mirror of
https://github.com/LCTT/TranslateProject.git
synced 2024-12-26 21:30:55 +08:00
选题[tech]: 20210806 Use OpenCV on Fedora Linux ‒ part 2
sources/tech/20210806 Use OpenCV on Fedora Linux - part 2.md
This commit is contained in:
parent
295a6db006
commit
e57e700493
224
sources/tech/20210806 Use OpenCV on Fedora Linux - part 2.md
Normal file
224
sources/tech/20210806 Use OpenCV on Fedora Linux - part 2.md
Normal file
@ -0,0 +1,224 @@
|
|||||||
|
[#]: subject: "Use OpenCV on Fedora Linux ‒ part 2"
|
||||||
|
[#]: via: "https://fedoramagazine.org/use-opencv-on-fedora-linux-part-2/"
|
||||||
|
[#]: author: "Onuralp SEZER https://fedoramagazine.org/author/thunderbirdtr/"
|
||||||
|
[#]: collector: "lujun9972"
|
||||||
|
[#]: translator: " "
|
||||||
|
[#]: reviewer: " "
|
||||||
|
[#]: publisher: " "
|
||||||
|
[#]: url: " "
|
||||||
|
|
||||||
|
Use OpenCV on Fedora Linux ‒ part 2
|
||||||
|
======
|
||||||
|
|
||||||
|
![][1]
|
||||||
|
|
||||||
|
Cover image excerpted from Starry Night by [Vincent van Gogh][2], Public domain, via Wikimedia Commons
|
||||||
|
|
||||||
|
Welcome back to the OpenCV series where we explore how to make use of OpenCV on Fedora Linux. [The first article][3] covered the basic functions and use cases of OpenCV. In addition to that you learned about loading images, color mapping, and the difference between BGR and RGB color maps. You also learned how to separate and merge color channels and how to convert to different color spaces. This article will cover basic image manipulation and show you how to perform image transformations including:
|
||||||
|
|
||||||
|
* **Accessing individual image pixels**
|
||||||
|
* **Modifying a range of image pixels**
|
||||||
|
* **Cropping**
|
||||||
|
* **Resizing**
|
||||||
|
* **Flipping**
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
### Accessing individual pixels
|
||||||
|
|
||||||
|
```
|
||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
# Read image as gray scale.
|
||||||
|
img = cv2.imread(cv2.samples.findFile("gradient.png"),0)
|
||||||
|
# Set color map to gray scale for proper rendering.
|
||||||
|
plt.imshow(img, cmap='gray')
|
||||||
|
# Print img pixels as 2D Numpy Array
|
||||||
|
print(img)
|
||||||
|
# Show image with Matplotlib
|
||||||
|
plt.show()
|
||||||
|
```
|
||||||
|
|
||||||
|
![][4]
|
||||||
|
|
||||||
|
To access a pixel in a numpy matrix, you have to use matrix notation such as matrix[**r**,**c**], where the **r** is the row number and **c** is the column number. Also note that the matrix is 0-indexed. If you want to access the first pixel, you need to specify matrix[0,0]. The following example prints one black pixel from top-left and one white pixel from top-right-corner.
|
||||||
|
|
||||||
|
```
|
||||||
|
# print the first pixel
|
||||||
|
print(img[0,0])
|
||||||
|
# print the white pixel to the top right corner
|
||||||
|
print(img[0,299])
|
||||||
|
```
|
||||||
|
|
||||||
|
### Modifying a range of image pixels
|
||||||
|
|
||||||
|
You can modify the values of pixels using the same notation described above.
