Translated by qhwdw

This commit is contained in:
qhwdw 2018-01-18 12:08:35 +08:00
parent e3201483d9
commit eca4eff04a
2 changed files with 284 additions and 284 deletions

View File

@ -1,284 +0,0 @@
Translating by qhwdw ftrace: trace your kernel functions!
============================================================
Hello! Today were going to talk about a debugging tool we havent talked about much before on this blog: ftrace. What could be more exciting than a new debugging tool?!
Better yet, ftrace isnt new! Its been around since Linux kernel 2.6, or about 2008. [heres the earliest documentation I found with some quick Gooogling][10]. So you might be able to use it even if youre debugging an older system!
Ive known that ftrace exists for about 2.5 years now, but hadnt gotten around to really learning it yet. Im supposed to run a workshop tomorrow where I talk about ftrace, so today is the day we talk about it!
### whats ftrace?
ftrace is a Linux kernel feature that lets you trace Linux kernel function calls. Why would you want to do that? Well, suppose youre debugging a weird problem, and youve gotten to the point where youre staring at the source code for your kernel version and wondering what **exactly** is going on.
I dont read the kernel source code very often when debugging, but occasionally I do! For example this week at work we had a program that was frozen and stuck spinning inside the kernel. Looking at what functions were being called helped us understand better what was happening in the kernel and what systems were involved (in that case, it was the virtual memory system)!
I think ftrace is a bit of a niche tool (its definitely less broadly useful and harder to use than strace) but that its worth knowing about. So lets learn about it!
### first steps with ftrace
Unlike strace and perf, ftrace isnt a **program** exactly you dont just run `ftrace my_cool_function`. That would be too easy!
If you read [Debugging the kernel using Ftrace][11] it starts out by telling you to `cd /sys/kernel/debug/tracing` and then do various filesystem manipulations.
For me this is way too annoying a simple example of using ftrace this way is something like
```
cd /sys/kernel/debug/tracing
echo function > current_tracer
echo do_page_fault > set_ftrace_filter
cat trace
```
This filesystem interface to the tracing system (“put values in these magic files and things will happen”) seems theoretically possible to use but really not my preference.
Luckily, team ftrace also thought this interface wasnt that user friendly and so there is an easier-to-use interface called **trace-cmd**!!! trace-cmd is a normal program with command line arguments. Well use that! I found an intro to trace-cmd on LWN at [trace-cmd: A front-end for Ftrace][12].
### getting started with trace-cmd: lets trace just one function
First, I needed to install `trace-cmd` with `sudo apt-get install trace-cmd`. Easy enough.
For this first ftrace demo, I decided I wanted to know when my kernel was handling a page fault. When Linux allocates memory, it often does it lazily (“you werent  _really_  planning to use that memory, right?“). This means that when an application tries to actually write to memory that it allocated, theres a page fault and the kernel needs to give the application physical memory to use.
Lets start `trace-cmd` and make it trace the `do_page_fault` function!
```
$ sudo trace-cmd record -p function -l do_page_fault
plugin 'function'
Hit Ctrl^C to stop recording
```
I ran it for a few seconds and then hit `Ctrl+C`. Awesome! It created a 2.5MB file called `trace.dat`. Lets see whats that file!
```
$ sudo trace-cmd report
chrome-15144 [000] 11446.466121: function: do_page_fault
chrome-15144 [000] 11446.467910: function: do_page_fault
chrome-15144 [000] 11446.469174: function: do_page_fault
chrome-15144 [000] 11446.474225: function: do_page_fault
chrome-15144 [000] 11446.474386: function: do_page_fault
chrome-15144 [000] 11446.478768: function: do_page_fault
CompositorTileW-15154 [001] 11446.480172: function: do_page_fault
chrome-1830 [003] 11446.486696: function: do_page_fault
CompositorTileW-15154 [001] 11446.488983: function: do_page_fault
CompositorTileW-15154 [001] 11446.489034: function: do_page_fault
CompositorTileW-15154 [001] 11446.489045: function: do_page_fault
```
This is neat it shows me the process name (chrome), process ID (15144), CPU (000), and function that got traced.
