mirror of
https://github.com/LCTT/TranslateProject.git
synced 2024-12-26 21:30:55 +08:00
commit
eb21c39746
@ -1,130 +0,0 @@
|
||||
[#]: subject: "Structured Data Processing with Spark SQL"
|
||||
[#]: via: "https://www.opensourceforu.com/2022/05/structured-data-processing-with-spark-sql/"
|
||||
[#]: author: "Phani Kiran https://www.opensourceforu.com/author/phani-kiran/"
|
||||
[#]: collector: "lkxed"
|
||||
[#]: translator: "geekpi"
|
||||
[#]: reviewer: " "
|
||||
[#]: publisher: " "
|
||||
[#]: url: " "
|
||||
|
||||
Structured Data Processing with Spark SQL
|
||||
======
|
||||
Spark SQL is the module in the Spark ecosystem that processes data in a structured format. It internally uses the Spark Core API for its process, but the usage is abstracted from the user. This article dives a little deeper and tells you what’s new in Spark SQL 3.x.
|
||||
|
||||
![][1]
|
||||
|
||||
with Spark SQL, users can also write SQL-styled queries. This is essentially helpful for the wide user community that is proficient in structured query language or SQL. Users will also be able to write interactive and ad hoc queries on the structured data. Spark SQL bridges the gap between resilient distributed data sets (RDDs) and relational tables. An RDD is the fundamental data structure of Spark. It stores data as distributed objects across a cluster of nodes suitable for parallel processing. RDDs are good for low-level processing, but are difficult to debug during runtime and programmers cannot automatically infer schema. Also, there is no built-in optimisation for RDDs. Spark SQL provides the DataFrames and data sets to address these issues.
|
||||
|
||||
Spark SQL can use the existing Hive metastore, SerDes, and UDFs. It can connect to existing BI tools using JDBC/ODBC.
|
||||
|
||||
### Data sources
|
||||
|
||||
Big Data processing often needs the ability to process different file types and data sources (relational and non-relational). Spark SQL supports a unified DataFrame interface to process different types of sources, as given below.
|
||||
|
||||
*Files:*
|
||||
|
||||
* CSV
|
||||
* Text
|
||||
* JSON
|
||||
* XML
|
||||
|
||||
*JDBC/ODBC:*
|
||||
|
||||
* MySQL
|
||||
* Oracle
|
||||
* Postgres
|
||||
|
||||
*Files with schema:*
|
||||
|
||||
* AVRO
|
||||
* Parquet
|
||||
|
||||
*Hive tables:*
|
||||
|
||||
* Spark SQL also supports reading and writing data stored in Apache Hive.
|
||||
|
||||
With DataFrame, users can seamlessly read these diversified data sources and do transformations/joins on them.
|
||||
|
||||
### What’s new in Spark SQL 3.x
|
||||
|
||||
In the previous releases (Spark 2.x), the query plans were based on heuristics rules and cost estimation. The process from parsing to logical and physical query planning, and finally to optimisation was sequential. These releases had little visibility into the runtime characteristics of transformations and actions. Hence, the query plan was suboptimal because of the following reasons:
|
||||
|
||||
* Missing and outdated statistics
|
||||
* Suboptimal heuristics
|
||||
* Wrong estimation of costs
|
||||
|
||||
Spark 3.x has enhanced this process by using runtime data for iteratively improving the query planning and optimisation. The runtime statistics of a prior stage are used to optimise the query plan for subsequent stages. There is a feedback loop that helps to re-plan and re-optimise the execution plan.
|
||||
|
||||
![Figure 1: Query planning][2]
|
||||
|
||||
#### Adaptive query execution (AQE)
|
||||
|
||||
The query is changed to a logical plan and finally to a physical plan. The concept here is ‘reoptimisation’. It takes the data available during the prior stage and reoptimises for subsequent stages. Because of this, the overall query execution is much faster.
|
||||
|
||||
AQE can be enabled by setting the SQL configuration, as given below (default false in Spark 3.0):
|
||||
|
||||
```
|
||||
spark.conf.set(“spark.sql.adaptive.enabled”,true)
|
||||
```
|
||||
|
||||
#### Dynamically coalescing shuffle partitions
|
||||
|
||||
Spark determines the optimum number of partitions after a shuffle operation. With AQE, Spark uses the default number of partitions, which is 200. This can be enabled by the configuration:
|
||||
|
||||
```
|
||||
spark.conf.set(“spark.sql.adaptive.coalescePartitions.enabled”,true)
|
||||
```
|
||||
|
||||
#### Dynamically switching join strategies
|
||||
|
||||
Broadcast Hash is the best join operation. If one of the data sets is small, Spark can dynamically switch to Broadcast join instead of shuffling large amounts of data across the network.
|
||||
|
||||
#### Dynamically optimising skew joins
|
||||
|
||||
If the data dispersion is not uniform, data will be skewed and there will be a few large partitions. These partitions take up a lot of time. Spark 3.x optimises this by splitting the large partitions into multiple small partitions. This can be enabled by setting:
|
||||
|
||||
```
|
||||
spark.conf.set(“spark.sql.adaptive.skewJoin.enabled”,true)
|
||||
```
|
||||
|
||||
![Figure 2: Performance improvement in Spark 3.x (Source: Databricks)][3]
|
||||
|
||||
### Other enhancements
|
||||
|
||||
|
||||
In addition, Spark SQL 3.x supports the following.
