mirror of
https://github.com/LCTT/TranslateProject.git
synced 2025-01-13 22:30:37 +08:00
Merge pull request #29560 from tanloong/20220818-The-Functions-in-the-R-Stats-Package
确保巨算符以 text style 显示
This commit is contained in:
commit
f32828dbdb
@ -131,7 +131,7 @@ attr(,"class")
|
||||
| p | 闵可夫斯基距离的幂次 (见下文 LCTT 译注) |
|
||||
|
||||
该函数提供的距离测量方法包括:<ruby>欧式距离<rt>euclidean</rt></ruby>、<ruby>最大距离<rt>maximum</rt></ruby>、<ruby>曼哈顿距离<rt>manhattan</rt></ruby>、<ruby>堪培拉距离<rt>canberra</rt></ruby>、<ruby>二进制距离<rt>binary</rt></ruby> 和 <ruby>闵可夫斯基距离<rt>minkowski</rt></ruby>,默认为欧式距离 (LCTT 译注:
|
||||
**欧式距离**指两点之间线段的长度,比如二维空间中 A 点 $(x_1, y_1)$ 和 B 点 $(x_2, y_2)$ 的欧式距离是 $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$;**最大距离**指 n 维向量空间中两点在各维度上的距离的最大值,比如 A 点 $(3, 6, 8, 9)$ 和 B 点 $(1, 8, 9, 10)$ 之间的最大距离是 $max(|3 - 1|, |6 - 8|, |8 - 9|, |9 - 10|)$,等于 2;**曼哈顿距离**指 n 维向量空间中两点在各维度上的距离之和,比如二维空间中 A 点 $(x_1, y_1)$ 和 B 点 $(x_2, y_2)$ 之间的曼哈顿距离是 $|x_1 - x_2| + |y_1 - y_2|$;**堪培拉距离**的公式是 $\sum_{i=1}^{n}\frac{|V1_i - V2_i|}{|V1_i| + |V2_i|}$;**二进制距离**首先将两个向量中的各元素看作其二进制形式,然后剔除在两个向量中对应值均为 0 的维度,最后计算在剩下的维度上两个向量间的对应值不相同的比例,比如 $V1 = (1, 3, 0, 5, 0)$ 和 $V2 = (11, 13, 0, 15, 10)$ 的二进制形式分别是 $(1, 1, 0, 1, 0)$ 和 $(1, 1, 0, 1, 1)$,其中第 3 个维度的对应值均为 0,剔除该维度之后为 $(1, 1, 1, 0)$ 和 $(1, 1, 1, 1)$,在剩余的 4 个维度中只有最后一个维度在两个向量之间的值不同,最终结果为 0.25;**闵可夫斯基距离**是欧式距离和曼哈顿距离的推广,公式是 $\sqrt[p]{\sum_{i=1}^{n}{|V1_i - V2_i|^p}}$,当 $p=1$ 时相当于曼哈顿距离,当 $p=2$ 时相当于欧式距离。)。下面是使用欧式距离计算 age 列距离矩阵的示例:
|
||||
**欧式距离**指两点之间线段的长度,比如二维空间中 A 点 $(x_1, y_1)$ 和 B 点 $(x_2, y_2)$ 的欧式距离是 $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$;**最大距离**指 n 维向量空间中两点在各维度上的距离的最大值,比如 A 点 $(3, 6, 8, 9)$ 和 B 点 $(1, 8, 9, 10)$ 之间的最大距离是 $max(|3 - 1|, |6 - 8|, |8 - 9|, |9 - 10|)$,等于 2;**曼哈顿距离**指 n 维向量空间中两点在各维度上的距离之和,比如二维空间中 A 点 $(x_1, y_1)$ 和 B 点 $(x_2, y_2)$ 之间的曼哈顿距离是 $|x_1 - x_2| + |y_1 - y_2|$;**堪培拉距离**的公式是 $\sum\textstyle_{i=1}^{n}\frac{|V1_i - V2_i|}{|V1_i| + |V2_i|}$;**二进制距离**首先将两个向量中的各元素看作其二进制形式,然后剔除在两个向量中对应值均为 0 的维度,最后计算在剩下的维度上两个向量间的对应值不相同的比例,比如 $V1 = (1, 3, 0, 5, 0)$ 和 $V2 = (11, 13, 0, 15, 10)$ 的二进制形式分别是 $(1, 1, 0, 1, 0)$ 和 $(1, 1, 0, 1, 1)$,其中第 3 个维度的对应值均为 0,剔除该维度之后为 $(1, 1, 1, 0)$ 和 $(1, 1, 1, 1)$,在剩余的 4 个维度中只有最后一个维度在两个向量之间的值不同,最终结果为 0.25;**闵可夫斯基距离**是欧式距离和曼哈顿距离的推广,公式是 $\sqrt[p]{\sum\textstyle_{i=1}^{n}{|V1_i - V2_i|^p}}$,当 $p=1$ 时相当于曼哈顿距离,当 $p=2$ 时相当于欧式距离。)。下面是使用欧式距离计算 age 列距离矩阵的示例:
|
||||
|
||||
```
|
||||
> dist(bank$age, method="euclidean", diag=FALSE, upper=FALSE, p=2)
|
||||
|
Loading…
Reference in New Issue
Block a user