By looking at the whole report, (`sudo trace-cmd report | grep chrome`) I can see that we traced for about 1.5 seconds and in that time Chrome had about 500 page faults. Cool! We have done our first ftrace!
### next ftrace trick: lets trace a process!
Okay, but just seeing one function is kind of boring! Lets say I want to know everything thats happening for one program. I use a static site generator called Hugo. Whats the kernel doing for Hugo?
Hugos PID on my computer right now is 25314, so I recorded all the kernel functions with:
```
sudo trace-cmd record --help # I read the help!
sudo trace-cmd record -p function -P 25314 # record for PID 25314
```
`sudo trace-cmd report` printed out 18,000 lines of output. If youre interested, you can see [all 18,000 lines here][13].
18,000 lines is a lot so here are some interesting excerpts.
This looks like what happens when the `clock_gettime` system call runs. Neat!
```
compat_SyS_clock_gettime
SyS_clock_gettime
clockid_to_kclock
posix_clock_realtime_get
getnstimeofday64
__getnstimeofday64
arch_counter_read
__compat_put_timespec
```
This is something related to process scheduling:
```
cpufreq_sched_irq_work
wake_up_process
try_to_wake_up
_raw_spin_lock_irqsave
do_raw_spin_lock
_raw_spin_lock
do_raw_spin_lock
walt_ktime_clock
ktime_get
arch_counter_read
walt_update_task_ravg
exiting_task
```
Being able to see all these function calls is pretty cool, even if I dont quite understand them.
### “function graph” tracing
Theres another tracing mode called `function_graph`. This is the same as the function tracer except that it instruments both entering  _and_  exiting a function. [Heres the output of that tracer][14]
```
sudo trace-cmd record -p function_graph -P 25314
```
Again, heres a snipped (this time from the futex code)
```
| futex_wake() {
| get_futex_key() {
| get_user_pages_fast() {
1.458 us | __get_user_pages_fast();
4.375 us | }
| __might_sleep() {
0.292 us | ___might_sleep();
2.333 us | }
0.584 us | get_futex_key_refs();
| unlock_page() {
0.291 us | page_waitqueue();
0.583 us | __wake_up_bit();
5.250 us | }
0.583 us | put_page();
+ 24.208 us | }
```
We see in this example that `get_futex_key` gets called right after `futex_wake`. Is that what really happens in the source code? We can check!! [Heres the definition of futex_wake in Linux 4.4][15] (my kernel version).
Ill save you a click: it looks like this:
```
static int
futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
{
struct futex_hash_bucket *hb;
struct futex_q *this, *next;
union futex_key key = FUTEX_KEY_INIT;
int ret;
WAKE_Q(wake_q);
if (!bitset)
return -EINVAL;
ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
```
So the first function called in `futex_wake` really is `get_futex_key`! Neat! Reading the function trace was definitely an easier way to find that out than by reading the kernel code, and its nice to see how long all of the functions took.
### How to know what functions you can trace
If you run `sudo trace-cmd list -f` youll get a list of all the functions you can trace. Thats pretty simple but its important.
### one last thing: events!
So, now we know how to trace functions in the kernel! Thats really cool!
Theres one more class of thing we can trace though! Some events dont correspond super well to function calls. For example, you might want to knowwhen a program is scheduled on or off the CPU! You might be able to figure that out by peering at function calls, but I sure cant.
So the kernel also gives you a few events so you can see when a few important things happen. You can see a list of all these events with `sudo cat /sys/kernel/debug/tracing/available_events`
I looked at all the sched_switch events. Im not exactly sure what sched_switch is but its something to do with scheduling I guess.