|
||||
|
||||
#### Dynamic partition pruning
|
||||
|
||||
3.x will only read the partitions that are relevant based on the values from one of the tables. This eliminates the need to parse the big tables.
|
||||
|
||||
#### Join hints
|
||||
|
||||
This allows users to specify the join strategy to be used if the user has knowledge of the data. This enhances the query execution process.
|
||||
|
||||
#### ANSI SQL compliant
|
||||
|
||||
In the earlier versions of Spark, which are Hive compliant, we could use certain keywords in the query which would work perfectly fine. However, this is not allowed in Spark SQL 3, which has full ANSI SQL support. For example, ‘cast a string to integer’ will throw runtime exception. It also supports reserved keywords.
|
||||
|
||||
#### Newer Hadoop, Java and Scala versions
|
||||
|
||||
From Spark 3.0 onwards, Java 11 and Scala 2.12 are supported. Java 11 has better native coordination and garbage correction, which results in better performance. Scala 2.12 exploits new features of Java 8 and is better than 2.11.
|
||||
|
||||
Spark 3.x has provided these useful features off-the-shelf instead of developers worrying about them. This will improve the overall performance of Spark significantly.
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
via: https://www.opensourceforu.com/2022/05/structured-data-processing-with-spark-sql/
|
||||
|
||||
作者:[Phani Kiran][a]
|
||||
选题:[lkxed][b]
|
||||
译者:[译者ID](https://github.com/译者ID)
|
||||
校对:[校对者ID](https://github.com/校对者ID)
|
||||
|
||||
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
|
||||
|
||||
[a]: https://www.opensourceforu.com/author/phani-kiran/
|
||||
[b]: https://github.com/lkxed
|
||||
[1]: https://www.opensourceforu.com/wp-content/uploads/2022/04/Spark-SQL-Data-cluster.jpg
|
||||
[2]: https://www.opensourceforu.com/wp-content/uploads/2022/04/Figure-1-Query-planning.jpg
|
||||
[3]: https://www.opensourceforu.com/wp-content/uploads/2022/04/Figure-2-Performance-improvement-in-Spark-3.x-Source-Databricks.jpg
|
@ -0,0 +1,130 @@
|
||||
[#]: subject: "Structured Data Processing with Spark SQL"
|
||||
[#]: via: "https://www.opensourceforu.com/2022/05/structured-data-processing-with-spark-sql/"
|
||||
[#]: author: "Phani Kiran https://www.opensourceforu.com/author/phani-kiran/"
|
||||
[#]: collector: "lkxed"
|
||||
[#]: translator: "geekpi"
|
||||
[#]: reviewer: " "
|
||||
[#]: publisher: " "
|
||||
[#]: url: " "
|
||||
|
||||
用 Spark SQL 进行结构化数据处理
|
||||
======
|
||||
Spark SQL 是 Spark 生态系统中处理结构化格式数据的模块。它在内部使用 Spark Core API 进行处理,但对用户的使用进行了抽象。这篇文章深入浅出,告诉你 Spark SQL 3.x 的新内容。
|
||||
|
||||
![][1]
|
||||
|
||||
有了 Spark SQL,用户还可以编写 SQL 风格的查询。这对于精通结构化查询语言或 SQL 的广大用户群体来说,基本上是很有帮助的。用户也将能够在结构化数据上编写交互式和临时性的查询。Spark SQL 弥补了弹性分布式数据集(RDD)和关系表之间的差距。RDD 是 Spark 的基本数据结构。它将数据作为分布式对象存储在适合并行处理的节点集群中。RDD 很适合底层处理,但在运行时很难调试,程序员不能自动推断 schema。另外,RDD 没有内置的优化功能。Spark SQL 提供了 DataFrames 和数据集来解决这些问题。
|
||||
|
||||
Spark SQL 可以使用现有的 Hive 元存储、SerDes 和 UDFs。它可以使用 JDBC/ODBC 连接到现有的 BI 工具。
|
||||
|
||||
### 数据源
|
||||
|
||||
大数据处理通常需要处理不同的文件类型和数据源(关系型和非关系型)的能力。Spark SQL 支持一个统一的 DataFrame 接口来处理不同类型的源,如下所示。
|
||||
|
||||
