mirror of
https://github.com/LCTT/TranslateProject.git
synced 2025-01-25 23:11:02 +08:00
TSL
This commit is contained in:
parent
1f19b90198
commit
ff377d7295
@ -1,255 +0,0 @@
|
||||
[#]: collector: (lujun9972)
|
||||
[#]: translator: (wxy)
|
||||
[#]: reviewer: ( )
|
||||
[#]: publisher: ( )
|
||||
[#]: url: ( )
|
||||
[#]: subject: (Using Python to visualize COVID-19 projections)
|
||||
[#]: via: (https://opensource.com/article/20/4/python-data-covid-19)
|
||||
[#]: author: (AnuragGupta https://opensource.com/users/999anuraggupta)
|
||||
|
||||
Using Python to visualize COVID-19 projections
|
||||
======
|
||||
I'll demonstrate how to create two visualizations of the spread of a
|
||||
virus across the globe, provided open data and using open source
|
||||
libraries.
|
||||
![Colorful sound wave graph][1]
|
||||
|
||||
Using [Python][2] and some graphing libraries, you can project the total number of confirmed cases of COVID-19, and also display the total number of deaths for a country (this article uses India as an example) on a given date. Humans sometimes need help interpreting and processing the meaning of data, so this article also demonstrates how to create an animated horizontal bar graph for five countries, showing the variation of cases by date.
|
||||
|
||||
### Projecting confirmed cases and deaths for India
|
||||
|
||||
This is done in three steps.
|
||||
|
||||
#### 1\. Download data
|
||||
|
||||
Scientific data isn't always open, but fortunately, many modern science and healthcare organizations are eager to share information with each other and the public. Data about COVID-19 cases is available online, and it's updated frequently.
|
||||
|
||||
To parse the data, you first must download it: <https://raw.githubusercontent.com/datasets/covid-19/master/data/countries-aggregated.csv>
|
||||
|
||||
Load the data directly into a Pandas DataFrame. Pandas provides a function, **read_csv()**, which can take a URL and give back a DataFrame object, as shown below:
|
||||
|
||||
|
||||
```
|
||||
import pycountry
|
||||
import plotly.express as px
|
||||
import pandas as pd
|
||||
URL_DATASET = r'<https://raw.githubusercontent.com/datasets/covid-19/master/data/countries-aggregated.csv>'
|
||||
df1 = pd.read_csv(URL_DATASET)
|
||||
print(df1.head(3)) # Get first 3 entries in the dataframe
|
||||
print(df1.tail(3)) # Get last 3 entries in the dataframe
|
||||
```
|
||||
|
||||
The top row of the data set contains column names:
|
||||
|
||||
1. Date
|
||||
2. Country
|
||||
3. Confirmed
|
||||
4. Recovered
|
||||
5. Deaths
|
||||
|
||||
|
||||
|
||||
The output of the **head** query includes a unique identifier (not listed as a column) plus an entry for each column:
|
||||
|
||||
|
||||
```
|
||||
0 2020-01-22 Afghanistan 0 0 0
|
||||
1 2020-01-22 Albania 0 0 0
|
||||
1 2020-01-22 Algeria 0 0 0
|
||||
```
|
||||
|
||||
The output of the **tail** query is similar but contains the tail end of the data set:
|
||||
|
||||
|
||||
```
|
||||
12597 2020-03-31 West Bank and Gaza 119 18 1
|
||||
12598 2020-03-31 Zambia 35 0 0
|
||||
12599 2020-03-31 Zimbabwe 8 0 1
|
||||
```
|
||||
|
||||
From the output, you can see that the DataFrame (**df1**) has the following columns:
|
||||
|
||||
1. Date
|
||||
2. Country
|
||||
3. Confirmed
|
||||
4. Recovered
|
||||
5. Dead
|
||||
|
||||
|
||||
|
||||
Further, you can see that the **Date** column has entries starting from January 22 to March 31. This database is updated daily, so you will have current values.