```
sudo cat /sys/kernel/debug/tracing/available_events
sudo trace-cmd record -e sched:sched_switch
sudo trace-cmd report
```
The output looks like this:
```
16169.624862: Chrome_ChildIOT:24817 [112] S ==> chrome:15144 [120]
16169.624992: chrome:15144 [120] S ==> swapper/3:0 [120]
16169.625202: swapper/3:0 [120] R ==> Chrome_ChildIOT:24817 [112]
16169.625251: Chrome_ChildIOT:24817 [112] R ==> chrome:1561 [112]
16169.625437: chrome:1561 [112] S ==> chrome:15144 [120]
```
so you can see it switching from PID 24817 -> 15144 -> kernel -> 24817 -> 1561 -> 15114\. (all of these events are on the same CPU)
### how does ftrace work?
ftrace is a dynamic tracing system. This means that when I start ftracing a kernel function, the **functions code gets changed**. So lets suppose that Im tracing that `do_page_fault` function from before. The kernel will insert some extra instructions in the assembly for that function to notify the tracing system every time that function gets called. The reason it can add extra instructions is that Linux compiles in a few extra NOP instructions into every function, so theres space to add tracing code when needed.
This is awesome because it means that when Im not using ftrace to trace my kernel, it doesnt affect performance at all. When I do start tracing, the more functions I trace, the more overhead itll have.
(probably some of this is wrong, but this is how I think ftrace works anyway)
### use ftrace more easily: brendan greggs tools & kernelshark
As weve seen in this post, you need to think quite a lot about what individual kernel functions / events do to use ftrace directly. This is cool, but its also a lot of work!
Brendan Gregg (our linux debugging tools hero) has repository of tools that use ftrace to give you information about various things like IO latency. Theyre all in his [perf-tools][16] repository on GitHub.
The tradeoff here is that theyre easier to use, but youre limited to things that Brendan Gregg thought of & decided to make a tool for. Which is a lot of things! :)
Another tool for visualizing the output of ftrace better is [kernelshark][17]. I havent played with it much yet but it looks useful. You can install it with `sudo apt-get install kernelshark`.
### a new superpower
Im really happy I took the time to learn a little more about ftrace today! Like any kernel tool, itll work differently between different kernel versions, but I hope that you find it useful one day.
### an index of ftrace articles
Finally, heres a list of a bunch of ftrace articles I found. Many of them are on LWN (Linux Weekly News), which is a pretty great source of writing on Linux. (you can buy a [subscription][18]!)
* [Debugging the kernel using Ftrace - part 1][1] (Dec 2009, Steven Rostedt)
* [Debugging the kernel using Ftrace - part 2][2] (Dec 2009, Steven Rostedt)
* [Secrets of the Linux function tracer][3] (Jan 2010, Steven Rostedt)
* [trace-cmd: A front-end for Ftrace][4] (Oct 2010, Steven Rostedt)
* [Using KernelShark to analyze the real-time scheduler][5] (2011, Steven Rostedt)
* [Ftrace: The hidden light switch][6] (2014, Brendan Gregg)
* the kernel documentation: (which is quite useful) [Documentation/ftrace.txt][7]
