TranslateProject/published/201610/team_test/part 6 - Building a data science portfolio - Machine learning project.md
2016-11-01 11:57:58 +08:00

6.0 KiB
Raw Permalink Blame History

做出预测

既然完成了前期准备,我们可以开始准备做出预测了。我将创建一个名为 predict.py 的新文件,它会使用我们在最后一步创建的 train.csv 文件。下面的代码:

  • 导入所需的库
  • 创建一个名为 cross_validate 的函数:
    • 使用正确的关键词参数创建逻辑回归分类器logistic regression classifier
    • 创建移除了 idforeclosure_status 属性的用于训练模型的列
    • train 数据帧使用交叉验证
    • 返回预测结果
import os
import settings
import pandas as pd
from sklearn import cross_validation
from sklearn.linear_model import LogisticRegression
from sklearn import metrics

def cross_validate(train):
    clf = LogisticRegression(random_state=1, class_weight="balanced")

    predictors = train.columns.tolist()
    predictors = [p for p in predictors if p not in settings.NON_PREDICTORS]

    predictions = cross_validation.cross_val_predict(clf, train[predictors], train[settings.TARGET], cv=settings.CV_FOLDS)
    return predictions

预测误差

现在,我们仅仅需要写一些函数来计算误差。下面的代码:

  • 创建函数 compute_error
    • 使用 scikit-learn 计算一个简单的精确分数(与实际 foreclosure_status 值匹配的预测百分比)
  • 创建函数 compute_false_negatives
    • 为了方便,将目标和预测结果合并到一个数据帧
    • 查找漏报率
      • 找到原本应被预测模型取消但没有取消的贷款数目
      • 除以没被取消的贷款总数目
def compute_error(target, predictions):
    return metrics.accuracy_score(target, predictions)

def compute_false_negatives(target, predictions):
    df = pd.DataFrame({"target": target, "predictions": predictions})
    return df[(df["target"] == 1) & (df["predictions"] == 0)].shape[0] / (df[(df["target"] == 1)].shape[0] + 1)

def compute_false_positives(target, predictions):
    df = pd.DataFrame({"target": target, "predictions": predictions})
    return df[(df["target"] == 0) & (df["predictions"] == 1)].shape[0] / (df[(df["target"] == 0)].shape[0] + 1)

聚合到一起

现在,我们可以把函数都放在 predict.py。下面的代码:

  • 读取数据集
  • 计算交叉验证预测
  • 计算上面的 3 个误差
  • 打印误差
def read():
    train = pd.read_csv(os.path.join(settings.PROCESSED_DIR, "train.csv"))
    return train

if __name__ == "__main__":
    train = read()
    predictions = cross_validate(train)
    error = compute_error(train[settings.TARGET], predictions)
    fn = compute_false_negatives(train[settings.TARGET], predictions)
    fp = compute_false_positives(train[settings.TARGET], predictions)
    print("Accuracy Score: {}".format(error))
    print("False Negatives: {}".format(fn))
    print("False Positives: {}".format(fp))

一旦你添加完代码,你可以运行 python predict.py 来产生预测结果。运行结果向我们展示漏报率为 .26,这意味着我们没能预测 26% 的取消贷款。这是一个好的开始,但仍有很多改善的地方!

你可以在[这里][41]找到完整的 predict.py 文件

你的文件树现在看起来像下面这样:

loan-prediction
├── data
│   ├── Acquisition_2012Q1.txt
│   ├── Acquisition_2012Q2.txt
│   ├── Performance_2012Q1.txt
│   ├── Performance_2012Q2.txt
│   └── ...
├── processed
│   ├── Acquisition.txt
│   ├── Performance.txt
│   ├── train.csv
├── .gitignore
├── annotate.py
├── assemble.py
├── predict.py
├── README.md
├── requirements.txt
├── settings.py

撰写 README

既然我们完成了端到端的项目,那么我们可以撰写 README.md 文件了,这样其他人便可以知道我们做的事,以及如何复制它。一个项目典型的 README.md 应该包括这些部分:

  • 一个高水准的项目概览,并介绍项目目的
  • 任何必需的数据和材料的下载地址
  • 安装命令
    • 如何安装要求依赖
  • 使用命令
    • 如何运行项目
    • 每一步之后会看到的结果
  • 如何为这个项目作贡献
    • 扩展项目的下一步计划

[这里][42] 是这个项目的一个 README.md 样例。

下一步

恭喜你完成了端到端的机器学习项目!你可以在[这里][43]找到一个完整的示例项目。一旦你完成了项目,把它上传到 [Github][44] 是一个不错的主意,这样其他人也可以看到你的文件夹的部分项目。

这里仍有一些留待探索数据的角度。总的来说,我们可以把它们分割为 3 类 - 扩展这个项目并使它更加精确,发现预测其他列并探索数据。这是其中一些想法:

  • annotate.py 中生成更多的特性
  • 切换 predict.py 中的算法
  • 尝试使用比我们发表在这里的更多的来自 Fannie Mae 的数据
  • 添加对未来数据进行预测的方法。如果我们添加更多数据,我们所写的代码仍然可以起作用,这样我们可以添加更多过去和未来的数据。
  • 尝试看看是否你能预测一个银行是否应该发放贷款(相对地,Fannie Mae 是否应该获得贷款)
    • 移除 train 中银行不知道发放贷款的时间的任何列
      • 当 Fannie Mae 购买贷款时,一些列是已知的,但不是之前
    • 做出预测
  • 探索是否你可以预测除了 foreclosure_status 的其他列
    • 你可以预测在销售时财产值多少?
  • 探索探索性能更新之间的细微差别
    • 你能否预测借款人会逾期还款多少次?
    • 你能否标出的典型贷款周期?
  • 标出一个州到州或邮政编码到邮政级水平的数据
    • 你看到一些有趣的模式了吗?

如果你建立了任何有趣的东西,请在评论中让我们知道!

如果你喜欢这个,你可能会喜欢阅读 Build a Data Science Porfolio 系列的其他文章:

  • [Storytelling with data][45].
  • [How to setup up a data science blog][46].