|
||||
|
||||
#### 2\. Select data for India
|
||||
|
||||
In this step, we will select only those rows in the DataFrame that include India. This is shown in the script below:
|
||||
|
||||
|
||||
```
|
||||
#### ----- Step 2 (Select data for India)----
|
||||
df_india = df1[df1['Country'] == 'India']
|
||||
print(df_india.head(3))
|
||||
```
|
||||
|
||||
#### 3\. Plot data
|
||||
|
||||
Here we create a bar chart. We will put the dates on the X-axis and the number of confirmed cases and the number of deaths on the Y-axis. There are a few noteworthy things about this part of the script which are as follows:
|
||||
|
||||
* The line of code: **plt.rcParams["_figure.figsize"_]=20,20** is meant only for Jupyter. So remove it if you are using some other IDE.
|
||||
|
||||
* Notice the line of code: **ax1 = plt.gca()**. To ensure that both the plots i.e. for confirmed cases as well as for deaths are plotted on the same graph, we need to give to the second graph the **ax** object of the plot. So we use **gca()** to do this. (By the way, 'gca' stands for 'get current axis').
|
||||
|
||||
|
||||
|
||||
|
||||
The complete script is given below:
|
||||
|
||||
|
||||
```
|
||||
# Author:- Anurag Gupta # email:- [999.anuraggupta@gmail.com][3]
|
||||
%matplotlib inline
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
|
||||
#### ----- Step 1 (Download data)----
|
||||
URL_DATASET = r'<https://raw.githubusercontent.com/datasets/covid-19/master/data/countries-aggregated.csv>'
|
||||
df1 = pd.read_csv(URL_DATASET)
|
||||
# print(df1.head(3)) # Uncomment to see the dataframe
|
||||
|
||||
#### ----- Step 2 (Select data for India)----
|
||||
df_india = df1[df1['Country'] == 'India']
|
||||
print(df_india.head(3))
|
||||
|
||||
#### ----- Step 3 (Plot data)----
|
||||
# Increase size of plot
|
||||
plt.rcParams["figure.figsize"]=20,20 # Remove if not on Jupyter
|
||||
# Plot column 'Confirmed'
|
||||
df_india.plot(kind = 'bar', x = 'Date', y = 'Confirmed', color = 'blue')
|
||||
|
||||
ax1 = plt.gca()
|
||||
df_india.plot(kind = 'bar', x = 'Date', y = 'Deaths', color = 'red', ax = ax1)
|
||||
plt.show()
|
||||
```
|
||||
|
||||
The entire script is [available on GitHub][4].
|
||||
|
||||
### Creating an animated horizontal bar graph for five countries
|
||||
|
||||
Note for Jupyter: To run this in Jupyter as a dynamic animation rather than as a static png, you need to add a magic command at the beginning of your cell, namely: **%matplotlib notebook**. This will keep the figure alive instead of displaying a static png file and can hence also show animations. If you are on another IDE, remove this line.
|
||||
|
||||
#### 1\. Download the data
|
||||
|
||||
This step is exactly the same as in the previous script, and therefore, it need not be repeated.
|
||||
|
||||
#### 2\. Create a list of all dates
|
||||
|
||||
If you examine the data you downloaded, you notice that it has a column **Date**. Now, this column has a date value for each country. So the same date is occurring a number of times. We need to create a list of dates with only unique values. This will be used on the X-axis of our bar charts. We have a line of code like: **list_dates = df[_‘Date’_].unique()**. The **unique()** method will pick up only the unique values for each date.
|
||||
|
||||
#### 3\. Pick five countries and create an **ax** object
|
||||
|
||||
Take a list of five countries. (You can choose whatever countries you prefer, or even increase or decrease the number of countries). I have also taken a list of five colors for the bars of each country. (You can change this too if you like). One important line of code here is: **fig, ax = plt.subplots(figsize=(15, 8))**. This is needed to create an **ax** object.