*文件:*
|
||||
|
||||
* CSV
|
||||
* Text
|
||||
* JSON
|
||||
* XML
|
||||
|
||||
*JDBC/ODBC:*
|
||||
|
||||
* MySQL
|
||||
* Oracle
|
||||
* Postgres
|
||||
|
||||
*带 schema 的文件:*
|
||||
|
||||
* AVRO
|
||||
* Parquet
|
||||
|
||||
*Hive 表:*
|
||||
|
||||
* Spark SQL 也支持读写存储在 Apache Hive 中的数据。
|
||||
|
||||
通过 DataFrame,用户可以无缝地读取这些多样化的数据源,并对其进行转换/连接。
|
||||
|
||||
### Spark SQL 3.x 的新内容
|
||||
|
||||
在以前的版本中(Spark 2.x),查询计划是基于启发式规则和成本估算的。从解析到逻辑和物理查询计划,最后到优化的过程是连续的。这些版本对转换和行动的运行时特性几乎没有可见性。因此,由于以下原因,查询计划是次优的:
|
||||
|
||||
* 缺失和过时的统计数据
|
||||
* 次优的启发式方法
|
||||
* 错误的成本估计
|
||||
|
||||
Spark 3.x 通过使用运行时数据来迭代改进查询计划和优化,增强了这个过程。前一阶段的运行时统计数据被用来优化后续阶段的查询计划。这里有一个反馈回路,有助于重新规划和重新优化执行计划。
|
||||
|
||||
![Figure 1: Query planning][2]
|
||||
|
||||
#### 自适应查询执行(AQE)
|
||||
|
||||
查询被改变为逻辑计划,最后变成物理计划。这里的概念是“重新优化”。它利用前一阶段的可用数据,为后续阶段重新优化。正因为如此,整个查询的执行要快得多。
|
||||
|
||||
AQE 可以通过设置 SQL 配置来启用,如下所示(Spark 3.0 中默认为 false):
|
||||
|
||||
```
|
||||
spark.conf.set(“spark.sql.adaptive.enabled”,true)
|
||||
```
|
||||
|
||||
#### 动态合并 shuffle 分区
|
||||
|
||||
Spark 在 shuffle 操作后确定最佳的分区数量。在 AQE 中,Spark 使用默认的分区数,即 200 个。这可以通过配置来启用。
|
||||
|
||||
```
|
||||
spark.conf.set(“spark.sql.adaptive.coalescePartitions.enabled”,true)
|
||||
```
|
||||
|
||||
#### 动态切换 join 策略
|
||||
|
||||
广播哈希是最好的连接操作。如果其中一个数据集很小,Spark 可以动态地切换到广播 join,而不是在网络上 shuffe 大量的数据。
|
||||
|
||||
#### 动态优化倾斜 join
|
||||
|
||||
如果数据分布不均匀,数据会出现倾斜,会有一些大的分区。这些分区占用了大量的时间。Spark 3.x 通过将大分区分割成多个小分区来进行优化。这可以通过设置来启用:
|
||||
|
||||
```
|
||||
spark.conf.set(“spark.sql.adaptive.skewJoin.enabled”,true)
|
||||
```
|
||||
|
||||
![Figure 2: Performance improvement in Spark 3.x (Source: Databricks)][3]
|
||||
|
||||
### 其他改进措施
|
||||
|
||||
|
||||
此外,Spark SQL 3.x还支持以下内容。
|
||||
|
||||
#### 动态分区修剪
|
||||
|
||||
3.x 将只读取基于其中一个表的值的相关分区。这消除了解析大表的需要。
|
||||
|
||||
#### Join 提示
|
||||
|
||||
如果用户对数据有了解,这允许用户指定要使用的 join 策略。这增强了查询的执行过程。
|
||||
|
||||
#### 兼容 ANSI SQL
|
||||
|
||||
在兼容 Hive 的早期版本的 Spark 中,我们可以在查询中使用某些关键词,这样做是完全可行的。然而,这在 Spark SQL 3 中是不允许的,因为它有完整的 ANSI SQL 支持。例如,“将字符串转换为整数”会在运行时产生异常。它还支持保留关键字。
|
||||
|
||||
#### 较新的 Hadoop、Java 和 Scala 版本
|
||||
|
||||
从 Spark 3.0 开始,支持 Java 11 和 Scala 2.12。 Java 11 具有更好的原生协调和垃圾校正,从而带来更好的性能。 Scala 2.12 利用了 Java 8 的新特性,优于 2.11。
|
||||
|
||||
Spark 3.x 提供了这些现成的有用功能,而无需开发人员操心。这将显着提高 Spark 的整体性能。
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
via: https://www.opensourceforu.com/2022/05/structured-data-processing-with-spark-sql/
|
||||
|
||||
作者:[Phani Kiran][a]
|
||||
选题:[lkxed][b]
|
||||
译者:[geekpi](https://github.com/geekpi)
|
||||
校对:[校对者ID](https://github.com/校对者ID)
|
||||
|
||||
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
|
||||
|
||||
[a]: https://www.opensourceforu.com/author/phani-kiran/
|
||||
[b]: https://github.com/lkxed
|
||||
[1]: https://www.opensourceforu.com/wp-content/uploads/2022/04/Spark-SQL-Data-cluster.jpg
|
||||
[2]: https://www.opensourceforu.com/wp-content/uploads/2022/04/Figure-1-Query-planning.jpg
|
||||
[3]: https://www.opensourceforu.com/wp-content/uploads/2022/04/Figure-2-Performance-improvement-in-Spark-3.x-Source-Databricks.jpg
|
Loading…
Reference in New Issue
Block a user