|
||||||
|
|
||||||
|
```
|
||||||
|
gr_img = img.copy()
|
||||||
|
|
||||||
|
# Modify pixel one by one
|
||||||
|
#gr_img[20,20] = 200
|
||||||
|
#gr_img[20,21] = 200
|
||||||
|
#gr_img[20,22] = 200
|
||||||
|
#gr_img[20,23] = 200
|
||||||
|
#gr_img[20,24] = 200
|
||||||
|
# ...
|
||||||
|
|
||||||
|
# Modify pixel between 20-80 pixel range
|
||||||
|
gr_img[20:80,20:80] = 200
|
||||||
|
|
||||||
|
plt.imshow(gr_img, cmap='gray')
|
||||||
|
print(gr_img)
|
||||||
|
plt.show()
|
||||||
|
```
|
||||||
|
|
||||||
|
![][5]
|
||||||
|
|
||||||
|
### Cropping images
|
||||||
|
|
||||||
|
Cropping an image is achieved by selecting a specific (pixel) region of the image.
|
||||||
|
|
||||||
|
```
|
||||||
|
import cv2 as cv
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
img = cv.imread(cv.samples.findFile("starry_night.jpg"),cv.IMREAD_COLOR)
|
||||||
|
img_rgb = cv.cvtColor(img, cv.COLOR_BGR2RGB)
|
||||||
|
fig, (ax1, ax2) = plt.subplots(1,2)
|
||||||
|
ax1.imshow(img_rgb)
|
||||||
|
ax1.set_title('Before Crop')
|
||||||
|
ax2.imshow(img_rgb[200:400, 300:600])
|
||||||
|
ax2.set_title('After Crop')
|
||||||
|
plt.show()
|
||||||
|
```
|
||||||
|
|
||||||
|
![][6]
|
||||||
|
|
||||||
|
### Resizing images
|
||||||
|
|
||||||
|
**Syntax:** _dst = cv.resize( src, dsize[, dst[, fx[, fy[, interpolation]]]] )_
|
||||||
|
|
||||||
|
The _resize_ function resizes the _src_ image down to or up to the specified size. The size and type are derived from the values of _src_, _dsize_,_fx_, and _fy_.
|
||||||
|
|
||||||
|
The _resize_ function has two required arguments:
|
||||||
|
|
||||||
|
* **src:** input image
|
||||||
|
* **dsize:** output image size
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Optional arguments that are often used include:
|
||||||
|
|
||||||
|
* **fx:** The scale factor along the horizontal axis. When this is 0, the factor is computed as _dsize.width/src.cols_.
|
||||||
|
* **fy:** The scale factor along the vertical axis. When this is 0, the factor is computed as _dsize.height/src.rows_.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
```
|
||||||
|
import cv2 as cv
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
img = cv.imread(cv.samples.findFile("starry_night.jpg"), cv.IMREAD_COLOR)
|
||||||
|
img_rgb = cv.cvtColor(img, cv.COLOR_BGR2RGB)
|
||||||
|
|
||||||
|
plt.figure(figsize=[18, 5])
|
||||||
|
plt.subplot(1, 3, 1) # row 1, column 3, count 1
|
||||||
|
|
||||||
|
cropped_region = img_rgb[200:400, 300:600]
|
||||||
|
resized_img_5x = cv.resize(cropped_region, None, fx=5, fy=5)
|
||||||
|
plt.imshow(resized_img_5x)
|
||||||
|
plt.title("Resize Cropped Image with Scale 5X")
|
||||||
|
|
||||||
|
width = 200
|
||||||
|
height = 300
|
||||||
|
dimension = (width, height)
|
||||||
|
resized_img = cv.resize(img_rgb, dsize=dimension, interpolation=cv.INTER_AREA)
|
||||||
|
|
||||||
|
plt.subplot(1, 3, 2)
|
||||||
|
plt.imshow(resized_img)
|
||||||
|
plt.title("Resize Image with Custom Size")
|
||||||
|
|
||||||
|
desired_width = 500
|
||||||
|
aspect_ratio = desired_width / img_rgb.shape[1]
|
||||||
|
desired_height = int(resized_img.shape[0] * aspect_ratio)
|
||||||
|
dim = (desired_width, desired_height)
|
||||||
|
resized_cropped_region = cv.resize(img_rgb, dsize=dim, interpolation=cv.INTER_AREA)
|
||||||
|
|
||||||
|
plt.subplot(1, 3, 3)
|
||||||
|
plt.imshow(resized_cropped_region)
|
||||||
|
plt.title("Keep Aspect Ratio - Resize Image")
|
||||||
|
plt.show()
|
||||||
|
```
|
||||||
|
|
||||||
|
![][7]
|
||||||
|
|
||||||
|
### Flipping images
|
||||||
|
|
||||||
|
**Syntax:** _dst = cv.flip( src, flipCode )_
|
||||||
|
|
||||||
|
* **dst:** output array of the same size and type as _src_.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
The _flip_ function flips the array in one of three different ways.
