[#]: collector: (lujun9972) [#]: translator: (YungeG) [#]: reviewer: ( ) [#]: publisher: ( ) [#]: url: ( ) [#]: subject: (Trace code in Fedora with bpftrace) [#]: via: (https://fedoramagazine.org/trace-code-in-fedora-with-bpftrace/) [#]: author: (Augusto Caringi https://fedoramagazine.org/author/acaringi/) 在 Fedora 中用 bpftrace 追踪代码 ====== ![][1] bpftrace 是一个[基于 eBPF 的新型追踪工具][2],在 Fedora 28 第一次引入。Brendan Gregg,Alastair Robertson 和 Matheus Marchini 在分散于全网络的黑客团队的帮助下开发了 bpftrace,一个允许你分析系统在幕后正在执行的操作的追踪工具,告诉你代码中正在被调用的函数、传递给函数的参数、函数的调用次数等。 这篇文章的内容涉及了 bpftrace 的一些基础,以及它是如何工作的,请继续阅读获取更多的信息和一些有用的实例。 ### eBPF (extended Berkeley Packet Filter) [eBPF][3] 是一个微型虚拟机,更确切的说是一个虚拟 CPU,位于 Linux 内核中。eBPF 可以在内核空间以一种安全可控的方式加载和运行体积较小的程序,保证 eBPF 的使用更加安全,即使在生产环境系统中。eBPF 虚拟机有自己的指令集([ISA][4]),类似于现代处理器架构的一个子集。通过这个 ISA,可以很容易将 eBPF 程序转化为真实硬件上的代码。内核即时将程序转化为主流处理器架构上的本地代码,从而提升性能。 eBPF 虚拟机允许通过编程扩展内核,目前已经有一些内核子系统使用这一新型强大的 Linux Kernel 功能,比如网络,安全计算、追踪等。这些子系统的主要思想是添加 eBPF 程序到特定的代码点,从而扩展原生的内核行为。 虽然 eBPF 机器语言功能强大,由于是一种底层语言,直接用于编写代码很费力,bpftrace 就是为了解决这个问题而生的。eBPF 提供了一种高级语言编写 eBPF 追踪脚本,然后在 clang / LLVM 库的帮助下将这些脚本转化为 eBPF,最终添加到特定的代码点。 ## 安装和快速入门 在终端 [使用][5] _[sudo][5]_ 执行下面的命令安装 bpftrace: ``` $ sudo dnf install bpftrace ``` 使用“hello world”进行实验: ``` $ sudo bpftrace -e 'BEGIN { printf("hello world\n"); }' ``` 注意,出于特权级的需要,你必须使用 _root_ 运行 _bpftrace_,使用 _-e_ 选项指明一个程序,构建一个所谓的“单行程序”。这个例子只会打印 _hello world_,接着等待你按下 **Ctrl+C**。 _BEGIN_ 是一个特殊的探针名,只在执行一开始生效一次;每次探针命中时,大括号 _{}_ 内的操作——这个例子中只是一个 _printf_——都会执行。 现在让我们转向一个更有用的例子: ``` $ sudo bpftrace -e 't:syscalls:sys_enter_execve { printf("%s called %s\n", comm, str(args->filename)); }' ``` 这个例子打印系统中正在创建的每个新进程的父进程名 _(comm)_。_t:syscalls:sys_enter_execve_ 是一个内核追踪点,是 _tracepoint:syscalls:sys_enter_execve_ 的简写,两种形式都可以使用。下一部分会向你展示如何列出所有可用的追踪点。 _comm_ 是一个 bpftrace 内建指令,代表进程名;_filename_ 是 _t:syscalls:sys_enter_execve_ 追踪点的一个域,这些域可以通过 _args_ 内建指令访问。 追踪点的所有可用域可以通过这个命令列出: ``` bpftrace -lv "t:syscalls:sys_enter_execve" ``` ## 示例用法 ### 列出探针 _bpftrace_ 的一个核心概念是 **探针点**,即 eBPF 程序可以连接到的(内核或用户空间)代码中的测量点,可以分成以下几大类: * _kprobe_——内核函数的开始处 * _uprobe_——内核函数的返回处 * _uprobe_——用户级函数的开始处 * _uretprobe_——用户级函数的返回处 * _tracepoint_——内核静态追踪点 * _usdt_——用户级静态追踪点 * _profile_——基于时间的采样 * _interval_——基于时间的输出 * _software_——内核软件事件 * _hardware_——用户级事件 所有可用的 _kprobe / kretprobe_、_tracepoints_、_software_ 和 _hardware_ 探针可以通过这个命令列出: ``` $ sudo bpftrace -l ``` _uprobe / uretprobe_ 和 _usdt_ 是用户空间探针,专用于某个可执行文件。要使用这些探针,通过下文中的特殊语法。 _profile_ 和 _interval_ 探针以固定的时间间隔触发;固定的时间间隔不在本文的范畴内。 ### 统计系统调用数 ### Counting system calls **Maps** 是保存计数、统计数据和柱状图的特殊 BPF 数据类型,你可以使用映射统计每个系统调用正在被调用的次数: ``` $ sudo bpftrace -e 't:syscalls:sys_enter_* { @[probe] = count(); }' ``` 一些探针类型允许使用通配符匹配多个探针,你也可以使用一个逗号隔开的列表为一个操作块指明多个连接点。上面的例子中,操作块连接到了所有名称以 _t:syscalls:sysenter__ 开头的追踪点,即所有可用的系统调用。 bpftrace 的内建函数 _count()_ 统计系统调用被调用的次数;_@[]_ 代表一个映射(一个关联的数组)。映射的键是另一个内建指令 _probe_,代表完整的探针名。 这个例子中,相同的操作块连接到了每个系统调用,之后每次有系统调用被调用时,映射就会被更新,映射中和系统调用对应的项就会增加。程序终止时,自动打印出所有声明的映射。 