20200102-javastream translated

This commit is contained in:
laingke 2020-01-29 17:22:45 +08:00
parent 2e6e0d8028
commit e10ed7653f
2 changed files with 455 additions and 496 deletions

View File

@ -1,496 +0,0 @@
[#]: collector: (lujun9972)
[#]: translator: (laingke)
[#]: reviewer: ( )
[#]: publisher: ( )
[#]: url: ( )
[#]: subject: (Data streaming and functional programming in Java)
[#]: via: (https://opensource.com/article/20/1/javastream)
[#]: author: (Marty Kalin https://opensource.com/users/mkalindepauledu)
Data streaming and functional programming in Java
======
Learn how to use the stream API and functional programming constructs in
Java 8.
![computer screen ][1]
When Java SE 8 (aka core Java 8) was introduced in 2014, it introduced changes that fundamentally impact programming in it. The changes have two closely linked parts: the stream API and the functional programming constructs. This article uses code examples, from the basics through advanced features, to introduce each part and illustrate the interplay between them.
### The basics
The stream API is a concise and high-level way to iterate over the elements in a data sequence. The packages **java.util.stream** and **java.util.function** house the new libraries for the stream API and related functional programming constructs. Of course, a code example is worth a thousand words.
The code segment below populates a **List** with about 2,000 random integer values:
```
[Random][2] rand = new [Random][2]();
List<Integer> list = new ArrayList<Integer>();           // empty list
for (int i = 0; i < 2048; i++) list.add(rand.nextInt()); // populate it
```
Another **for** loop could be used to iterate over the populated list to collect the even values into another list. The stream API is a cleaner way to do the same:
```
[List][3] <Integer> evens = list
   .stream()                      // streamify the list
   .filter(n -> (n & 0x1) == 0)   // filter out odd values
   .collect(Collectors.toList()); // collect even values
```
The example has three functions from the stream API:
* The **stream** function can turn a **Collection** into a stream, which is a conveyor belt of values accessible one at a time. The streamification is lazy (and therefore efficient) in that the values are produced as needed rather than all at once.
* The **filter** function determines which streamed values, if any, get through to the next stage in the processing pipeline, the **collect** stage. The **filter** function is _higher-order_ in that its argument is a function—in this example, a lambda, which is an unnamed function and at the center of Java's new functional programming constructs.
The lambda syntax departs radically from traditional Java:
```
`n -> (n & 0x1) == 0`
```
The arrow (a minus sign followed immediately by a greater-than sign) separates the argument list on the left from the function's body on the right. The argument **n** is not explicitly typed, although it could be; in any case, the compiler figures out that **n** is an **Integer**. If there were multiple arguments, these would be enclosed in parentheses and separated by commas.
The body, in this example, checks whether an integer's lowest-order (rightmost) bit is a zero, which indicates an even value. A filter should return a boolean value. There is no explicit **return** in the function's body, although there could be. If the body has no explicit **return**, then the body's last expression is the returned value. In this example, written in the spirit of lambda programming, the body consists of the single, simple boolean expression **(n & 0x1) == 0**.
* The **collect** function gathers the even values into a list whose reference is **evens**. As an example below illustrates, the **collect** function is thread-safe and, therefore, would work correctly even if the filtering operation was shared among multiple threads.
### Convenience functions and easy multi-threading
In a production environment, a data stream might have a file or a network connection as its source. For learning the stream API, Java provides types such as **IntStream**, which can generate streams with elements of various types. Here is an **IntStream** example:
```
IntStream                         // integer stream
   .range(1, 2048)                // generate a stream of ints in this range
   .parallel()                    // partition the data for multiple threads
   .filter(i -> ((i & 0x1) > 0))  // odd parity? pass through only odds
   .forEach([System][4].out::println); // print each
```
The **IntStream** type includes a **range** function that generates a stream of integer values within a specified range, in this case, from 1 through 2,048, with increments of 1. The **parallel** function automatically partitions the work to be done among multiple threads, each of which does the filtering and printing. (The number of threads typically matches the number of CPUs on the host system.) The argument to the **forEach** function is a _method reference_, in this case, a reference to the **println** method encapsulated in **System.out**, which is of type **PrintStream**. The syntax for method and constructor references will be discussed shortly.
Because of the multi-threading, the integer values are printed in an arbitrary order overall but in sequence within a given thread. For example, if thread T1 prints 409 and 411, then T1 does so in the order 409411, but some other thread might print 2,045 beforehand. The threads behind the **parallel** call execute concurrently, and the order of their output is therefore indeterminate.
