TranslateProject/translated/tech/20160807 Going Serverless with AWS Lambda and API Gateway.md

10 KiB
Raw Blame History

通过AWS的Lambda和API Gateway走向Serverless

近来, 计算领域出现了很多关于"serverless"的讨论。Serverless是一个概念它允许你提供代码或可执行程序给某个服务由服务来为你执行它们而你无需自己管理服务器。这就是所谓的执行即服务它带来了很多机会同时也出现有它独特的挑战。

简短回忆下计算领域的发展

很早的时候出现了机械计算机后来又有了ENIAC(Electronic Numerical Integrator And Computer很早的电子计算机),但是都没有规模生产。直到大型机出现后,计算领域才快速发展。

1950s - 大型机
1960s - 微型机
1994 - 机架服务器
2001 - 刀片服务器
2000s - 虚拟服务器
2006 - 服务器云化
2013 - 容器化
2014 - Serverless(计算资源服务化)

这些日期是大概的发布或者流行日期,无需和我争论时间的准确性。

计算领域的演讲趋势是执行的功能单元越来越小。每一次演进通常都意味着运维负担的减小和运维灵活性的增加。

发展前景

Serverlss! 但是, serverless能给我们带来什么好处? 我们将面临什么挑战呢?

未执行代码时无需付费。我以为这是个巨大的卖点。当无人访问你的站点或用你的API时, 你无需付钱,无基础设施成本,仅仅支付你需要的部分。换句话说,这履行了云计算的承诺:"仅仅支付你真正用的资源"。

无需维护服务器,也无需考虑服务器安全。服务器的维护和安全将由你的服务提供商来处理(当然你也可以架设自己的serverless只是这似乎是在向错误的方向前进)。由于你的执行时间也是受限的,安全补丁也被简化了,因为完全不需要重启。这些都应该由你的服务提供商无缝地处理。

无限的可扩展性。这是又一个大的好处。假设你又开发了一个Pokemon Go, 与其频繁地把站点下线维护升级不如用serverless来不断地扩展。当然这也是个双刃剑大量的账单也会随之而来。如果你的业务的利润强依赖于站点上线率的话serverless确实能帮上忙。

强制的微服务架构。这也有两面性一方面微服务似乎是一种好的构建灵活可扩展的故障可容忍的架构的方式。另一方面如果你的业务没有按照这种方式设计你将很难在已有的架构中引入serverless.

但是现在你被限制在他们的平台上

受限的环境。你只能用服务提供商提供的环境你想用老的serverless服务?你可能不会太幸运。

受限的预装包。你只有提供商预装的包。但是你可能能够提供你自己的包。

受限的执行时间。你的功能只可以运行这么长时间。如果你必须处理1TB的文件你可能需要有一个解决办法或者用其他方案。

强制的微服务架构。参考上面的描述。

受限的监视和诊断能力。例如,你的代码在干什么? 在serverless中, 基本不可能在调试器中设置断点和跟踪流程。你仍然可以像往常一样记录日志并发出统计度量但是这带来的帮助很有限无法定位在serverless环境中发生的难点问题。

竞争领域

自从2014年出现AWS Lambda以后serverless提供商已经增加了一些。下面是一些主流的serverless服务提供商:

  • AWS Lambda - 起步最早的
  • OpenWhisk - 在IBM的Bluemix云上可用
  • Google Cloud Functions
  • Azure Functions

这些平台都有他们的相对优势和劣势(例如Azure支持C#, 在其他提供商的平台上是深度集成)。这里面最大的玩家是AWS.

通过AWS Lambda和API Gateway构建你的第一个API

我们来试一试serverless。我们将用AWS Lambda和API Gateway来构建一个能返回Jimmy所说的"Guru Meditations"的API.

所有代码在GitHub上可以找到。

API文档:

POST /
{
    "status": "success",
    "meditation": "did u mention banana cognac shower"
}

怎样组织工程文件

文件结构树:

.
├── LICENSE
├── README.md
├── server
│   ├── __init__.py
│   ├── meditate.py
│   └── swagger.json
├── setup.py
├── tests
│   └── test_server
│       └── test_meditate.py
└── tools
    ├── deploy.py
    ├── serve.py
    ├── serve.sh
    ├── setup.sh
    └── zip.sh

AWS中的信息(想了解这里发生了什么更详细的信息可查看源码tools/deploy.py)

  • API. 真正构建的对象。它在AWS中表示为一个单独的对象。
  • 执行角色。在AWS中,每个function作为一个单独的角色执行。这里就是meditations.
  • 角色策略。每个function作为一个角色执行每个角色需要权限来干活。Lambda function不干太多活故我们只添加一些日志记录权限。
  • Lambda 函数。运行我们的代码的函数。
  • Swagger. Swagger是API的规范。API Gateway支持解析swagger的定义来为API配置大部分资源。
  • 部署。API Gateway提供部署的标记。我们只需要为我们的API用一个(例如所有的都用生产或者yolo等) 但是得知道他们是存在的,并且为了真正的能够启动生产的服务,你可能想用开发和分期环境。
  • 监控。在我们的业务崩溃的情况下(或者开始从利用率累积出大额账单时), 我们想为错误和费用以云告警查看方式添加一些监控。注意你应该修改tools/deploy.py来正确地设置你的email.