|
||||
|
||||
#### 4\. Write the call back function
|
||||
|
||||
If you want to do animation in Matplotlib, you need to create an object of a class called **matplotlib.animation.FuncAnimation**. The signature of this class is available online. The constructor of this class, apart from other parameters, also takes a parameter called **func**, and you have to give this parameter a callback function. So in this step, we will write the callback function, which is repeatedly called in order to render the animation.
|
||||
|
||||
#### 5\. Create **FuncAnimation** object
|
||||
|
||||
This step has partly been explained in the previous step.
|
||||
|
||||
Our code to create an object of this class is:
|
||||
|
||||
|
||||
```
|
||||
my_anim = animation.FuncAnimation(fig = fig, func = plot_bar,
|
||||
frames= list_dates, blit=True,
|
||||
interval=20)
|
||||
```
|
||||
|
||||
The three important parameters to be given are:
|
||||
|
||||
* **fig**, which must be given a fig object, which we created earlier.
|
||||
* **func**, which must be the call back function.
|
||||
* **frames**, which must contain the variable on which the animation is to be done. Here in our case, it will be the list of dates we created earlier.
|
||||
|
||||
|
||||
|
||||
#### 6\. Save the animation to an mp4 file
|
||||
|
||||
You can save the animation created into an mp4 file. But for this you need **ffmpeg**. You can download this using pip by **pip install ffmpeg-python**, or using conda (on Jupyter) **install -c conda-forge ffmpeg**.
|
||||
|
||||
And finally, you can run the animation using **plt.show()**. Please note that on many platforms, the **ffmpeg** may not work properly and may require further "tweaking."
|
||||
|
||||
|
||||
```
|
||||
%matplotlib notebook
|
||||
# Author:- Anurag Gupta # email:- [999.anuraggupta@gmail.com][3]
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.animation as animation
|
||||
from time import sleep
|
||||
|
||||
#### ---- Step 1:- Download data
|
||||
URL_DATASET = r'<https://raw.githubusercontent.com/datasets/covid-19/master/data/countries-aggregated.csv>'
|
||||
df = pd.read_csv(URL_DATASET, usecols = ['Date', 'Country', 'Confirmed'])
|
||||
# print(df.head(3)) # uncomment this to see output
|
||||
|
||||
#### ---- Step 2:- Create list of all dates
|
||||
list_dates = df['Date'].unique()
|
||||
# print(list_dates) # Uncomment to see the dates
|
||||
|
||||
#### --- Step 3:- Pick 5 countries. Also create ax object
|
||||
fig, ax = plt.subplots(figsize=(15, 8))
|
||||
# We will animate for these 5 countries only
|
||||
list_countries = ['India', 'China', 'US', 'Italy', 'Spain']
|
||||
# colors for the 5 horizontal bars
|
||||
list_colors = ['black', 'red', 'green', 'blue', 'yellow']
|
||||
|
||||
### --- Step 4:- Write the call back function
|
||||
# plot_bar() is the call back function used in FuncAnimation class object
|
||||
def plot_bar(some_date):
|
||||
df2 = df[df['Date'].eq(some_date)]
|
||||
ax.clear()
|
||||
# Only take Confirmed column in descending order
|
||||
df3 = df2.sort_values(by = 'Confirmed', ascending = False)
|
||||
# Select the top 5 Confirmed countries
|
||||
df4 = df3[df3['Country'].isin(list_countries)]