### The map/reduce pattern
The _map/reduce_ pattern has become popular in processing large datasets. A map/reduce macro operation is built from two micro-operations. The data first are scattered (_mapped_) among various workers, and the separate results then are gathered together—perhaps as a single value, which would be the _reduction_. Reduction can take different forms, as the following examples illustrate.
Instances of the **Number** class below represent integer values with either **EVEN** or **ODD** parity:
```
public class [Number][5] {
    enum Parity { EVEN, ODD }
    private int value;
    public [Number][5](int n) { setValue(n); }
    public void setValue(int value) { this.value = value; }
    public int getValue() { return this.value; }
    public Parity getParity() {
        return ((value & 0x1) == 0) ? Parity.EVEN : Parity.ODD;
    }
    public void dump() {
        [System][4].out.format("Value: %2d (parity: %s)\n", getValue(),
                          (getParity() == Parity.ODD ? "odd" : "even"));
    }
}
```
The following code illustrates map/reduce with a **Number** stream, thereby showing that the stream API can handle not only primitive types such as **int** and **float** but programmer-defined class types as well.
In the code segment below, a list of random integer values is streamified using the **parallelStream** rather than the **stream** function. The **parallelStream** variant, like the **parallel** function introduced earlier, does automatic multithreading.
```
final int howMany = 200;
[Random][2] r = new [Random][2]();
[Number][5][ ] nums = new [Number][5][howMany];
for (int i = 0; i < howMany; i++) nums[i] = new [Number][5](r.nextInt(100));
List<Number> listOfNums = [Arrays][6].asList(nums);  // listify the array
[Integer][7] sum4All = listOfNums
   .parallelStream()           // automatic multi-threading
   .mapToInt([Number][5]::getValue) // method reference rather than lambda
   .sum();                     // reduce streamed values to a single value
[System][4].out.println("The sum of the randomly generated values is: " + sum4All);
```
The higher-order **mapToInt** function could take a lambda as an argument, but in this case, it takes a method reference instead, which is **Number::getValue**. The **getValue** method expects no arguments and returns its **int** value for a given **Number** instance. The syntax is uncomplicated: the class name **Number** followed by a double colon and the method's name. Recall the earlier **System.out::println** example, which has the double colon after the **static** field **out** in the **System** class.
The method reference **Number::getValue** could be replaced by the lambda below. The argument **n** is one of the **Number** instances in the stream:
```
`mapToInt(n -> n.getValue())`
```
In general, lambdas and method references are interchangeable: if a higher-order function such as **mapToInt** can take one form as an argument, then this function could take the other as well. The two functional programming constructs have the same purpose—to perform some customized operation on data passed in as arguments. Choosing between the two is often a matter of convenience. For example, a lambda can be written without an encapsulating class, whereas a method cannot. My habit is to use a lambda unless the appropriate encapsulated method is already at hand.
The **sum** function at the end of the current example does the reduction in a thread-safe manner by combining the partial sums from the **parallelStream** threads. However, the programmer is responsible for ensuring that, in the course of the multi-threading induced by the **parallelStream** call, the programmer's own function calls (in this case, to **getValue**) are thread-safe.
The last point deserves emphasis. Lambda syntax encourages the writing of _pure functions_, which are functions whose return values depend only on the arguments, if any, passed in; a pure function has no side effects such as updating a **static** field in a class. Pure functions are thereby thread-safe, and the stream API works best if the functional arguments passed to higher-order functions, such as **filter** and **map**, are pure functions.
For finer-grained control, there is another stream API function, named **reduce**, that could be used for summing the values in the **Number** stream:
```
[Integer][7] sum4AllHarder = listOfNums
   .parallelStream()                           // multi-threading
   .map([Number][5]::getValue)                      // value per Number
   .reduce(0, (sofar, next) -> sofar + next);  // reduction to a sum
```
This version of the **reduce** function takes two arguments, the second of which is a function:
* The first argument (in this case, zero) is the _identity_ value, which serves as the initial value for the reduction operation and as the default value should the stream run dry during the reduction.
* The second argument is the _accumulator_, in this case, a lambda with two arguments: the first argument (**sofar**) is the running sum, and the second argument (**next**) is the next value from the stream. The running sum and next value then are added to update the accumulator. Keep in mind that both the **map** and the **reduce** functions now execute in a multi-threaded context because of the **parallelStream** call at the start.
