This commit is contained in:
Xingyu Wang 2020-02-29 12:29:09 +08:00
parent 0d7f8738ca
commit eb022d4afd

View File

@ -36,6 +36,8 @@
这是许多数据科学家遇到的常见情况。示例数据是 [Anscombe 的四重奏][6]的第一组,如下表所示。这是一组人工构建的数据,当用直线拟合时会给出相同的结果,但是它们的曲线非常不同。数据文件是一个文本文件,以制表符作为列分隔符,开头几行作为标题。此任务将仅使用第一组(即前两列)。
![](https://img.linux.net.cn/data/attachment/album/202002/29/122805h3yrs1dkrgysssxk.png)
### Python 方式
[Python][7] 是一种通用编程语言,是当今最流行的语言之一(依据 [TIOBE 指数][8]、[RedMonk 编程语言排名][9]、[编程语言流行指数][10]、[GitHub Octoverse 状态][11]和其他来源的调查结果)。它是一种[解释型语言][12];因此,源代码由执行该指令的程序读取和评估。它有一个全面的[标准库][13]并且总体上非常好用(我对这最后一句话没有证据;这只是我的拙见)。
@ -235,7 +237,7 @@ sudo dnf install octave
#### 代码注释
在 Octave 中,你可以用百分比符号(``%`)为代码添加注释,如果不需要与 MATLAB 兼容,你也可以使用 `#`。使用 `#` 的选项允许你编写像 Python 示例一样的特殊注释行,以便直接在命令行上执行脚本。
在 Octave 中,你可以用百分比符号(`%`)为代码添加注释,如果不需要与 MATLAB 兼容,你也可以使用 `#`。使用 `#` 的选项允许你编写像 Python 示例一样的特殊注释行,以便直接在命令行上执行脚本。
#### 必要的库