* documentation on events you can trace [Documentation/events.txt][8]
* some docs on ftrace design for linux kernel devs (not as useful, but interesting) [Documentation/ftrace-design.txt][9]
--------------------------------------------------------------------------------
via: https://jvns.ca/blog/2017/03/19/getting-started-with-ftrace/
作者:[Julia Evans ][a]
译者:[译者ID](https://github.com/译者ID)
校对:[校对者ID](https://github.com/校对者ID)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]:https://jvns.ca
[1]:https://lwn.net/Articles/365835/
[2]:https://lwn.net/Articles/366796/
[3]:https://lwn.net/Articles/370423/
[4]:https://lwn.net/Articles/410200/
[5]:https://lwn.net/Articles/425583/
[6]:https://lwn.net/Articles/608497/
[7]:https://raw.githubusercontent.com/torvalds/linux/v4.4/Documentation/trace/ftrace.txt
[8]:https://raw.githubusercontent.com/torvalds/linux/v4.4/Documentation/trace/events.txt
[9]:https://raw.githubusercontent.com/torvalds/linux/v4.4/Documentation/trace/ftrace-design.txt
[10]:https://lwn.net/Articles/290277/
[11]:https://lwn.net/Articles/365835/
[12]:https://lwn.net/Articles/410200/
[13]:https://gist.githubusercontent.com/jvns/e5c2d640f7ec76ed9ed579be1de3312e/raw/78b8425436dc4bb5bb4fa76a4f85d5809f7d1ef2/trace-cmd-report.txt
[14]:https://gist.githubusercontent.com/jvns/f32e9b06bcd2f1f30998afdd93e4aaa5/raw/8154d9828bb895fd6c9b0ee062275055b3775101/function_graph.txt
[15]:https://github.com/torvalds/linux/blob/v4.4/kernel/futex.c#L1313-L1324
[16]:https://github.com/brendangregg/perf-tools
[17]:https://lwn.net/Articles/425583/
[18]:https://lwn.net/subscribe/Info

View File

@ -0,0 +1,284 @@
ftrace跟踪你的内核函数
============================================================
大家好今天我们将去讨论一个调试工具ftrace之前我的博客上还没有讨论过它。还有什么能比一个新的调试工具更让人激动呢
这个非常棒的 ftrace 并不是个新的工具!它大约在 Linux 的 2.6 内核版本中就有了,时间大约是在 2008 年。[这里是我用谷歌能找到的一些文档][10]。因此,如果你是一个调试系统的“老手”,可能早就已经使用它了!
我知道ftrace 已经存在了大约 2.5 年了,但是还没有真正的去学习它。假设我明天要召开一个专题研究会,那么,关于 ftrace 应该讨论些什么?因此,今天是时间去讨论一下它了!
### 什么是 ftrace
ftrace 是一个 Linux 内核特性,它可以让你去跟踪 Linux 内核的函数调用。为什么要这么做呢?好吧,假设你调试一个奇怪的问题,而你已经得到了你的内核版本中这个问题在源代码中的开始的位置,而你想知道这里到底发生了什么?
每次在调试的时候,我并不会经常去读内核源代码,但是,极个别的情况下会去读它!例如,本周在工作中,我有一个程序在内核中卡死了。查看到底是调用了什么函数、哪些系统涉及其中,能够帮我更好的理解在内核中发生了什么!(在我的那个案例中,它是虚拟内存系统)
我认为 ftrace 是一个十分好用的工具(它肯定没有 strace 那样广泛被使用,使用难度也低于它),但是它还是值得你去学习。因此,让我们开始吧!
### 使用 ftrace 的第一步
不像 strace 和 perfftrace 并不是真正的 **程序** 你不能只运行 `ftrace my_cool_function`。那样太容易了!
如果你去读 [使用 Ftrace 调试内核][11],它会告诉你从 `cd /sys/kernel/debug/tracing` 开始,然后做很多文件系统的操作。
对于我来说,这种办法太麻烦 使用 ftrace 的一个简单例子应该像这样:
```
cd /sys/kernel/debug/tracing
echo function > current_tracer
echo do_page_fault > set_ftrace_filter
cat trace
```
这个文件系统到跟踪系统的接口(“给这些神奇的文件赋值,然后该发生的事情就会发生”)理论上看起来似乎可用,但是它不是我的首选方式。
幸运的是ftrace 团队也考虑到这个并不友好的用户界面,因此,它有了一个更易于使用的界面,它就是 **trace-cmd**trace-cmd 是一个带命令行参数的普通程序。我们后面将使用它!我在 LWN 上找到了一个 trace-cmd 的使用介绍:[trace-cmd: Ftrace 的一个前端][12]。
### 开始使用 trace-cmd让 trace 仅跟踪一个函数
首先,我需要去使用 `sudo apt-get install trace-cmd` 安装 `trace-cmd`,这一步很容易。
对于第一个 ftrace 的演示,我决定去了解我的内核如何去处理一个页面故障。当 Linux 分配内存时,它经常偷懒,(“你并不是  _真的_  计划去使用内存,对吗?”)。这意味着,当一个应用程序尝试去对分配给它的内存进行写入时,就会发生一个页面故障,而这个时候,内核才会真正的为应用程序去分配物理内存。
我们开始使用 `trace-cmd` 并让它跟踪 `do_page_fault` 函数!