In the examples so far, stream values are collected and then reduced, but, in general, the **Collectors** in the stream API can accumulate values without reducing them to a single value. The collection activity can produce arbitrarily rich data structures, as the next code segment illustrates. The example uses the same **listOfNums** as the preceding examples:
```
Map<[Number][5].Parity, List<Number>> numMap = listOfNums
   .parallelStream()
   .collect(Collectors.groupingBy([Number][5]::getParity));
List<Number> evens = numMap.get([Number][5].Parity.EVEN);
List<Number> odds = numMap.get([Number][5].Parity.ODD);
```
The **numMap** in the first line refers to a **Map** whose key is a **Number** parity (**ODD** or **EVEN**) and whose value is a **List** of **Number** instances with values having the designated parity. Once again, the processing is multi-threaded through the **parallelStream** call, and the **collect** call then assembles (in a thread-safe manner) the partial results into the single **Map** to which **numMap** refers. The **get** method then is called twice on the **numMap**, once to get the **evens** and a second time to get the **odds**.
The utility function **dumpList** again uses the higher-order **forEach** function from the stream API:
```
private void dumpList([String][8] msg, List<Number> list) {
   [System][4].out.println("\n" + msg);
   list.stream().forEach(n -> n.dump()); // or: forEach(Number::dump)
}
```
Here is a slice of the program's output from a sample run:
```
The sum of the randomly generated values is: 3322
The sum again, using a different method:     3322
Evens:
Value: 72 (parity: even)
Value: 54 (parity: even)
...
Value: 92 (parity: even)
Odds:
Value: 35 (parity: odd)
Value: 37 (parity: odd)
...
Value: 41 (parity: odd)
```
### Functional constructs for code simplification
Functional constructs, such as method references and lambdas, fit nicely into the stream API. These constructs represent a major simplification of higher-order functions in Java. Even in the bad old days, Java technically supported higher-order functions through the **Method** and **Constructor** types, instances of which could be passed as arguments to other functions. These types were used—but rarely in production-grade Java precisely because of their complexity. Invoking a **Method**, for example, requires either an object reference (if the method is non-**static**) or at least a class identifier (if the method is **static**). The arguments for the invoked **Method** then are passed to it as **Object** instances, which may require explicit downcasting if polymorphism (another complexity!) is not in play. By contrast, lambdas and method references are easy to pass as arguments to other functions.
The new functional constructs have uses beyond the stream API, however. Consider a Java GUI program with a button for the user to push, for example, to get the current time. The event handler for the button push might be written as follows:
```
[JButton][9] updateCurrentTime = new [JButton][9]("Update current time");
updateCurrentTime.addActionListener(new [ActionListener][10]() {
   @Override
   public void actionPerformed([ActionEvent][11] e) {
      currentTime.setText(new [Date][12]().toString());
   }
});
```
This short code segment is a challenge to explain. Consider the second line in which the argument to the method **addActionListener** begins as follows:
```
`new ActionListener() {`
```
This seems wrong in that **ActionListener** is an **abstract** interface, and **abstract** types cannot be instantiated with a call to **new**. However, it turns out that something else entirely is being instantiated: an unnamed inner class that implements this interface. If the code above were encapsulated in a class named **OldJava**, then this unnamed inner class would be compiled as **OldJava$1.class**. The **actionPerformed** method is overridden in the unnamed inner class.
Now consider this refreshing change with the new functional constructs:
```
`updateCurrentTime.addActionListener(e -> currentTime.setText(new Date().toString()));`
```
The argument **e** in the lambda is an **ActionEvent** instance, and the lambda's body is a simple call to **setText** on the button.
### Functional interfaces and composition
The lambdas used so far have been written in place. For convenience, however, there can be references to lambdas just as there are to encapsulated methods. The following series of short examples illustrate this.
Consider this interface definition:
```
@FunctionalInterface // optional, usually omitted
interface BinaryIntOp {
    abstract int compute(int arg1, int arg2); // abstract could be dropped
}
```
The annotation **@FunctionalInterface** applies to any interface that declares a _single_ abstract method; in this case, **compute**. Several standard interfaces (e.g., the **Runnable** interface with its single declared method, **run**) fit the bill. In this example, **compute** is the declared method. The interface can be used as the target type in a reference declaration:
```
BinaryIntOp div = (arg1, arg2) -> arg1 / arg2;
div.compute(12, 3); // 4
```
The package **java.util.function** provides various functional interfaces. Some examples follow.
