Linux 内核里的数据结构——双向链表
================================================================================

双向链表
--------------------------------------------------------------------------------

Linux 内核中自己实现了双向链表,可以在 [include/linux/list.h](https://github.com/torvalds/linux/blob/master/include/linux/list.h) 找到定义。我们将会首先从双向链表数据结构开始介绍**内核里的数据结构**。为什么?因为它在内核里使用的很广泛,你只需要在 [free-electrons.com](http://lxr.free-electrons.com/ident?i=list_head) 检索一下就知道了。

首先让我们看一下在 [include/linux/types.h](https://github.com/torvalds/linux/blob/master/include/linux/types.h) 里的主结构体:

```C
struct list_head {
	struct list_head *next, *prev;
};
```

你可能注意到这和你以前见过的双向链表的实现方法是不同的。举个例子来说,在 [glib](http://www.gnu.org/software/libc/)  库里是这样实现的:

```C
struct GList {
  gpointer data;
  GList *next;
  GList *prev;
};
```

通常来说一个链表结构会包含一个指向某个项目的指针。但是 Linux 内核中的链表实现并没有这样做。所以问题来了:**链表在哪里保存数据呢?**。实际上,内核里实现的链表是**侵入式链表(Intrusive list)**。侵入式链表并不在节点内保存数据-它的节点仅仅包含指向前后节点的指针,以及指向链表节点数据部分的指针——数据就是这样附加在链表上的。这就使得这个数据结构是通用的,使用起来就不需要考虑节点数据的类型了。

比如:

```C
struct nmi_desc {
    spinlock_t lock;
    struct list_head head;
};
```

让我们看几个例子来理解一下在内核里是如何使用 `list_head` 的。如上所述,在内核里有很多很多不同的地方都用到了链表。我们来看一个在杂项字符驱动里面的使用的例子。在 [drivers/char/misc.c](https://github.com/torvalds/linux/blob/master/drivers/char/misc.c) 的杂项字符驱动 API 被用来编写处理小型硬件或虚拟设备的小驱动。这些驱动共享相同的主设备号:

```C
#define MISC_MAJOR              10
```

但是都有各自不同的次设备号。比如:

```
ls -l /dev |  grep 10
crw-------   1 root root     10, 235 Mar 21 12:01 autofs
drwxr-xr-x  10 root root         200 Mar 21 12:01 cpu
crw-------   1 root root     10,  62 Mar 21 12:01 cpu_dma_latency
crw-------   1 root root     10, 203 Mar 21 12:01 cuse
drwxr-xr-x   2 root root         100 Mar 21 12:01 dri
crw-rw-rw-   1 root root     10, 229 Mar 21 12:01 fuse
crw-------   1 root root     10, 228 Mar 21 12:01 hpet
crw-------   1 root root     10, 183 Mar 21 12:01 hwrng
crw-rw----+  1 root kvm      10, 232 Mar 21 12:01 kvm
crw-rw----   1 root disk     10, 237 Mar 21 12:01 loop-control
crw-------   1 root root     10, 227 Mar 21 12:01 mcelog
crw-------   1 root root     10,  59 Mar 21 12:01 memory_bandwidth
crw-------   1 root root     10,  61 Mar 21 12:01 network_latency
crw-------   1 root root     10,  60 Mar 21 12:01 network_throughput
crw-r-----   1 root kmem     10, 144 Mar 21 12:01 nvram
brw-rw----   1 root disk      1,  10 Mar 21 12:01 ram10
crw--w----   1 root tty       4,  10 Mar 21 12:01 tty10
crw-rw----   1 root dialout   4,  74 Mar 21 12:01 ttyS10
crw-------   1 root root     10,  63 Mar 21 12:01 vga_arbiter
crw-------   1 root root     10, 137 Mar 21 12:01 vhci
```

现在让我们看看它是如何使用链表的。首先看一下结构体 `miscdevice`:

```C
struct miscdevice
{
      int minor;
      const char *name;
      const struct file_operations *fops;
      struct list_head list;
      struct device *parent;
      struct device *this_device;
      const char *nodename;
      mode_t mode;
};
```

可以看到结构体`miscdevice`的第四个变量`list` 是所有注册过的设备的链表。在源代码文件的开始可以看到这个链表的定义:

```C
static LIST_HEAD(misc_list);
```

它实际上是对用`list_head` 类型定义的变量的扩展。

```C
#define LIST_HEAD(name) \
	struct list_head name = LIST_HEAD_INIT(name)
```

然后使用宏 `LIST_HEAD_INIT` 进行初始化,这会使用变量`name` 的地址来填充`prev`和`next` 结构体的两个变量。

```C
#define LIST_HEAD_INIT(name) { &(name), &(name) }
```

