mirror of
https://github.com/LCTT/TranslateProject.git
synced 2025-01-13 22:30:37 +08:00
translated
This commit is contained in:
parent
1f8e91f6b4
commit
ee7d54671e
@ -1,89 +0,0 @@
|
||||
[#]: subject: "Using a Machine Learning Model to Make Predictions"
|
||||
[#]: via: "https://www.opensourceforu.com/2022/05/using-a-machine-learning-model-to-make-predictions/"
|
||||
[#]: author: "Jishnu Saurav Mittapalli https://www.opensourceforu.com/author/jishnu-saurav-mittapalli/"
|
||||
[#]: collector: "lkxed"
|
||||
[#]: translator: "geekpi"
|
||||
[#]: reviewer: " "
|
||||
[#]: publisher: " "
|
||||
[#]: url: " "
|
||||
|
||||
Using a Machine Learning Model to Make Predictions
|
||||
======
|
||||
Machine learning is basically a subset of artificial intelligence that uses previously existing data to make a prediction on new data. Of course, all of us know this by now! This article demonstrates how a machine learning model developed in Python can be used as a part of a Java code to make predictions.
|
||||
|
||||
![Machine-learning][1]
|
||||
|
||||
This article assumes you are familiar with the basic development skills and understanding of machine learning. We will start with training our model, and then make a machine learning model in Python.
|
||||
|
||||
This article assumes you are familiar with the basic development skills and understanding of machine learning. We will start with training our model, and then make a machine learning model in Python.
|
||||
|
||||
I am taking the example of a flood prediction model. First, import the following libraries:
|
||||
|
||||
```
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
```
|
||||
|
||||
Once we have successfully imported the libraries, we need to take in the data sets, as shown in the code below. To predict floods, I am using the river level data set.
|
||||
|
||||
```
|
||||
from google.colab import files
|
||||
uploaded = files.upload()
|
||||
for fn in uploaded.keys(): print(‘User uploaded file “{name}” with length {length} bytes’.format(
|
||||
name=fn, length=len(uploaded[fn])))
|
||||
Choose files No file chosen
|
||||
```
|
||||
|
||||
The upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable*Saving Hoppers Crossing-Hourly-River-Level.csv to Hoppers Crossing-Hourly-River-Level.csv User uploaded file “Hoppers Crossing-Hourly-River-Level.csv”* with length 2207036 bytes.
|
||||
|
||||
Once this is done, we can train our model using the *sklearn library*. For this, we first need to import the library and the algorithm model, as shown in Figure 1.
|
||||
|
||||
![Figure 1: Training the model][2]
|
||||
|
||||
```
|
||||
from sklearn.linear_model import LinearRegression
|
||||
regressor = LinearRegression()
|
||||
regressor.fit(X_train, y_train)
|
||||
```
|
||||
|
||||
Once that is done we have trained our model, and it’s now ready to make predictions, as shown in Figure 2.
|
||||
|
||||
![Figure 2: Making predictions][3]
|
||||
|
||||
### Using ML model in Java
|
||||
|
||||
What we need to do now is to convert the ML model into a model that can be used by a Java program. There is a library called sklearn2pmml that helps us do this:
|
||||
|
||||
```
|
||||
# Install the library
|
||||
pip install sklearn2pmml
|
||||
```
|
||||
|
||||
Once the library is installed we can convert our already trained model, as shown below:
|
||||
|
||||
```
|
||||
sklearn2pmml(pipeline, ‘model.pmml’, with_repr = True)
|
||||
```
|
||||
|
||||
This is it! We can now use the generated `model.pmml` file in our Java code to make predictions. Do try it out!