The code segment below introduces the parameterized **Predicate** functional interface. In this example, the type **Predicate<String>** with parameter **String** can refer to either a lambda with a **String** argument or a **String** method such as **isEmpty**. In general, a _predicate_ is a function that returns a boolean value.
```
Predicate<String> pred = [String][8]::isEmpty; // predicate for a String method
[String][8][ ] strings = {"one", "two", "", "three", "four"};
[Arrays][6].asList(strings)
   .stream()
   .filter(pred)                  // filter out non-empty strings
   .forEach([System][4].out::println); // only the empty string is printed
```
The **isEmpty** predicate evaluates to **true** just in case a string's length is zero; hence, only the empty string makes it through to the **forEach** stage in the pipeline.
The next code segments illustrate how simple lambdas or method references can be composed into richer ones. Consider this series of assignments to references of the **IntUnaryOperator** type, which takes an integer argument and returns an integer value:
```
IntUnaryOperator doubled = n -> n * 2;
IntUnaryOperator tripled = n -> n * 3;
IntUnaryOperator squared = n -> n * n;
```
**IntUnaryOperator** is a **FunctionalInterface** whose single declared method is **applyAsInt**. The three references **doubled**, **tripled**, and **squared** now can be used standalone or in various compositions:
```
int arg = 5;
doubled.applyAsInt(arg); // 10
tripled.applyAsInt(arg); // 15
squared.applyAsInt(arg); // 25
```
Here are some sample compositions:
```
int arg = 5;
doubled.compose(squared).applyAsInt(arg); // doubled-the-squared: 50
tripled.compose(doubled).applyAsInt(arg); // tripled-the-doubled: 30
doubled.andThen(squared).applyAsInt(arg); // doubled-andThen-squared: 100
squared.andThen(tripled).applyAsInt(arg); // squared-andThen-tripled: 75
```
Compositions could be done with in-place lambdas, but the references make the code cleaner.
### Constructor references
Constructor references are yet another of the functional programming constructs, but these references are useful in more subtle contexts than lambdas and method references. Once again, a code example seems the best way to clarify.
Consider this [POJO][13] class:
```
public class BedRocker { // resident of Bedrock
    private [String][8] name;
    public BedRocker([String][8] name) { this.name = name; }
    public [String][8] getName() { return this.name; }
    public void dump() { [System][4].out.println(getName()); }
}
```
The class has a single constructor, which requires a **String** argument. Given an array of names, the goal is to generate an array of **BedRocker** elements, one per name. Here is the code segment that uses functional constructs to do so:
```
[String][8][ ] names = {"Fred", "Wilma", "Peebles", "Dino", "Baby Puss"};
Stream<BedRocker> bedrockers = [Arrays][6].asList(names).stream().map(BedRocker::new);
BedRocker[ ] arrayBR = bedrockers.toArray(BedRocker[]::new);
[Arrays][6].asList(arrayBR).stream().forEach(BedRocker::dump);
```
At a high level, this code segment transforms names into **BedRocker** array elements. In detail, the code works as follows. The **Stream** interface (in the package **java.util.stream**) can be parameterized, in this case, to generate a stream of **BedRocker** items named **bedrockers**.
The **Arrays.asList** utility again is used to streamify an array, **names**, with each stream item then passed to the **map** function whose argument now is the constructor reference **BedRocker::new**. This constructor reference acts as an object factory by generating and initializing, on each call, a **BedRocker** instance. After the second line executes, the stream named **bedrockers** consists of five **BedRocker** items.
The example can be clarified further by focusing on the higher-order **map** function. In a typical case, a mapping transforms a value of one type (e.g., an **int**) into a different value of the _same_ type (e.g., an integer's successor):
```
`map(n -> n + 1) // map n to its successor`
```
In the **BedRocker** example, however, the transformation is more dramatic because a value of one type (a **String** representing a name) is mapped to a value of a _different_ type, in this case, a **BedRocker** instance with the string as its name. The transformation is done through a constructor call, which is enabled by the constructor reference:
```
`map(BedRocker::new) // map a String to a BedRocker`
```
The value passed to the constructor is one of the names in the **names** array.
