[#]: subject: "Quadratic algorithms are slow (and hashmaps are fast)" [#]: via: "https://jvns.ca/blog/2021/09/10/hashmaps-make-things-fast/" [#]: author: "Julia Evans https://jvns.ca/" [#]: collector: "lujun9972" [#]: translator: "unigeorge" [#]: reviewer: "wxy" [#]: publisher: "wxy" [#]: url: "https://linux.cn/article-13786-1.html" 浅谈慢速的二次算法与快速的 hashmap ====== ![](https://img.linux.net.cn/data/attachment/album/202109/15/094524s7dlcq74ksqazyyc.jpg) 大家好!昨天我与一位朋友聊天,他正在准备编程面试,并试图学习一些算法基础知识。 我们聊到了二次时间quadratic-time线性时间linear-time算法的话题,我认为在这里写这篇文章会很有趣,因为避免二次时间算法不仅在面试中很重要——有时在现实生活中了解一下也是很好的!后面我会快速解释一下什么是“二次时间算法” :) 以下是我们将要讨论的 3 件事: 1. 二次时间函数比线性时间函数慢得非常非常多 2. 有时可以通过使用 hashmap 把二次算法变成线性算法 3. 这是因为 hashmap 查找非常快(即时查询!) 我会尽量避免使用数学术语,重点关注真实的代码示例以及它们到底有多快/多慢。 ### 目标问题:取两个列表的交集 我们来讨论一个简单的面试式问题:获取 2 个数字列表的交集。 例如,`intersect([1,2,3], [2,4,5])` 应该返回 `[2]`。 这个问题也是有些现实应用的——你可以假设有一个真实程序,其需求正是取两个 ID 列表的交集。 ### “显而易见”的解决方案: 我们来写一些获取 2 个列表交集的代码。下面是一个实现此需求的程序,命名为 `quadratic.py`。 ``` import sys # 实际运行的代码 def intersection(list1, list2): result = [] for x in list1: for y in list2: if x == y: result.append(y) return result # 一些样板,便于我们从命令行运行程序,处理不同大小的列表 def run(n): # 定义两个有 n+1 个元素的列表 list1 = list(range(3, n)) + [2] list2 = list(range(n+1, 2*n)) + [2] # 取其交集并输出结果 print(list(intersection(list1, list2))) # 使用第一个命令行参数作为输入,运行程序 run(int(sys.argv[1])) ``` 程序名为 `quadratic.py`(LCTT 译注:“quadratic”意为“二次方的”)的原因是:如果 `list1` 和 `list2` 的大小为 `n`,那么内层循环(`if x == y`)会运行 `n^2` 次。在数学中,像 `x^2` 这样的函数就称为“二次”函数。 ### `quadratic.py` 有多慢? 用一些不同长度的列表来运行这个程序,两个列表的交集总是相同的:`[2]`。 ``` $ time python3 quadratic.py 10 [2] real 0m0.037s $ time python3 quadratic.py 100 [2] real 0m0.053s $ time python3 quadratic.py 1000 [2] real 0m0.051s $ time python3 quadratic.py 10000 # 10,000 [2] real 0m1.661s ``` 到目前为止,一切都还不错——程序仍然只花费不到 2 秒的时间。 然后运行该程序处理两个包含 100,000 个元素的列表,我不得不等待了很长时间。结果如下: ``` $ time python3 quadratic.py 100000 # 100,000 [2] real 2m41.059s ``` 这可以说相当慢了!总共花费了 160 秒,几乎是在 10,000 个元素上运行时(1.6 秒)的 100 倍。所以我们可以看到,在某个点之后,每次我们将列表扩大 10 倍,程序运行的时间就会增加大约 100 倍。 我没有尝试在 1,000,000 个元素上运行这个程序,因为我知道它会花费又 100 倍的时间——可能大约需要 3 个小时。我没时间这样做! 你现在大概明白了为什么二次时间算法会成为一个问题——即使是这个非常简单的程序也会很快变得非常缓慢。 ### 快速版:`linear.py` 好,接下来我们编写一个快速版的程序。我先给你看看程序的样子,然后再分析。 ``` import sys # 实际执行的算法 def intersection(list1, list2): set1 = set(list1) # this is a hash set result = [] for y in list2: if y in set1: result.append(y) return result # 一些样板,便于我们从命令行运行程序,处理不同大小的列表 def run(n): # 定义两个有 n+1 个元素的列表 list1 = range(3, n) + [2] list2 = range(n+1, 2*n) + [2] # 输出交集结果 print(intersection(list1, list2)) run(int(sys.argv[1])) ``` (这不是最惯用的 Python 使用方式,但我想在尽量避免使用太多 Python 思想的前提下编写代码,以便不了解 Python 的人能够更容易理解) 这里我们做了两件与慢速版程序不同的事: 1. 将 `list1` 转换成名为 `set1` 的 set 集合 2. 只使用一个 for 循环而不是两个 ### 看看 `linear.py` 程序有多快 在讨论 _为什么_ 这个程序快之前,我们先在一些大型列表上运行该程序,以此证明它确实是很快的。此处演示该程序依次在大小为 10 到 10,000,000 的列表上运行的过程。(请记住,我们上一个的程序在 100,000 个元素上运行时开始变得非常非常慢) ``` $ time python3 linear.py 100 [2] real 0m0.056s $ time python3 linear.py 1000 [2] real 0m0.036s $ time python3 linear.py 10000 # 10,000 [2] real 0m0.028s $ time python3 linear.py 100000 # 100,000 [2] real 0m0.048s <-- quadratic.py took 2 minutes in this case! we're doing it in 0.04 seconds now!!! so fast! $ time python3 linear.py 1000000 # 1,000,000 [2] real 0m0.178s $ time python3 linear.py 10000000 # 10,000,000 [2] real 0m1.560s ``` ### 在极大型列表上运行 `linear.py` 如果我们试着在一个非常非常大的列表(100 亿 / 10,000,000,000 个元素)上运行它,那么实际上会遇到另一个问题:它足够 _快_ 了(该列表仅比花费 4.2 秒的列表大 100 倍,因此我们大概应该能在不超过 420 秒的时间内完成),但我的计算机没有足够的内存来存储列表的所有元素,因此程序在运行结束之前崩溃了。 ``` $ time python3 linear.py 10000000000 Traceback (most recent call last): File "/home/bork/work/homepage/linear.py", line 18, in run(int(sys.argv[1])) File "/home/bork/work/homepage/linear.py", line 13, in run list1 = [1] * n + [2] MemoryError real 0m0.090s user 0m0.034s sys 0m0.018s ``` 不过本文不讨论内存使用,所以我们可以忽略这个问题。 ### 那么,为什么 `linear.py` 很快呢? 现在我将试着解释为什么 `linear.py` 很快。 再看一下我们的代码: ``` def intersection(list1, list2): set1 = set(list1) # this is a hash set result = [] for y in list2: if y in set1: result.append(y) return result ``` 假设 `list1` 和 `list2` 都是大约 10,000,000 个不同元素的列表,这样的元素数量可以说是很大了! 那么为什么它还能够运行得如此之快呢?因为 hashmap!!! ### hashmap 查找是即时的(“常数级时间”) 我们看一下快速版程序中的 `if` 语句: ``` if y in set1: result.append(y) ``` 你可能会认为如果 `set1` 包含 1000 万个元素,那么这个查找——`if y in set1` 会比 `set1` 包含 1000 个元素时慢。但事实并非如此!无论 `set1` 有多大,所需时间基本是相同的(超级快)。 这是因为 `set1` 是一个哈希集合,它是一种只有键没有值的 hashmap(hashtable)结构。 我不准备在本文中解释 _为什么_ hashmap 查找是即时的,但是神奇的 Vaidehi Joshi 的 [basecs][1] 系列中有关于 [hash table][2] 和 [hash 函数][3] 的解释,其中讨论了 hashmap 即时查找的原因。 ### 不经意的二次方:现实中的二次算法! 二次时间算法真的很慢,我们看到的的这个问题实际上在现实中也会遇到——Nelson Elhage 有一个很棒的博客,名为 [不经意的二次方][4],其中有关于不经意以二次时间算法运行代码导致性能问题的故事。 ### 二次时间算法可能会“偷袭”你 关于二次时间算法的奇怪之处在于,当你在少量元素(如 1000)上运行它们时,它看起来并没有那么糟糕!没那么慢!但是如果你给它 1,000,000 个元素,它真的会花费几个小时去运行。 所以我认为它还是值得深入了解的,这样你就可以避免无意中使用二次时间算法,特别是当有一种简单的方法来编写线性时间算法(例如使用 hashmap)时。 ### 总是让我感到一丝神奇的 hashmap hashmap 当然不是魔法(你可以学习一下为什么 hashmap 查找是即时的!真的很酷!),但它总是让人 _感觉_ 有点神奇,每次我在程序中使用 hashmap 来加速,都会使我感到开心 :) -------------------------------------------------------------------------------- via: https://jvns.ca/blog/2021/09/10/hashmaps-make-things-fast/ 作者:[Julia Evans][a] 选题:[lujun9972][b] 译者:[unigeorge](https://github.com/unigeorge) 校对:[wxy](https://github.com/wxy) 本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出 [a]: https://jvns.ca/ [b]: https://github.com/lujun9972 [1]: https://medium.com/basecs [2]: https://medium.com/basecs/taking-hash-tables-off-the-shelf-139cbf4752f0 [3]: https://medium.com/basecs/hashing-out-hash-functions-ea5dd8beb4dd [4]: https://accidentallyquadratic.tumblr.com/