|
||||
|
||||
(LCTT 译注:Java 中有第三方库 [jpmml/jpmml-evaluator][4],它能帮助你使用生成的 `model.pmml` 进行预测。)
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
via: https://www.opensourceforu.com/2022/05/using-a-machine-learning-model-to-make-predictions/
|
||||
|
||||
作者:[Jishnu Saurav Mittapalli][a]
|
||||
选题:[lkxed][b]
|
||||
译者:[译者ID](https://github.com/译者ID)
|
||||
校对:[校对者ID](https://github.com/校对者ID)
|
||||
|
||||
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
|
||||
|
||||
[a]: https://www.opensourceforu.com/author/jishnu-saurav-mittapalli/
|
||||
[b]: https://github.com/lkxed
|
||||
[1]: https://www.opensourceforu.com/wp-content/uploads/2022/05/Machine-learning.jpg
|
||||
[2]: https://www.opensourceforu.com/wp-content/uploads/2022/05/Figure-1Training-the-model.jpg
|
||||
[3]: https://www.opensourceforu.com/wp-content/uploads/2022/05/Figure-2-Making-predictions.jpg
|
||||
[4]: https://github.com/jpmml/jpmml-evaluator
|
@ -0,0 +1,87 @@
|
||||
[#]: subject: "Using a Machine Learning Model to Make Predictions"
|
||||
[#]: via: "https://www.opensourceforu.com/2022/05/using-a-machine-learning-model-to-make-predictions/"
|
||||
[#]: author: "Jishnu Saurav Mittapalli https://www.opensourceforu.com/author/jishnu-saurav-mittapalli/"
|
||||
[#]: collector: "lkxed"
|
||||
[#]: translator: "geekpi"
|
||||
[#]: reviewer: " "
|
||||
[#]: publisher: " "
|
||||
[#]: url: " "
|
||||
|
||||
使用机器学习模型进行预测
|
||||
======
|
||||
机器学习基本上是人工智能的一个子集,它使用以前存在的数据对新数据进行预测。当然,现在我们所有人都知道这个道理了!这篇文章展示了如何将 Python 中开发的机器学习模型作为 Java 代码的一部分来进行预测。
|
||||
|
||||
![Machine-learning][1]
|
||||
|
||||
本文假设你熟悉基本的开发技巧并理解机器学习。我们将从训练我们的模型开始,然后在 Python 中制作一个机器学习模型。
|
||||
|
||||
我以一个洪水预测模型为例。首先,导入以下库:
|
||||
|
||||
```
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
```
|
||||
|
||||
当我们成功地导入了这些库,我们就需要输入数据集,如下面的代码所示。为了预测洪水,我使用的是河流水位数据集。
|
||||
|
||||
```
|
||||
from google.colab import files
|
||||
uploaded = files.upload()
|
||||
for fn in uploaded.keys(): print(‘User uploaded file “{name}” with length {length} bytes’.format(
|
||||
name=fn, length=len(uploaded[fn])))
|
||||
Choose files No file chosen
|
||||
```
|
||||
|
||||
只有在当前浏览器会话中执行了该单元格时,上传部件才可用。请重新运行此单元,上传文件 *“Hoppers Crossing-Hourly-River-Level.csv”*,大小 2207036 字节。
|
||||
|
||||
完成后,我们就可以使用 *sklearn 库*来训练我们的模型。为此,我们首先需要导入该库和算法模型,如图 1 所示。
|
||||
|
||||
![Figure 1: Training the model][2]
|
||||
|
||||
```
|
||||
from sklearn.linear_model import LinearRegression
|
||||
regressor = LinearRegression()
|
||||
regressor.fit(X_train, y_train)
|
||||
```
|
||||
|
||||
完成后,我们就训练好了我们的模型,现在可以进行预测了,如图 2 所示。
|
||||
|
||||
![Figure 2: Making predictions][3]
|
||||
|
||||
### 在 Java 中使用 ML 模型
|
||||
|
||||
我们现在需要做的是把 ML 模型转换成一个可以被 Java 程序使用的模型。有一个叫做 sklearn2pmml 的库可以帮助我们做到这一点:
|
||||
|
||||
```
|
||||
# Install the library
|
||||
pip install sklearn2pmml
|
||||
```
|
||||
|
||||
库安装完毕后,我们就可以转换我们已经训练好的模型,如下图所示:
|
||||
|
||||
```
|
||||
sklearn2pmml(pipeline, ‘model.pmml’, with_repr = True)
|
||||
```
|
||||
|
||||
这就完成了!我们现在可以在我们的 Java 代码中使用生成的 `model.pmml` 文件来进行预测。请试一试吧!
|
||||
|
||||
(LCTT 译注:Java 中有第三方库 [jpmml/jpmml-evaluator][4],它能帮助你使用生成的 `model.pmml` 进行预测。)
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
via: https://www.opensourceforu.com/2022/05/using-a-machine-learning-model-to-make-predictions/
|
||||
|
||||
作者:[Jishnu Saurav Mittapalli][a]
|
||||
选题:[lkxed][b]
|
||||
译者:[geekpi](https://github.com/geekpi)
|
||||
校对:[校对者ID](https://github.com/校对者ID)
|
||||
|
||||
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
|
||||
|
||||
[a]: https://www.opensourceforu.com/author/jishnu-saurav-mittapalli/
|
||||
[b]: https://github.com/lkxed
|
||||
[1]: https://www.opensourceforu.com/wp-content/uploads/2022/05/Machine-learning.jpg
|
||||
[2]: https://www.opensourceforu.com/wp-content/uploads/2022/05/Figure-1Training-the-model.jpg
|
||||
[3]: https://www.opensourceforu.com/wp-content/uploads/2022/05/Figure-2-Making-predictions.jpg
|
||||
[4]: https://github.com/jpmml/jpmml-evaluator
|
Loading…
Reference in New Issue
Block a user