diff --git a/sources/tech/20181102 Create a containerized machine learning model.md b/translated/tech/20181102 Create a containerized machine learning model.md similarity index 59% rename from sources/tech/20181102 Create a containerized machine learning model.md rename to translated/tech/20181102 Create a containerized machine learning model.md index d0a57d0b72..7c48ba6af7 100644 --- a/sources/tech/20181102 Create a containerized machine learning model.md +++ b/translated/tech/20181102 Create a containerized machine learning model.md @@ -7,46 +7,46 @@ [#]: author: (Sven Bösiger) [#]: url: ( ) -Create a containerized machine learning model +创建一个容器化的机器学习模型 ====== ![](https://fedoramagazine.org/wp-content/uploads/2018/10/machinelearning-816x345.jpg) -After data scientists have created a machine learning model, it has to be deployed into production. To run it on different infrastructures, using containers and exposing the model via a REST API is a common way to deploy a machine learning model. This article demonstrates how to roll out a [TensorFlow][1] machine learning model, with a REST API delivered by [Connexion][2] in a container with [Podman][3]. +数据科学家在创建机器学习模型后,必须将其部署到生产中。要在不同的基础架构上运行它,使用容器并通过 REST API 公开模型是部署机器学习模型的常用方法。本文演示了如何在 [Podman][3] 容器中使用 [Connexion][2] 推出使用 REST API 的 [TensorFlow][1] 机器学习模型。 -### Preparation +### 准备 -First, install Podman with the following command: +首先,使用以下命令安装 Podman: ``` sudo dnf -y install podman ``` -Next, create a new folder for the container and switch to that directory. +接下来,为容器创建一个新文件夹并切换到该目录。 ``` mkdir deployment_container && cd deployment_container ``` -### REST API for the TensorFlow model +### TensorFlow 模型的 REST API -The next step is to create the REST-API for the machine learning model. This [github repository][4] contains a pretrained model, and well as the setup already configured for getting the REST API working. +下一步是为机器学习模型创建 REST API。这个 [github 仓库][4]包含一个预训练模型,以及能让 REST API 工作的设置。 -Clone this in the deployment_container directory with the command: +使用以下命令在 deployment_container 目录中克隆它: ``` git clone https://github.com/svenboesiger/titanic_tf_ml_model.git ``` -#### prediction.py & ml_model/ +#### prediction.py 和 ml_model/ -The [prediction.py][5] file allows for a Tensorflow prediction, while the weights for the 20x20x20 neural network are located in folder [ml_model/][6]. +[prediction.py][5] 能进行 Tensorflow 预测,而 20x20x20 神经网络的权重位于文件夹 [ml_model/][6] 中。 #### swagger.yaml -The file swagger.yaml defines the API for the Connexion library using the [Swagger specification][7]. This file contains all of the information necessary to configure your server to provide input parameter validation, output response data validation, URL endpoint definition. +swagger.yaml 使用 [Swagger规范][7] 定义 Connexion 库的 API。此文件包含让你的服务器提供输入参数验证、输出响应数据验证、URL 端点定义所需的所有信息。 -As a bonus Connexion will provide you also with a simple but useful single page web application that demonstrates using the API with JavaScript and updating the DOM with it. +额外地,Connexion 还将给你提供一个简单但有用的单页 Web 应用,它演示了如何使用 Javascript 调用 API 和更新 DOM。 ``` swagger: "2.0" @@ -85,9 +85,9 @@ definitions: type: object ``` -#### server.py & requirements.txt +#### server.py 和 requirements.txt -[server.py][8] defines an entry point to start the Connexion server. +[server.py][8] 定义了启动 Connexion 服务器的入口点。 ``` import connexion @@ -100,7 +100,7 @@ if __name__ == '__main__': app.run(debug=True) ``` -[requirements.txt][9] defines the python requirements we need to run the program. +[requirements.txt][9] 定义了运行程序所需的 python 包。 ``` connexion @@ -108,9 +108,9 @@ tensorflow pandas ``` -### Containerize! +### 容器化! -For Podman to be able to build an image, create a new file called “Dockerfile” in the **deployment_container** directory created in the preparation step above: +为了让 Podman 构建映像,请在上面的准备步骤中创建的 **deployment_container** 目录中创建一个名为 “Dockerfile” 的新文件: ``` FROM fedora:28 @@ -143,25 +143,25 @@ WORKDIR /titanic_tf_ml_model CMD python3 server.py ``` -Next, build the container image with the command: +接下来,使用以下命令构建容器镜像: ``` podman build -t ml_deployment . ``` -### Run the container +### 运行容器 -With the Container image built and ready to go, you can run it locally with the command: +随着容器镜像的构建和准备就绪,你可以使用以下命令在本地运行它: ``` podman run -p 5000:5000 ml_deployment ``` -Navigate to [http://0.0.0.0:5000/ui][10] in your web browser to access the Swagger/Connexion UI and to test-drive the model: +在 Web 浏览器中输入 [http://0.0.0.0:5000/ui][10] 访问 Swagger/Connexion UI 并测试模型: ![][11] -Of course you can now also access the model with your application via the REST-API. +当然,你现在也可以在应用中通过 REST API 访问模型。 -------------------------------------------------------------------------------- @@ -170,7 +170,7 @@ via: https://fedoramagazine.org/create-containerized-machine-learning-model/ 作者:[Sven Bösiger][a] 选题:[lujun9972][b] -译者:[译者ID](https://github.com/译者ID) +译者:[geekpi](https://github.com/geekpi) 校对:[校对者ID](https://github.com/校对者ID) 本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出 @@ -187,4 +187,4 @@ via: https://fedoramagazine.org/create-containerized-machine-learning-model/ [8]: https://github.com/svenboesiger/titanic_tf_ml_model/blob/master/server.py [9]: https://github.com/svenboesiger/titanic_tf_ml_model/blob/master/requirements.txt [10]: http://0.0.0.0:5000/ -[11]: https://fedoramagazine.org/wp-content/uploads/2018/10/Screenshot-from-2018-10-27-14-46-56-682x1024.png +[11]: https://fedoramagazine.org/wp-content/uploads/2018/10/Screenshot-from-2018-10-27-14-46-56-682x1024.png \ No newline at end of file