|
||||||
|
|
||||||
|
The _flip_ function has two required arguments:
|
||||||
|
|
||||||
|
* **src:** the input image
|
||||||
|
* **flipCode:** a flag to specify how to flip the image
|
||||||
|
* Use **0** to flip the image on the x-axis.
|
||||||
|
* Use a positive value (for example, **1**) to flip the image on the y-axis.
|
||||||
|
* Use a negative value (for example, **-1**) to flip the image on both axes.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
```
|
||||||
|
import cv2 as cv
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
img = cv.imread(cv.samples.findFile("starry_night.jpg"),cv.IMREAD_COLOR)
|
||||||
|
img_rgb = cv.cvtColor(img, cv.COLOR_BGR2RGB)
|
||||||
|
|
||||||
|
img_rgb_flipped_horz = cv.flip(img_rgb, 1)
|
||||||
|
img_rgb_flipped_vert = cv.flip(img_rgb, 0)
|
||||||
|
img_rgb_flipped_both = cv.flip(img_rgb, -1)
|
||||||
|
|
||||||
|
plt.figure(figsize=[18,5])
|
||||||
|
plt.subplot(141);plt.imshow(img_rgb_flipped_horz);plt.title("Horizontal Flip");
|
||||||
|
plt.subplot(142);plt.imshow(img_rgb_flipped_vert);plt.title("Vertical Flip");
|
||||||
|
plt.subplot(143);plt.imshow(img_rgb_flipped_both);plt.title("Both Flipped");
|
||||||
|
plt.subplot(144);plt.imshow(img_rgb);plt.title("Original");
|
||||||
|
plt.show()
|
||||||
|
```
|
||||||
|
|
||||||
|
![][8]
|
||||||
|
|
||||||
|
### Further information
|
||||||
|
|
||||||
|
More details about OpenCV are available in the [documentation][9].
|
||||||
|
|
||||||
|
Thank you.
|
||||||
|
|
||||||
|
--------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
via: https://fedoramagazine.org/use-opencv-on-fedora-linux-part-2/
|
||||||
|
|
||||||
|
作者:[Onuralp SEZER][a]
|
||||||
|
选题:[lujun9972][b]
|
||||||
|
译者:[译者ID](https://github.com/译者ID)
|
||||||
|
校对:[校对者ID](https://github.com/校对者ID)
|
||||||
|
|
||||||
|
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
|
||||||
|
|
||||||
|
[a]: https://fedoramagazine.org/author/thunderbirdtr/
|
||||||
|
[b]: https://github.com/lujun9972
|
||||||
|
[1]: https://fedoramagazine.org/wp-content/uploads/2021/08/starry-night-2-816x345.jpg
|
||||||
|
[2]: https://commons.wikimedia.org/wiki/File:Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg
|
||||||
|
[3]: https://fedoramagazine.org/use-opencv-on-fedora-linux-part-1/
|
||||||
|
[4]: https://fedoramagazine.org/wp-content/uploads/2021/06/image-8.png
|
||||||
|
[5]: https://fedoramagazine.org/wp-content/uploads/2021/06/image-9.png
|
||||||
|
[6]: https://fedoramagazine.org/wp-content/uploads/2021/06/image-11-1024x408.png
|
||||||
|
[7]: https://fedoramagazine.org/wp-content/uploads/2021/07/resize_img-1024x338.png
|
||||||
|
[8]: https://fedoramagazine.org/wp-content/uploads/2021/07/flip_image_cv-1024x250.png
|
||||||
|
[9]: https://docs.opencv.org/4.5.2/index.html
|
Loading…
Reference in New Issue
Block a user