```
$ sudo trace-cmd record -p function -l do_page_fault
plugin 'function'
Hit Ctrl^C to stop recording
```
我将它运行了几秒钟,然后按下了 `Ctrl+C`。 让我大吃一惊的是,它竟然产生了一个 2.5MB 大小的名为 `trace.dat` 的跟踪文件。我们来看一下这个文件的内容!
```
$ sudo trace-cmd report
chrome-15144 [000] 11446.466121: function: do_page_fault
chrome-15144 [000] 11446.467910: function: do_page_fault
chrome-15144 [000] 11446.469174: function: do_page_fault
chrome-15144 [000] 11446.474225: function: do_page_fault
chrome-15144 [000] 11446.474386: function: do_page_fault
chrome-15144 [000] 11446.478768: function: do_page_fault
CompositorTileW-15154 [001] 11446.480172: function: do_page_fault
chrome-1830 [003] 11446.486696: function: do_page_fault
CompositorTileW-15154 [001] 11446.488983: function: do_page_fault
CompositorTileW-15154 [001] 11446.489034: function: do_page_fault
CompositorTileW-15154 [001] 11446.489045: function: do_page_fault
```
看起来很整洁 它展示了进程名chrome、进程 ID 15144、CPU000、以及它跟踪的函数。
通过察看整个文件,(`sudo trace-cmd report | grep chrome`)可以看到,我们跟踪了大约 1.5 秒,在这 1.5 秒的时间段内Chrome 发生了大约 500 个页面故障。真是太酷了!这就是我们做的第一个 ftrace
### 下一个 ftrace 技巧:我们来跟踪一个进程!
好吧,只看一个函数是有点无聊!假如我想知道一个程序中都发生了什么事情。我使用一个名为 Hugo 的静态站点生成器。看看内核为 Hugo 都做了些什么事情?
在我的电脑上 Hugo 的 PID 现在是 25314因此我使用如下的命令去记录所有的内核函数
```
sudo trace-cmd record --help # I read the help!
sudo trace-cmd record -p function -P 25314 # record for PID 25314
```
`sudo trace-cmd report` 输出了 18,000 行。如果你对这些感兴趣,你可以看 [这里是所有的 18,000 行的输出][13]。
18,000 行太多了,因此,在这里仅摘录其中几行。
当系统调用 `clock_gettime` 运行时,都发生了什么。
```
compat_SyS_clock_gettime
SyS_clock_gettime
clockid_to_kclock
posix_clock_realtime_get
getnstimeofday64
__getnstimeofday64
arch_counter_read
__compat_put_timespec
```
这是与进程调试相关的一些东西:
```
cpufreq_sched_irq_work
wake_up_process
try_to_wake_up
_raw_spin_lock_irqsave
do_raw_spin_lock
_raw_spin_lock
do_raw_spin_lock
walt_ktime_clock
ktime_get
arch_counter_read
walt_update_task_ravg
exiting_task
```
虽然你可能还不理解它们是做什么的,但是,能够看到所有的这些函数调用也是件很酷的事情。
### “function graph” 跟踪
这里有另外一个模式,称为 `function_graph`。除了它既可以进入也可以退出一个函数外,其它的功能和函数跟踪器是一样的。[这里是那个跟踪器的输出][14]
```
sudo trace-cmd record -p function_graph -P 25314
```
同样,这里只是一个片断(这次来自 futex 代码)
```
| futex_wake() {
| get_futex_key() {
| get_user_pages_fast() {