The second line of this code example also illustrates the by-now-familiar transformation of an array first into a **List** and then into a **Stream**:
```
`Stream<BedRocker> bedrockers = Arrays.asList(names).stream().map(BedRocker::new);`
```
The third line goes the other way—the stream **bedrockers** is transformed into an array by invoking the **toArray** method with the _array_ constructor reference **BedRocker[]::new**:
```
`BedRocker[ ] arrayBR = bedrockers.toArray(BedRocker[]::new);`
```
This constructor reference does not create a single **BedRocker** instance, but rather an entire array of these: the constructor reference is now **BedRocker[]::new** rather than **BedRocker::new**. For confirmation, the **arrayBR** is transformed into a **List**, which again is streamified so that **forEach** can be used to print the **BedRocker** names:
```
Fred
Wilma
Peebles
Dino
Baby Puss
```
The example's subtle transformations of data structures are done with but few lines of code, underscoring the power of various higher-order functions that can take a lambda, a method reference, or a constructor reference as an argument
### Currying
To _curry_ a function is to reduce (typically by one) the number of explicit arguments required for whatever work the function does. (The term honors the logician Haskell Curry.) In general, functions are easier to call and are more robust if they have fewer arguments. (Recall some nightmarish function that expects a half-dozen or so arguments!) Accordingly, currying should be seen as an effort to simplify a function call. The interface types in the **java.util.function** package are suited for currying, as the next example shows.
References of the **IntBinaryOperator** interface type are for functions that take two integer arguments and return an integer value:
```
IntBinaryOperator mult2 = (n1, n2) -&gt; n1 * n2;
mult2.applyAsInt(10, 20); // 200
mult2.applyAsInt(10, 30); // 300
```
The reference name **mult2** underscores that two explicit arguments are required, in this example, 10 and 20.
The previously introduced **IntUnaryOperator** is simpler than an **IntBinaryOperator** because the former requires just one argument, whereas the latter requires two arguments. Both return an integer value. The goal, therefore, is to curry the two-argument **IntBinraryOperator** named **mult2** into a one-argument **IntUnaryOperator** version **curriedMult2**.
Consider the type **IntFunction&lt;R&gt;**. A function of this type takes an integer argument and returns a result of type **R**, which could be another function—indeed, an **IntBinaryOperator**. Having a lambda return another lambda is straightforward:
```
`arg1 -> (arg2 -> arg1 * arg2) // parentheses could be omitted`
```
The full lambda starts with **arg1,** and this lambda's body—and returned value—is another lambda, which starts with **arg2**. The returned lambda takes just one argument (**arg2**) but returns the product of two numbers (**arg1** and **arg2**). The following overview, followed by the code, should clarify.
Here is an overview of how **mult2** can be curried:
* A lambda of type **IntFunction&lt;IntUnaryOperator&gt;** is written and called with an integer value such as 10. The returned **IntUnaryOperator** caches the value 10 and thereby becomes the curried version of **mult2**, in this example, **curriedMult2**.
* The **curriedMult2** function then is called with a single explicit argument (e.g., 20), which is multiplied with the cached argument (in this case, 10) to produce the product returned.
Here are the details in code:
```
// Create a function that takes one argument n1 and returns a one-argument
// function n2 -&gt; n1 * n2 that returns an int (the product n1 * n2).
IntFunction&lt;IntUnaryOperator&gt; curriedMult2Maker = n1 -&gt; (n2 -&gt; n1 * n2);
```
Calling the **curriedMult2Maker** generates the desired **IntUnaryOperator** function:
```
// Use the curriedMult2Maker to get a curried version of mult2.
// The argument 10 is n1 from the lambda above.
IntUnaryOperator curriedMult2 = curriedMult2Maker2.apply(10);
```
The value 10 is now cached in the **curriedMult2** function so that the explicit integer argument in a **curriedMult2** call will be multiplied by 10:
```
curriedMult2.applyAsInt(20); // 200 = 10 * 20
curriedMult2.applyAsInt(80); // 800 = 10 * 80
```
The cached value can be changed at will:
```
curriedMult2 = curriedMult2Maker.apply(50); // cache 50
curriedMult2.applyAsInt(101);               // 5050 = 101 * 50
```
Of course, multiple curried versions of **mult2**, each an **IntUnaryOperator**, can be created in this way.
Currying takes advantage of a powerful feature about lambdas: a lambda is easily written to return whatever type of value is needed, including another lambda.
### Wrapping up
Java remains a class-based object-oriented programming language. But with the stream API and its supporting functional constructs, Java takes a decisive (and welcomed) step toward functional languages such as Lisp. The result is a Java better suited to process the massive data streams so common in modern programming. This step in the functional direction also makes it easier to write clear, concise Java in the pipeline style highlighted in previous code examples:
```
dataStream
   .parallelStream() // multi-threaded for efficiency
   .filter(...)      // stage 1
   .map(...)         // stage 2
   .filter(...)      // stage 3
   ...
