TranslateProject/translated/tech/20171017 Image Processing on Linux.md
2017-11-28 12:58:26 +08:00

7.3 KiB
Raw Blame History

Linux上的图像处理

我发现了很多生成图像表示你的数据和工作的系统软件,但是我不能写太多其他东西。因此在这篇文章中,包含了一款叫 ImageJ 的热门图像处理软件。特别的,我注意到了 Fiji, 一例绑定了科学性图像处理的系列插件的 ImageJ 版本。

Fiji这个名字是一个循环缩略词很像 GNU 。代表着 "Fiji Is Just ImageJ"。 ImageJ 是科学研究领域进行图像分析的实用工具——例如你可以用它来辨认航拍风景图中树的种类。 ImageJ 能划分物品种类。它以插件架构制成,海量插件供选择以提升使用灵活度。

首先是安装 ImageJ (或 Fiji). 大多数的 ImageJ 发行版都可使用软件包。你愿意的话,可以以这种方式安装它然后为你的研究安装所需的独立插件。另一种选择是安装 Fiji 的同时获取最常用的插件。不幸的是,大多数 Linux 发行版的软件中心不会有可用的 Fiji 安装包。幸而,官网上的简单安装文件是可以使用的。包含了运行 Fiji 需要的所有文件目录。第一次启动时会给一个有菜单项列表的工具栏。图1

图 1.第一次打开 Fiji 有一个最小化的界面。

如果你没有备好图片来练习使用 ImageJ Fiji 安装包包含了一些示例图片。点击文件->打开示例图片的下拉菜单选项图2。这些案例包含了许多你可能有兴趣做的任务。

图 2. 案例图片可供学习使用 ImageJ。

安装了 Fiji而不是单纯的 ImageJ ,大量插件也会被安装。首先要注意的是自动更新插件。每次打开 ImageJ ,该插件联网检验 ImageJ 和已安装插件的更新。所有已安装的插件都在插件菜单项中可选。一旦你安装了很多插件,列表会变得冗杂,所以需要精简你的插件选项。你想手动更新的话,点击帮助->更新 Fiji 菜单项强制检测获取可用更新列表图3

图 3. 强制手动检测可用更新。

那么Now,用 Fiji/ImageJ 可以做什么呢?举一例,图片中的物品数。你可以通过点击文件->打开示例->胚芽来载入一例。

图 4. 用 ImageJ算出图中的物品数。

第一步设定图片的范围这样你可以告诉 ImageJ 如何判别物品。首先,选择在工具栏选择线条按钮。然后选择分析->设定范围,然后就会设置范围内包含的像素点个数(图 5)。你可以设置已知距离为100,单元为“um”。

图 5. 很多图片分析任务需要对图片设定一个范围。

接下来的步骤是简化图片内的信息。点击图片->类型->8比特来减少信息量到8比特灰度图片。点击处理->二进制->图片定界, 以分隔独立物体。点击处理->二进制->设置二进制来自动给图片定界(图 6)。

图 6. 有些像开关一样完成自动任务的工具。

图片内的物品计数前,你需要移除像范围轮廓之类的人工操作。可以用三角选择工具来选中它并点击编辑->清空来完成这项操作。现在你可以分析图片看看这里是啥物体。

确保图中没有区域被选中,点击分析->分析最小粒子弹出窗口来选择最小尺寸这决定了最后的图片会展示什么图7

图 7.你可以通过确定最小尺寸生成一个缩减过的图片。

图 8 在总结窗口展示了一个概览。每个最小点也有独立的细节窗口。

图 8. 包含了已知最小点总览清单的输出结果。

只要你有一个分析程序来给定图片类型,相同的程序往往需要被应用到一系列图片当中。可能数以千计,你当然不会想对每张图片手动重复操作。这时候,你可以集中必要步骤到宏这样它们可以被应用多次。点击插件->宏- >记录弹出一个新的窗口记录你随后的所有命令。所有步骤一完成,你可以将之保存为一个宏文件并且通过点击插件->宏->运行来在其他图片上重复运行。

如果你有特定的工作步骤,你可以轻易打开宏文件并手动编辑它,因为它是一个简单的文本文件。事实上有一套完整的宏语言可供你更加充分地控制图片处理过程。

然而,如果你有真的非常多的系列图片需要处理,这也将是冗长乏味的工作。这种情况下,前往过程->批量->宏弹出一个新窗口你可以批量处理工作图9

图 9. 在批量输出图片时用简单命令运行宏。

这个窗口中,你能选择应用哪个宏文件,输入图片所在的源目录和你想写入输出图片的输出目录。也可以设置输出文件格式及通过文件名筛选输入图片中需要使用的。万事具备,点击窗口下方的的处理按钮开始批量操作。

若这是会重复多次的工作,你可以点击窗口底部的保存按钮保存批量处理到一个文本文件。点击也在窗口底部的开始按钮重载相同的工作。所有的应用都使得研究中最冗余部分自动化,这样你就可以在重点放在实际的科学研究中。 考虑到单单是 ImageJ 主页就有超过500个插件和超过300种宏可供使用简短起见我只能在这篇短文中提出最基本的话题。幸运的是有很多专业领域的教程可供使用项目主页上还有关于 ImageJ 核心的非常棒的文档。如果觉得这个工具对研究有用,你研究的专业领域也会有很多信息指引你。


作者简介:

Joey Bernard 有物理学和计算机科学的相关背景。这对他在新不伦瑞克大学当计算研究顾问的日常工作大有裨益。他也教计算物理和并行程序规划。


via: https://www.linuxjournal.com/content/image-processing-linux

作者:Joey Bernard 译者:XYenChi 校对:校对者ID

本文由 LCTT 原创编译,Linux中国 荣誉推出