1.458 us | __get_user_pages_fast();
4.375 us | }
| __might_sleep() {
0.292 us | ___might_sleep();
2.333 us | }
0.584 us | get_futex_key_refs();
| unlock_page() {
0.291 us | page_waitqueue();
0.583 us | __wake_up_bit();
5.250 us | }
0.583 us | put_page();
+ 24.208 us | }
```
我们看到在这个示例中,在 `futex_wake` 后面调用了 `get_futex_key`。这是在源代码中真实发生的事情吗?我们可以检查一下!![这里是在 Linux 4.4 中 futex_wake 的定义][15] (我的内核版本是 4.4)。
为节省时间我直接贴出来,它的内容如下:
```
static int
futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
{
struct futex_hash_bucket *hb;
struct futex_q *this, *next;
union futex_key key = FUTEX_KEY_INIT;
int ret;
WAKE_Q(wake_q);
if (!bitset)
return -EINVAL;
ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
```
如你所见,在 `futex_wake` 中的第一个函数调用真的是 `get_futex_key` 太棒了!相比阅读内核代码,阅读函数跟踪肯定是更容易的找到结果的办法,并且让人高兴的是,还能看到所有的函数用了多长时间。
### 如何知道哪些函数可以被跟踪
如果你去运行 `sudo trace-cmd list -f`,你将得到一个你可以跟踪的函数的列表。它很简单但是也很重要。
### 最后一件事:事件!
现在,我们已经知道了怎么去跟踪内核中的函数,真是太酷了!
还有一类我们可以跟踪的东西!有些事件与我们的函数调用并不相符。例如,你可能想去知道当一个程序被调度进入或者离开 CPU 时,都发生了什么事件!你可能想通过“盯着”函数调用计算出来,但是,我告诉你,不可行!
由于函数也为你提供了几种事件,因此,你可以看到当重要的事件发生时,都发生了什么事情。你可以使用 `sudo cat /sys/kernel/debug/tracing/available_events` 来查看这些事件的一个列表。 
我查看了全部的 sched_switch 事件。我并不完全知道 sched_switch 是什么,但是,我猜测它与调度有关。
```
sudo cat /sys/kernel/debug/tracing/available_events
sudo trace-cmd record -e sched:sched_switch
sudo trace-cmd report
```
输出如下:
```
16169.624862: Chrome_ChildIOT:24817 [112] S ==> chrome:15144 [120]
16169.624992: chrome:15144 [120] S ==> swapper/3:0 [120]
16169.625202: swapper/3:0 [120] R ==> Chrome_ChildIOT:24817 [112]
16169.625251: Chrome_ChildIOT:24817 [112] R ==> chrome:1561 [112]
16169.625437: chrome:1561 [112] S ==> chrome:15144 [120]
```
现在,可以很清楚地看到这些切换,从 PID 24817 -> 15144 -> kernel -> 24817 -> 1561 -> 15114\。(所有的这些事件都发生在同一个 CPU 上)
### ftrace 是如何工作的?
ftrace 是一个动态跟踪系统。当启动 ftracing 去跟踪内核函数时,**函数的代码会被改变**。因此 我们假设去跟踪 `do_page_fault` 函数。内核将在那个函数的汇编代码中插入一些额外的指令以便每次该函数被调用时去提示跟踪系统。内核之所以能够添加额外的指令的原因是Linux 将额外的几个 NOP 指令编译进每个函数中,因此,当需要的时候,这里有添加跟踪代码的地方。
这是一个十分复杂的问题,因为,当不需要使用 ftrace 去跟踪我的内核时,它根本就不影响性能。而当我需要跟踪时,跟踪的函数越多,产生的开销就越大。
(或许有些是不对的,但是,我认为的 ftrace 就是这样工作的)
### 更容易地使用 ftracebrendan gregg 的工具 & kernelshark
正如我们在文件中所讨论的,你需要去考虑很多的关于单个的内核函数/事件直接使用 ftrace 都做了些什么。能够做到这一点很酷!但是也需要做大量的工作!