下面的例子统计所有的系统调用,然后通过 bpftrace 过滤语法使用 _PID_ 过滤出某个特定进程调用的系统调用: ``` $ sudo bpftrace -e 't:syscalls:sys_enter_* / pid == 1234 / { @[probe] = count(); }' ``` ### 进程写的字节数 让我们使用上面的概念分析每个进程正在写的字节数: ``` $ sudo bpftrace -e 't:syscalls:sys_exit_write /args->ret > 0/ { @[comm] = sum(args->ret); }' ``` _bpftrace_ 连接操作块到写系统调用的返回探针(_t:syscalls:sys_exit_write_),然后使用过滤器丢掉代表错误代码的负值(_/arg->ret > 0/_)。 映射的键 _comm_ 代表调用系统调用的进程名;内建函数 _sum()_ 累计每个映射项或进程写的字节数;_args_ 是一个 `bpftrace` 内建指令,用于访问追踪点的参数和返回值。如果执行成功,_write_ 系统调用返回写的字节数,_arg->ret_ 用于访问这个字节数。 ### 进程的读取大小分布(柱状图): _bpftrace_ 支持创建柱状图。让我们分析一个创建进程的 _read_ 大小分布的柱状图的例子: ``` $ sudo bpftrace -e 't:syscalls:sys_exit_read { @[comm] = hist(args->ret); }' ``` 柱状图是 BPF 映射,因此必须保存为一个映射(_@_),这个例子中映射键是 _comm_。 这个例子使 _bpftrace_ 给每个调用 _read_ 系统调用的进程生成一个柱状图。要生成一个全局柱状图,直接保存 _hist()_ 函数到 _'@'_(不使用任何键)。 程序终止时,bpftrace 自动打印出声明的柱状图。创建柱状图的基准值是通过 _args->ret_ 获取到的读取的字节数。 ### 追踪用户空间程序 你也可以通过 _uprobes / uretprobes_ 和 _USDT_(用户级静态定义的追踪)追踪用户空间程序。下一个例子使用探测用户级函数结尾处的 _uretprobe_ ,获取系统中运行的每个 _bash_ 发出的命令行: ``` $ sudo bpftrace -e 'uretprobe:/bin/bash:readline { printf("readline: \"%s\"\n", str(retval)); }' ``` 要列出可执行文件 _bash_ 的所有可用 _uprobes / uretprobes_, 执行这个命令: ``` $ sudo bpftrace -l "uprobe:/bin/bash" ``` _uprobe_ 指向用户级函数执行的开始,_uretprobe_ 指向执行的结束(返回处);_readline()_ 是 _/bin/bash_ 的一个函数,返回键入的命令行;_retval_ 是被探测的指令的返回值,只能在 _uretprobe_ 访问。 使用 _uprobes_ 时,你可以用 _arg0..argN_ 访问参数。需要调用 _str()_ 将 _char *_ 指针转化成一个 _string_。 ## 自带脚本 bpftrace 软件包附带了许多有用的脚本,可以在 _/usr/share/bpftrace/tools/_ 目录找到。 这些脚本中,你可以找到: * _killsnoop.bt_——追踪 `kill()` 系统调用发出的信号 * _tcpconnect.bt_——追踪所有的 TCP 网络连接 * _pidpersec.bt_——统计每秒钟(通过 fork)创建的新进程 * _opensnoop.bt_——追踪 `open()` 系统调用 * _bfsstat.bt_——追踪一些 VFS 调用,按秒统计 你可以直接使用这些脚本,比如: ``` $ sudo /usr/share/bpftrace/tools/killsnoop.bt ``` 你也可以在创建新的工具时参考这些脚本。 ## 链接 * bpftrace 参考指南—— * Linux 2018 `bpftrace`(DTrace 2.0)—— * BPF:通用的内核虚拟机—— * Linux Extended BPF(eBPF)Tracing Tools—— * 深入 BPF:一个阅读材料列表—— [https://qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf][6] * * * _Photo by _[_Roman Romashov_][7]_ on _[_Unsplash_][8]_._ -------------------------------------------------------------------------------- via: https://fedoramagazine.org/trace-code-in-fedora-with-bpftrace/ 作者:[Augusto Caringi][a] 选题:[lujun9972][b] 译者:[YungeG](https://github.com/YungeG) 校对:[校对者ID](https://github.com/校对者ID) 本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出 [a]: https://fedoramagazine.org/author/acaringi/ [b]: https://github.com/lujun9972 [1]: https://fedoramagazine.org/wp-content/uploads/2019/08/bpftrace-816x345.jpg [2]: https://github.com/iovisor/bpftrace [3]: https://lwn.net/Articles/740157/ [4]: https://github.com/iovisor/bpf-docs/blob/master/eBPF.md [5]: https://fedoramagazine.org/howto-use-sudo/ [6]: https://qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf/ [7]: https://unsplash.com/@wehavemegapixels?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText [8]: https://unsplash.com/search/photos/trace?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText