[#]: collector: (lujun9972) [#]: translator: (chunibyo-wly) [#]: reviewer: ( ) [#]: publisher: ( ) [#]: url: ( ) [#]: subject: (Deploy a deep learning model on Kubernetes) [#]: via: (https://opensource.com/article/20/9/deep-learning-model-kubernetes) [#]: author: (Chaimaa Zyani https://opensource.com/users/chaimaa) Deploy a deep learning model on Kubernetes ====== Learn how to deploy, scale, and manage a deep learning model that serves up image recognition predictions with Kubermatic Kubernetes Platform. ![Brain on a computer screen][1] As enterprises increase their use of artificial intelligence (AI), machine learning (ML), and deep learning (DL), a critical question arises: How can they scale and industrialize ML development? These conversations often focus on the ML model; however, this is only one step along the way to a complete solution. To achieve in-production application and scale, model development must include a repeatable process that accounts for the critical activities that precede and follow development, including getting the model into a public-facing deployment. This article demonstrates how to deploy, scale, and manage a deep learning model that serves up image recognition predictions using [Kubermatic Kubernetes Platform][2]. Kubermatic Kubernetes Platform is a production-grade, open source Kubernetes cluster-management tool that offers flexibility and automation to integrate with ML/DL workflows with full cluster lifecycle management. ### Get started This example deploys a deep learning model for image recognition. It uses the [CIFAR-10][3] dataset that consists of 60,000 32x32 color images in 10 classes with the [Gluon][4] library in [Apache MXNet][5] and NVIDIA GPUs to accelerate the workload. If you want to use a pre-trained model on the CIFAR-10 dataset, check out the [getting started guide][6]. The model was trained over a span of 200 epochs, as long as the validation error kept decreasing slowly without causing the model to overfit. This plot shows the training process: ![Deep learning model training plot][7] (Chaimaa Zyami, [CC BY-SA 4.0][8]) After training, it's essential to save the model's parameters so they can be loaded later: ``` file_name = "net.params" net.save_parameters(file_name) ``` Once the model is ready, wrap your prediction code in a Flask server. This allows the server to accept an image as an argument to its request and return the model's prediction in the response: ``` from gluoncv.model_zoo import get_model import matplotlib.pyplot as plt from mxnet import gluon, nd, image from mxnet.gluon.data.vision import transforms from gluoncv import utils from PIL import Image import io import flask app = flask.Flask(__name__) @app.route("/predict",methods=["POST"]) def predict():     if flask.request.method == "POST":         if flask.request.files.get("img"):            img = Image.open(io.BytesIO(flask.request.files["img"].read()))             transform_fn = transforms.Compose([             transforms.Resize(32),             transforms.CenterCrop(32),             transforms.ToTensor(),             transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010])])             img = transform_fn(nd.array(img))             net = get_model('cifar_resnet20_v1', classes=10)             net.load_parameters('net.params')             pred = net(img.expand_dims(axis=0))             class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',                        'dog', 'frog', 'horse', 'ship', 'truck']             ind = nd.argmax(pred, axis=1).astype('int')             prediction = 'The input picture is classified as [%s], with probability %.3f.'%                          (class_names[ind.asscalar()], nd.softmax(pred)[0][ind].asscalar())     return prediction if __name__ == '__main__':    app.run(host='0.0.0.0') ``` ### Containerize the model Before you can deploy your model to Kubernetes, you need to install Docker and create a container image with your model. 1. Download, install, and start Docker: [code] sudo yum install -y yum-utils device-mapper-persistent-data lvm2 sudo yum-config-manager --add-repo sudo yum install docker-ce sudo systemctl start docker ``` 2. Create a directory where you can organize your code and dependencies: [code] mkdir kubermatic-dl cd kubermatic-dl ``` 3. Create a `requirements.txt` file to contain the packages the code needs to run: [code] flask gluoncv matplotlib mxnet requests Pillow ``` 4. Create the Dockerfile that Docker will read to build and run the model: [code] FROM python:3.6 WORKDIR /app COPY requirements.txt /app RUN pip install -r ./requirements.txt COPY app.py /app CMD ["python", "app.py"]~ [/code] This Dockerfile can be broken down into three steps. First, it creates the Dockerfile and instructs Docker to download a base image of Python 3. Next, it asks Docker to use the Python package manager `pip` to install the packages in `requirements.txt`. Finally, it tells Docker to run your script via `python app.py`. 5. Build the Docker container: [code]`sudo docker build -t kubermatic-dl:latest .`[/code] This instructs Docker to build a container for the code in your current working directory, `kubermatic-dl`. 6. Check that your container is working by running it on your local machine: [code]`sudo docker run -d -p 5000:5000 kubermatic-dl` ``` 7. Check the status of your container by running `sudo docker ps -a`: ![Checking the container's status][9] (Chaimaa Zyami, [CC BY-SA 4.0][8]) ### Upload the model to Docker Hub Before you can deploy the model on Kubernetes, it must be publicly available. Do that by adding it to [Docker Hub][10]. (You will need to create a Docker Hub account if you don't have one.) 1. Log into your Docker Hub account: [code]`sudo docker login` ``` 2. Tag the image so you can refer to it for versioning when you upload it to Docker Hub: [code] sudo docker tag <your-image-id> <your-docker-hub-name>/<your-app-name> sudo docker push <your-docker-hub-name>/<your-app-name> ``` ![Tagging the image][11] (Chaimaa Zyami, [CC BY-SA 4.0][8]) 3. Check your image ID by running `sudo docker images`. ### Deploy the model to a Kubernetes cluster 1. Create a project on the Kubermatic Kubernetes Platform, then create a Kubernetes cluster using the [quick start tutorial][12]. ![Create a Kubernetes cluster][13] (Chaimaa Zyami, [CC BY-SA 4.0][8]) 2. Download the `kubeconfig` used to configure access to your cluster, change it into the download directory, and export it into your environment: ![Kubernetes cluster example][14] (Chaimaa Zyami, [CC BY-SA 4.0][8]) 3. Using `kubectl`, check the cluster information, such as the services that `kube-system` starts on your cluster: [code]`kubectl cluster-info` ``` ![Checking the cluster info][15] (Chaimaa Zyami, [CC BY-SA 4.0][8]) 4. To run the container in the cluster, you need to create a deployment (`deployment.yaml`) and apply it to the cluster: [code] apiVersion: apps/v1 kind: Deployment metadata:   name: kubermatic-dl-deployment spec:   selector:     matchLabels:       app: kubermatic-dl   replicas: 3   template:     metadata:       labels:         app: kubermatic-dl     spec:      containers:      - name: kubermatic-dl        image: kubermatic00/kubermatic-dl:latest        imagePullPolicy: Always        ports:        - containerPort: 8080 [/code] [code]`kubectl apply -f deployment.yaml` ``` 5. To expose your deployment to the outside world, you need a service object that will create an externally reachable IP for your container: [code]`kubectl expose deployment kubermatic-dl-deployment  --type=LoadBalancer --port 80 --target-port 5000` ``` 6. You're almost there! Check your services to determine the status of your deployment and get the IP address to call your image recognition API: [code]`kubectl get service` ``` ![Get the IP address to call your image recognition API][16] (Chaimaa Zyami, [CC BY-SA 4.0][8]) 7. Test your API with these two images using the external IP: ![Horse][17] (Chaimaa Zyami, [CC BY-SA 4.0][8]) ![Dog][18] (Chaimaa Zyami, [CC BY-SA 4.0][8]) ![Testing the API][19] (Chaimaa Zyami, [CC BY-SA 4.0][8]) ### Summary In this tutorial, you created a deep learning model to be served as a [REST API][20] using Flask. It put the application inside a Docker container, uploaded the container to Docker Hub, and deployed it with Kubernetes. Then, with just a few commands, Kubermatic Kubernetes Platform deployed the app and exposed it to the world. -------------------------------------------------------------------------------- via: https://opensource.com/article/20/9/deep-learning-model-kubernetes 作者:[Chaimaa Zyani][a] 选题:[lujun9972][b] 译者:[译者ID](https://github.com/译者ID) 校对:[校对者ID](https://github.com/校对者ID) 本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出 [a]: https://opensource.com/users/chaimaa [b]: https://github.com/lujun9972 [1]: https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/brain_computer_solve_fix_tool.png?itok=okq8joti (Brain on a computer screen) [2]: https://www.loodse.com/products/kubermatic/ [3]: https://www.cs.toronto.edu/~kriz/cifar.html [4]: https://gluon.mxnet.io/ [5]: https://mxnet.apache.org/ [6]: https://gluon-cv.mxnet.io/build/examples_classification/demo_cifar10.html [7]: https://opensource.com/sites/default/files/uploads/trainingplot.png (Deep learning model training plot) [8]: https://creativecommons.org/licenses/by-sa/4.0/ [9]: https://opensource.com/sites/default/files/uploads/containerstatus.png (Checking the container's status) [10]: https://hub.docker.com/ [11]: https://opensource.com/sites/default/files/uploads/tagimage.png (Tagging the image) [12]: https://docs.kubermatic.com/kubermatic/v2.13/installation/install_kubermatic/_installer/ [13]: https://opensource.com/sites/default/files/uploads/kubernetesclusterempty.png (Create a Kubernetes cluster) [14]: https://opensource.com/sites/default/files/uploads/kubernetesexamplecluster.png (Kubernetes cluster example) [15]: https://opensource.com/sites/default/files/uploads/clusterinfo.png (Checking the cluster info) [16]: https://opensource.com/sites/default/files/uploads/getservice.png (Get the IP address to call your image recognition API) [17]: https://opensource.com/sites/default/files/uploads/horse.jpg (Horse) [18]: https://opensource.com/sites/default/files/uploads/dog.jpg (Dog) [19]: https://opensource.com/sites/default/files/uploads/testapi.png (Testing the API) [20]: https://www.redhat.com/en/topics/api/what-is-a-rest-api