|
||||
# print(df4) # Uncomment to see that dat is only for 5 countries
|
||||
sleep(0.2) # To slow down the animation
|
||||
# ax.barh() makes a horizontal bar plot.
|
||||
return ax.barh(df4['Country'], df4['Confirmed'], color= list_colors)
|
||||
|
||||
###----Step 5:- Create FuncAnimation object---------
|
||||
my_anim = animation.FuncAnimation(fig = fig, func = plot_bar,
|
||||
frames= list_dates, blit=True,
|
||||
interval=20)
|
||||
|
||||
### --- Step 6:- Save the animation to an mp4
|
||||
# Place where to save the mp4. Give your file path instead
|
||||
path_mp4 = r'C:\Python-articles\population_covid2.mp4'
|
||||
# my_anim.save(path_mp4, fps=30, extra_args=['-vcodec', 'libx264'])
|
||||
my_anim.save(filename = path_mp4, writer = 'ffmpeg',
|
||||
fps=30,
|
||||
extra_args= ['-vcodec', 'libx264', '-pix_fmt', 'yuv420p'])
|
||||
plt.show()
|
||||
```
|
||||
|
||||
The complete script is [available on GitHub][5].
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
via: https://opensource.com/article/20/4/python-data-covid-19
|
||||
|
||||
作者:[AnuragGupta][a]
|
||||
选题:[lujun9972][b]
|
||||
译者:[译者ID](https://github.com/译者ID)
|
||||
校对:[校对者ID](https://github.com/校对者ID)
|
||||
|
||||
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
|
||||
|
||||
[a]: https://opensource.com/users/999anuraggupta
|
||||
[b]: https://github.com/lujun9972
|
||||
[1]: https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/colorful_sound_wave.png?itok=jlUJG0bM (Colorful sound wave graph)
|
||||
[2]: https://opensource.com/resources/python
|
||||
[3]: mailto:999.anuraggupta@gmail.com
|
||||
[4]: https://raw.githubusercontent.com/ag999git/jupyter_notebooks/master/corona_bar_india
|
||||
[5]: https://raw.githubusercontent.com/ag999git/jupyter_notebooks/master/corona_bar_animated
|
@ -0,0 +1,239 @@
|
||||
[#]: collector: (lujun9972)
|
||||
[#]: translator: (wxy)
|
||||
[#]: reviewer: ( )
|
||||
[#]: publisher: ( )
|
||||
[#]: url: ( )
|
||||
[#]: subject: (Using Python to visualize COVID-19 projections)
|
||||
[#]: via: (https://opensource.com/article/20/4/python-data-covid-19)
|
||||
[#]: author: (AnuragGupta https://opensource.com/users/999anuraggupta)
|
||||
|
||||
使用 Python 来可视化 COVID-19 预测
|
||||
======
|
||||
|
||||
> 我将演示如何使用开源库利用提供的全球病毒传播的开放数据来创建两个可视效果。
|
||||
|
||||
![Colorful sound wave graph][1]
|
||||
|
||||
使用 [Python][2] 和一些图形库,你可以预测出 COVID-19 确诊病例的总数,也可以显示一个国家(本文以印度为例)在给定日期的死亡总数。人们有时需要帮助解释和处理数据的意义,所以本文还演示了如何为五个国家创建一个动画横条形图,以显示按日期显示病例的变化。
|
||||
|
||||
### 印度的确诊病例和死亡人数预测
|
||||
|
||||
这要分三步来完成。
|
||||
|
||||
#### 1、下载数据
|
||||
|
||||
科学数据并不总是开放的,但幸运的是,许多现代科学和医疗机构都乐于相互之间及与公众共享信息。关于 COVID-19 病例的数据可以在网上查到,并且经常更新。