现在来看看注册杂项设备的函数`misc_register`。它在一开始就用函数 `INIT_LIST_HEAD` 初始化了`miscdevice->list`。

```C
INIT_LIST_HEAD(&misc->list);
```

作用和宏`LIST_HEAD_INIT`一样。

```C
static inline void INIT_LIST_HEAD(struct list_head *list)
{
	list->next = list;
	list->prev = list;
}
```

接下来,在函数`device_create` 创建了设备后,我们就用下面的语句将设备添加到设备链表:

```
list_add(&misc->list, &misc_list);
```

内核文件`list.h` 提供了向链表添加新项的 API 接口。我们来看看它的实现:


```C
static inline void list_add(struct list_head *new, struct list_head *head)
{
	__list_add(new, head, head->next);
}
```

实际上就是使用3个指定的参数来调用了内部函数`__list_add`:

* new  - 新项。
* head - 新项将会插在`head`的后面
* head->next - 插入前,`head` 后面的项。

`__list_add`的实现非常简单:

```C
static inline void __list_add(struct list_head *new,
			      struct list_head *prev,
			      struct list_head *next)
{
	next->prev = new;
	new->next = next;
	new->prev = prev;
	prev->next = new;
}
```

这里,我们在`prev`和`next` 之间添加了一个新项。所以我们开始时用宏`LIST_HEAD_INIT`定义的`misc` 链表会包含指向`miscdevice->list` 的向前指针和向后指针。

这儿还有一个问题:如何得到列表的内容呢?这里有一个特殊的宏:

```C
#define list_entry(ptr, type, member) \
	container_of(ptr, type, member)
```

使用了三个参数:

* ptr - 指向结构 `list_head` 的指针;
* type - 结构体类型;
* member - 在结构体内类型为`list_head` 的变量的名字;

比如说:

```C
const struct miscdevice *p = list_entry(v, struct miscdevice, list)
```

然后我们就可以使用`p->minor` 或者 `p->name`来访问`miscdevice`。让我们来看看`list_entry` 的实现:
 
```C
#define list_entry(ptr, type, member) \
	container_of(ptr, type, member)
```

如我们所见,它仅仅使用相同的参数调用了宏`container_of`。初看这个宏挺奇怪的:

```C
#define container_of(ptr, type, member) ({                      \
    const typeof( ((type *)0)->member ) *__mptr = (ptr);    \
    (type *)( (char *)__mptr - offsetof(type,member) );})
```

首先你可以注意到花括号内包含两个表达式。编译器会执行花括号内的全部语句,然后返回最后的表达式的值。

举个例子来说:

```
#include <stdio.h>

int main() {
	int i = 0;
	printf("i = %d\n", ({++i; ++i;}));
	return 0;
}
```

最终会打印出`2`

下一点就是`typeof`,它也很简单。就如你从名字所理解的,它仅仅返回了给定变量的类型。当我第一次看到宏`container_of`的实现时,让我觉得最奇怪的就是表达式`((type *)0)`中的0。实际上这个指针巧妙的计算了从结构体特定变量的偏移,这里的`0`刚好就是位宽里的零偏移。让我们看一个简单的例子:

```C
#include <stdio.h>

struct s {
        int field1;
        char field2;
	 char field3;
};

int main() {
	printf("%p\n", &((struct s*)0)->field3);
	return 0;
}
```

结果显示`0x5`。

下一个宏`offsetof`会计算从结构体起始地址到某个给定结构字段的偏移。它的实现和上面类似:

```C
#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
```

现在我们来总结一下宏`container_of`。只需给定结构体中`list_head`类型 字段的地址、名字和结构体容器的类型,它就可以返回结构体的起始地址。在宏定义的第一行,声明了一个指向结构体成员变量`ptr`的指针`__mptr`,并且把`ptr` 的地址赋给它。现在`ptr` 和`__mptr` 指向了同一个地址。从技术上讲我们并不需要这一行,但是它可以方便地进行类型检查。第一行保证了特定的结构体(参数`type`)包含成员变量`member`。第二行代码会用宏`offsetof`计算成员变量相对于结构体起始地址的偏移,然后从结构体的地址减去这个偏移,最后就得到了结构体。

当然了`list_add` 和 `list_entry`不是`<linux/list.h>`提供的唯一功能。双向链表的实现还提供了如下API:

* list\_add
* list\_add\_tail
* list\_del
* list\_replace
* list\_move
* list\_is\_last
* list\_empty
* list\_cut\_position
* list\_splice
* list\_for\_each
* list\_for\_each\_entry

等等很多其它API。

----

via: https://github.com/0xAX/linux-insides/blob/master/DataStructures/dlist.md

译者:[Ezio](https://github.com/oska874)
校对:[Mr小眼儿](https://github.com/tinyeyeser)

本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出