template_content)
|
||
html = template(items=itertools.islice(events_by_day.items(), 3, 4))
|
||
HTML(html)
|
||
```
|
||
|
||
渲染后,它将看起来像这样:
|
||
|
||
**2020-08-25**
|
||
|
||
- **\<REDACTED>** -- 2020-08-25 08:30:00 (0:45:00)
|
||
- **\<REDACTED>** -- 2020-08-25 10:00:00 (1:00:00)
|
||
- **\<REDACTED>** -- 2020-08-25 11:30:00 (0:30:00)
|
||
- **\<REDACTED>** -- 2020-08-25 13:00:00 (0:25:00)
|
||
- Busy -- 2020-08-25 15:00:00 (1:00:00)
|
||
- **\<REDACTED>** -- 2020-08-25 15:00:00 (1:00:00)
|
||
- **\<REDACTED>** -- 2020-08-25 19:00:00 (1:00:00)
|
||
- **\<REDACTED>** -- 2020-08-25 19:00:12 (1:00:00)
|
||
|
||
### Python 和 Jupyter 的无穷选择
|
||
|
||
通过解析、分析和报告各种 Web 服务所拥有的数据,这只是你可以做的事情的表面。
|
||
|
||
为什么不对你最喜欢的服务试试呢?
|
||
|
||
--------------------------------------------------------------------------------
|
||
|
||
via: https://opensource.com/article/20/9/calendar-jupyter
|
||
|
||
作者:[Moshe Zadka][a]
|
||
选题:[lujun9972][b]
|
||
译者:[stevenzdg988](https://github.com/stevenzdg988)
|
||
校对:[wxy](https://github.com/wxy)
|
||
|
||
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
|
||
|
||
[a]: https://opensource.com/users/moshez
|
||
[b]: https://github.com/lujun9972
|
||
[1]: https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/calendar.jpg?itok=jEKbhvDT (Calendar close up snapshot)
|
||
[2]: https://opensource.com/resources/python
|
||
[3]: https://pandas.pydata.org/
|
||
[4]: https://dask.org/
|
||
[5]: https://jupyter.org/
|
||
[6]: https://pypi.org/project/caldav/
|
||
[7]: https://pypi.org/project/vobject/
|
||
[8]: https://opensource.com/article/19/5/python-attrs
|
||
[9]: https://chameleon.readthedocs.io/en/latest/
|