|
||||
|
||||
要解析这些数据,首先必须先下载。 <https://raw.githubusercontent.com/datasets/covid-19/master/data/countries-aggregated.csv>。
|
||||
|
||||
直接将数据加载到 Pandas `DataFrame` 中。Pandas 提供了一个函数 `read_csv()`,它可以获取一个 URL 并返回一个 `DataFrame` 对象,如下所示。
|
||||
|
||||
|
||||
```
|
||||
import pycountry
|
||||
import plotly.express as px
|
||||
import pandas as pd
|
||||
URL_DATASET = r'https://raw.githubusercontent.com/datasets/covid-19/master/data/countries-aggregated.csv'
|
||||
df1 = pd.read_csv(URL_DATASET)
|
||||
print(df1.head(3)) # 获取数据帧中的前 3 项
|
||||
print(df1.tail(3)) # 获取数据帧中的后 3 项
|
||||
```
|
||||
|
||||
数据集的顶行包含列名。
|
||||
|
||||
1. `Date`
|
||||
2. `Country`
|
||||
3. `Confirmed`
|
||||
4. `Recovered`
|
||||
5. `Deaths`
|
||||
|
||||
`head` 查询的输出包括一个唯一的标识符(不作为列列出)和每个列的条目。
|
||||
|
||||
```
|
||||
0 2020-01-22 Afghanistan 0 0 0
|
||||
1 2020-01-22 Albania 0 0 0
|
||||
1 2020-01-22 Algeria 0 0 0
|
||||
```
|
||||
|
||||
`tail` 查询的输出类似,但包含数据集的尾端。
|
||||
|
||||
```
|
||||
12597 2020-03-31 West Bank and Gaza 119 18 1
|
||||
12598 2020-03-31 Zambia 35 0 0
|
||||
12599 2020-03-31 Zimbabwe 8 0 1
|
||||
```
|
||||
|
||||
从输出中,可以看到 DataFrame(`df1`)有以下几个列:
|
||||
|
||||
1. 日期
|
||||
2. 国家
|
||||
3. 确诊
|
||||
4. 康复
|
||||
5. 死亡
|
||||
|
||||
此外,你可以看到 `Date` 栏中的条目从 1 月 22 日开始到 3 月 31 日。这个数据库每天都会更新,所以你会有当前的值。
|
||||
|
||||
#### 2、选择印度的数据
|
||||
|
||||
在这一步中,我们将只选择 DataFrame 中包含印度的那些行。这在下面的脚本中可以看到。
|
||||
|
||||
```
|
||||
#### ----- Step 2 (Select data for India)----
|
||||
df_india = df1[df1['Country'] == 'India']
|
||||
print(df_india.head(3))
|
||||
```
|
||||
|
||||
#### 3、数据绘图
|
||||
|
||||
在这里,我们创建一个条形图。我们将把日期放在 X 轴上,把确诊的病例数和死亡人数放在 Y 轴上。这一部分的脚本有以下几个值得注意的地方。
|
||||
|
||||
* `plt.rcParams["_figure.figure.figsize"_]=20,20` 这一行代码只适用于 Jupyter。所以如果你使用其他 IDE,请删除它。
|
||||
* 注意这行代码:`ax1 = plt.gca()`。为了确保两个图,即确诊病例和死亡病例的图都被绘制在同一个图上,我们需要给第二个图的 `ax` 对象。所以我们使用 `gca()` 来完成这个任务。(顺便说一下,`gca` 代表“get current axis”)
|
||||
|
||||
完整的脚本如下所示。
|
||||
|
||||
```
|
||||
# Author:- Anurag Gupta # email:- 999.anuraggupta@gmail.com
|
||||
%matplotlib inline
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
|
||||
#### ----- Step 1 (Download data)----
|
||||
URL_DATASET = r'https://raw.githubusercontent.com/datasets/covid-19/master/data/countries-aggregated.csv'
|
||||
df1 = pd.read_csv(URL_DATASET)
|
||||
# print(df1.head(3)) # Uncomment to see the dataframe
|
||||
|
||||
#### ----- Step 2 (Select data for India)----
|
||||
df_india = df1[df1['Country'] == 'India']
|
||||
print(df_india.head(3))
|
||||
|
||||
#### ----- Step 3 (Plot data)----
|
||||
# Increase size of plot
|
||||