Brendan Gregg (我们的 linux 调试工具“大神”)有个工具仓库,它使用 ftrace 去提供关于像 I/O 延迟这样的各种事情的信息。这是它在 GitHub 上全部的 [perf-tools][16] 仓库。
这里有一个权衡tradeoff那就是这些工具易于使用但是被限制仅用于 Brendan Gregg 认可的事情。决定将它做成一个工具,那需要做很多的事情!:)
另一个工具是将 ftrace 的输出可视化,做的比较好的是 [kernelshark][17]。我还没有用过它,但是看起来似乎很有用。你可以使用 `sudo apt-get install kernelshark` 来安装它。
### 一个新的超能力
我很高兴能够花一些时间去学习 ftrace对于任何内核工具不同的内核版本有不同的功效我希望有一天你能发现它很有用
### ftrace 系列文章的一个索引
最后,这里是我找到的一些 ftrace 方面的文章。它们大部分在 LWN Linux 新闻周刊)上,它是 Linux 的一个极好的资源(你可以购买一个 [订阅][18]
* [使用 Ftrace 调试内核 - part 1][1] (Dec 2009, Steven Rostedt)
* [使用 Ftrace 调试内核 - part 2][2] (Dec 2009, Steven Rostedt)
* [Linux 函数跟踪器的秘密][3] (Jan 2010, Steven Rostedt)
* [trace-cmdFtrace 的一个前端][4] (Oct 2010, Steven Rostedt)
* [使用 KernelShark 去分析实时调试器][5] (2011, Steven Rostedt)
* [Ftrace: 神秘的开关][6] (2014, Brendan Gregg)
* 内核文档:(它十分有用) [Documentation/ftrace.txt][7]
* 你能跟踪的事件的文档 [Documentation/events.txt][8]
* linux 内核开发上的一些 ftrace 设计文档 (不是有用,而是有趣!) [Documentation/ftrace-design.txt][9]
--------------------------------------------------------------------------------
via: https://jvns.ca/blog/2017/03/19/getting-started-with-ftrace/
作者:[Julia Evans ][a]
译者:[qhwdw](https://github.com/qhwdw)
校对:[校对者ID](https://github.com/校对者ID)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]:https://jvns.ca
[1]:https://lwn.net/Articles/365835/
[2]:https://lwn.net/Articles/366796/
[3]:https://lwn.net/Articles/370423/
[4]:https://lwn.net/Articles/410200/
[5]:https://lwn.net/Articles/425583/
[6]:https://lwn.net/Articles/608497/
[7]:https://raw.githubusercontent.com/torvalds/linux/v4.4/Documentation/trace/ftrace.txt
[8]:https://raw.githubusercontent.com/torvalds/linux/v4.4/Documentation/trace/events.txt
[9]:https://raw.githubusercontent.com/torvalds/linux/v4.4/Documentation/trace/ftrace-design.txt
[10]:https://lwn.net/Articles/290277/
[11]:https://lwn.net/Articles/365835/
[12]:https://lwn.net/Articles/410200/
[13]:https://gist.githubusercontent.com/jvns/e5c2d640f7ec76ed9ed579be1de3312e/raw/78b8425436dc4bb5bb4fa76a4f85d5809f7d1ef2/trace-cmd-report.txt
[14]:https://gist.githubusercontent.com/jvns/f32e9b06bcd2f1f30998afdd93e4aaa5/raw/8154d9828bb895fd6c9b0ee062275055b3775101/function_graph.txt
[15]:https://github.com/torvalds/linux/blob/v4.4/kernel/futex.c#L1313-L1324
[16]:https://github.com/brendangregg/perf-tools
[17]:https://lwn.net/Articles/425583/
[18]:https://lwn.net/subscribe/Info