代码

Lambda函数将从硬编码列表中随机选择一个并返回guru meditations, 非常简单:

import logging
import random


logger = logging.getLogger()
logger.setLevel(logging.INFO)


def handler(event, context):

    logger.info(u"received request with id '{}'".format(context.aws_request_id))

    meditations = [
    "off to a regex/",
    "the count of machines abides",
    "you wouldn't fax a bat",
    "HAZARDOUS CHEMICALS + RKELLY",
    "your solution requires a blood eagle",
    "testing is broken because I'm lazy",
    "did u mention banana cognac shower",
    ]

    meditation = random.choice(meditations)

    return {
        "status": "success",
        "meditation": meditation,
    }

deploy.py 脚本

这个脚本相当长,我没法贴在这里。它基本只是浏览"Things in AWS"下的项目,确保每项都存在。

我们来部署这个脚本

只需运行 './tools/deploy.py'

几乎完成了。不过似乎在权限申请上有些问题由于API Gateway没有权限去执行你的函数,Lambda函数将不能执行报错应该是"Execution failed due to configuration error: Invalid permissions on Lambda function"。 我不知道怎么用botocore添加权限。你可以通过AWS console来解决这个问题找到你的API, 进到/POST端点进到集成请求, 点击"Lambda Function"旁边的编辑图标,修改它,然后保存。此时将弹出一个窗口提示"You are about to give API Gateway permission to invoke your Lambda function" 点击"OK"。

当你完成后,记录下./tools/deploy.py打印的URL,像下面这样调用它然后查看你的新API的行为:

$ curl -X POST https://a1b2c3d4.execute-api.us-east-1.amazonaws.com/prod/
{"status": "success", "meditation": "the count of machines abides"}

本地运行

不幸的是AWS Lambda没有好的方法能在本地运行你的代码。在这个例子里我们将用一个简单的flask服务器来在本地托管合适的端点并调用handler函数。

from __future__ import absolute_import

from flask import Flask, jsonify

from server.meditate import handler


app = Flask(__name__)

@app.route("/", methods=["POST"])
def index():

    class FakeContext(object):
        aws_request_id = "XXX"

    return jsonify(**handler(None, FakeContext()))

app.run(host="0.0.0.0")

你可以在仓库中用./tools/serve.sh运行它像这样调用:

$ curl -X POST http://localhost:5000/
{
    "meditation": "your solution requires a blood eagle",
    "status": "success"
}

测试

你总是应该测试你的代码。我们的测试方法是导入并运行我们的handler函数。这是最基本的python测试:

from __future__ import absolute_import

import unittest

from server.meditate import handler


class SubmitTestCase(unittest.TestCase):

    def test_submit(self):

        class FakeContext(object):

            aws_request_id = "XXX"

        response = handler(None, FakeContext())

        self.assertEquals(response["status"], "success")
        self.assertTrue("meditation" in response)

你可以在仓库里通过nose2运行这个测试代码。

更多前景

和AWS服务的无缝集成。通过boto, 你可以完美地轻易连接到任何其他的AWS服务。你可以轻易地让你的执行角色用IAM访问这些服务。你可以从S3取文件或放文件到S3连接到Dynamo DB, 调用其他lambda函数等等。

访问数据库你也可以轻易地访问远程数据库。在你的lambda handler模块的最上面连接数据库并在handler函数中执行查询。你很可能必须从它的安装位置上传相关的包内容才能使它正常工作。可能你也需要静态编译某些库。

调用其他web服务。API Gateway也是一种把web服务的输出从一个格式转换成另一个格式的方法。你可以充分利用这个特点通过不同的web服务来代理调用或者当业务变更时提供后向兼容能力。


via: http://blog.ryankelly.us/2016/08/07/going-serverless-with-aws-lambda-and-api-gateway.html?utm_source=webopsweekly&utm_medium=email

作者:Ryan Kelly 译者:messon007 校对:校对者ID

本文由 LCTT 原创编译,Linux中国 荣誉推出