plt.rcParams["figure.figsize"]=20,20 # Remove if not on Jupyter
|
||||
# Plot column 'Confirmed'
|
||||
df_india.plot(kind = 'bar', x = 'Date', y = 'Confirmed', color = 'blue')
|
||||
|
||||
ax1 = plt.gca()
|
||||
df_india.plot(kind = 'bar', x = 'Date', y = 'Deaths', color = 'red', ax = ax1)
|
||||
plt.show()
|
||||
```
|
||||
|
||||
整个脚本[可在 GitHub 上找到][4]。
|
||||
|
||||
#### 为五个国家创建一个动画水平条形图
|
||||
|
||||
关于 Jupyter 的注意事项:要在 Jupyter 中以动态动画的形式运行,而不是静态 png 的形式,你需要在单元格的开头添加一个神奇的命令,即: `%matplotlib notebook`。这将使图形保持动态,而不是显示静态的 png 文件,因此也可以显示动画。如果你在其他 IDE 上,请删除这一行。
|
||||
|
||||
#### 1、下载数据
|
||||
|
||||
这一步和前面的脚本完全一样,所以不需要重复。
|
||||
|
||||
#### 2、创建一个所有日期的列表
|
||||
|
||||
如果你检查你下载的数据,你会发现它有一列 `Date`。现在,这一列对每个国家都有一个日期值。因此,同一个日期会出现多次。我们需要创建一个只具有唯一值的日期列表。这会用在我们条形图的 X 轴上。我们有一行代码,如 `list_dates = df[_'Date'_].unique()`。`unique()` 方法将只提取每个日期的唯一值。
|
||||
|
||||
#### 3、挑选五个国家并创建一个 `ax` 对象。
|
||||
|
||||
做一个五个国家的名单。(你可以选择你喜欢的国家,甚至可以增加或减少国家的数量。)我也做了一个五个颜色的列表,每个国家的条形图的颜色对应一种。(如果你喜欢的话,也可以改一下。)这里有一行重要的代码是:`fig, ax = plt.subplots(figsize=(15, 8))`。这是创建一个 `ax` 对象所需要的。
|
||||
|
||||
#### 4、编写回调函数
|
||||
|
||||
如果你想在 Matplotlib 中做动画,你需要创建一个名为 `matplotlib.animation.FuncAnimation` 的类的对象。这个类的签名可以在网上查到。这个类的构造函数,除了其他参数外,还需要一个叫 `func` 的参数,你必须给这个参数一个回调函数。所以在这一步中,我们会写个回调函数,这个回调函数会被反复调用,以渲染动画。
|
||||
|
||||
#### 5、创建 `FuncAnimation` 对象
|
||||
|
||||
这一步在上一步中已经部分说明了。
|
||||
|
||||
我们创建这个类的对象的代码是:
|
||||
|
||||
```
|
||||
my_anim = animation.FuncAnimation(fig = fig, func = plot_bar,
|
||||
frames= list_dates, blit=True,
|
||||
interval=20)
|
||||
```
|
||||
|
||||
要给出的三个重要参数是:
|
||||
|
||||
* `fig`,必须给出一个 fig 对象,也就是我们之前创建的 fig 对象。
|
||||
* `func`,必须是回调函数。
|
||||
* `frames`,必须包含要做动画的变量。在我们这里,它是我们之前创建的日期列表。
|
||||
|
||||
#### 6、将动画保存为 mp4 文件
|
||||
|
||||
你可以将创建的动画保存为 mp4 文件。但是,你需要 `ffmpeg`。你可以用 `pip` 下载:`pip install ffmpeg-python`,或者用 conda(在 Jupyter 上):`install -c conda-forge ffmpeg`。
|
||||
|
||||
最后,你可以使用 `plt.show()` 运行动画。请注意,在许多平台上,`ffmpeg` 可能无法正常工作,可能需要进一步“调整”。
|
||||
|
||||
```
|
||||
%matplotlib notebook
|
||||
# Author:- Anurag Gupta # email:- 999.anuraggupta@gmail.com
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.animation as animation
|
||||
from time import sleep
|
||||
|
||||
#### ---- Step 1:- Download data
|
||||
URL_DATASET = r'https://raw.githubusercontent.com/datasets/covid-19/master/data/countries-aggregated.csv'
|
||||
df = pd.read_csv(URL_DATASET, usecols = ['Date', 'Country', 'Confirmed'])
|
||||
# print(df.head(3)) # uncomment this to see output
|
||||
|
||||
#### ---- Step 2:- Create list of all dates
|
||||
list_dates = df['Date'].unique()
|
||||
# print(list_dates) # Uncomment to see the dates
|
||||
|
||||
#### --- Step 3:- Pick 5 countries. Also create ax object
|
||||
fig, ax = plt.subplots(figsize=(15, 8))
|
||||
# We will animate for these 5 countries only
|
||||
list_countries = ['India', 'China', 'US', 'Italy', 'Spain']
|
||||
# colors for the 5 horizontal bars
|
||||
list_colors = ['black', 'red', 'green', 'blue', 'yellow']
|
||||
|
||||
### --- Step 4:- Write the call back function
|
||||
# plot_bar() is the call back function used in FuncAnimation class object
|
||||
def plot_bar(some_date):
|
||||
df2 = df[df['Date'].eq(some_date)]
|
||||
ax.clear()
|
||||
# Only take Confirmed column in descending order
|
||||
df3 = df2.sort_values(by = 'Confirmed', ascending = False)
|
||||
# Select the top 5 Confirmed countries
|
||||
df4 = df3[df3['Country'].isin(list_countries)]
|
||||
# print(df4) # Uncomment to see that dat is only for 5 countries
|
||||
sleep(0.2) # To slow down the animation
|
||||
# ax.barh() makes a horizontal bar plot.
|
||||
return ax.barh(df4['Country'], df4['Confirmed'], color= list_colors)
|
||||
|
||||
###----Step 5:- Create FuncAnimation object---------
|
||||
my_anim = animation.FuncAnimation(fig = fig, func = plot_bar,
|
||||
frames= list_dates, blit=True,
|
||||
interval=20)
|
||||
|
||||
### --- Step 6:- Save the animation to an mp4
|
||||
# Place where to save the mp4. Give your file path instead
|
||||
path_mp4 = r'C:\Python-articles\population_covid2.mp4'
|
||||
# my_anim.save(path_mp4, fps=30, extra_args=['-vcodec', 'libx264'])
|
||||
my_anim.save(filename = path_mp4, writer = 'ffmpeg',
|
||||
fps=30,
|
||||
extra_args= ['-vcodec', 'libx264', '-pix_fmt', 'yuv420p'])
|
||||
plt.show()
|
||||
```
|
||||
|
||||
完整的脚本[可以在 GitHub 上找到][5]。
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
via: https://opensource.com/article/20/4/python-data-covid-19
|
||||
|
||||
作者:[AnuragGupta][a]
|
||||
选题:[lujun9972][b]
|
||||
译者:[wxy](https://github.com/wxy)
|
||||
校对:[校对者ID](https://github.com/校对者ID)
|
||||
|
||||
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
|
||||
|
||||
[a]: https://opensource.com/users/999anuraggupta
|
||||
[b]: https://github.com/lujun9972
|
||||
[1]: https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/colorful_sound_wave.png?itok=jlUJG0bM (Colorful sound wave graph)
|
||||
[2]: https://opensource.com/resources/python
|
||||
[3]: mailto:999.anuraggupta@gmail.com
|
||||
[4]: https://raw.githubusercontent.com/ag999git/jupyter_notebooks/master/corona_bar_india
|
||||
[5]: https://raw.githubusercontent.com/ag999git/jupyter_notebooks/master/corona_bar_animated
|
Loading…
Reference in New Issue
Block a user