   .collect(...);    // or, perhaps, reduce: stage N
```
The automatic multi-threading, illustrated with the **parallel** and **parallelStream** calls, is built upon Java's fork/join framework, which supports _task stealing_ for efficiency. Suppose that the thread pool behind a **parallelStream** call consists of eight threads and that the **dataStream** is partitioned eight ways. Some thread (e.g., T1) might work faster than another (e.g., T7), which means that some of T7's tasks ought to be moved into T1's work queue. This happens automatically at runtime.
The programmer's chief responsibility in this easy multi-threading world is to write thread-safe functions passed as arguments to the higher-order functions that dominate in the stream API. Lambdas, in particular, encourage the writing of pure—and, therefore, thread-safe—functions.
--------------------------------------------------------------------------------
via: https://opensource.com/article/20/1/javastream
作者:[Marty Kalin][a]
选题:[lujun9972][b]
译者:[laingke](https://github.com/laingke)
校对:[校对者ID](https://github.com/校对者ID)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://opensource.com/users/mkalindepauledu
[b]: https://github.com/lujun9972
[1]: https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/features_solutions_command_data.png?itok=4_VQN3RK (computer screen )
[2]: http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+random
[3]: http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+list
[4]: http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
[5]: http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+number
[6]: http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+arrays
[7]: http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+integer
[8]: http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
[9]: http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+jbutton
[10]: http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+actionlistener
[11]: http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+actionevent
[12]: http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+date
[13]: https://en.wikipedia.org/wiki/Plain_old_Java_object

View File

@ -0,0 +1,455 @@
[#]: collector: (lujun9972)
[#]: translator: (laingke)
[#]: reviewer: ( )
[#]: publisher: ( )
[#]: url: ( )
[#]: subject: (Data streaming and functional programming in Java)
[#]: via: (https://opensource.com/article/20/1/javastream)
[#]: author: (Marty Kalin https://opensource.com/users/mkalindepauledu)
Java 中的数据流和函数式编程
======
学习如何使用 Java 8 中的流 API 和函数式编程结构。
![computer screen ][1]
当 Java SE 8又名核心 Java 8在 2014 年被推出时,它引入了一些从根本上影响 IT 编程的更改。这些更改中有两个紧密相连的部分流API和功能编程构造。本文使用代码示例从基础到高级特性介绍每个部分并说明它们之间的相互作用。
### 基础特性
流 API 是在数据序列中迭代元素的简洁而高级的方法。包 `java.util.stream``java.util.function` 包含用于流 API 和相关函数式编程构造的新库。当然,一个代码示例胜过千言万语。
下面的代码段用大约 2,000 个随机整数值填充了一个 `List`
```
Random rand = new Random2();
List<Integer> list = new ArrayList<Integer>(); // 空 list
for (int i = 0; i < 2048; i++) list.add(rand.nextInt()); // 填充它
```
另一个 `for` 循环可用于遍历填充 list以将偶数值收集到另一个 list 中。流 API 提供了一种更简洁的方法来执行此操作:
```
List <Integer> evens = list
.stream() // 流化 list
.filter(n -> (n & 0x1) == 0) // 过滤出奇数值
.collect(Collectors.toList()); // 收集偶数值
```
这个例子有三个来自流 API 的函数:
> `stream` 函数可以将**集合**转换为流,而流是一个每次可访问一个值的传送带。流化是惰性的(因此也是高效的),因为值是根据需要产生的,而不是一次性产生的。
> `filter` 函数确定哪些流的值(如果有的话)通过了处理管道中的下一个阶段,即 `collect` 阶段。`filter` 函数是 _<ruby>高阶的<rt>higher-order</rt></ruby>_,因为它的参数是一个函数 —— 在这个例子中是一个 lambda 表达式,它是一个未命名的函数,并且是 Java 新的函数式编程结构的核心。
lambda 语法与传统的 Java 完全不同:
```
`n -> (n & 0x1) == 0`
```
箭头(一个减号后面紧跟着一个大于号)将左边的参数列表与右边的函数体分隔开。参数 `n` 虽未明确输入,但可以显式输入。在任何情况下,编译器都会计算出 `n``Integer`。如果有多个参数,这些参数将被括在括号中,并用逗号分隔。
在本例中,函数体检查一个整数的最低顺序(最右)位是否为零,以表示为偶数。过滤器应返回一个布尔值。尽管可以,但函数的主体中没有显式的 `return`。如果主体没有显式的 `return`,则主体的最后一个表达式是返回值。在这个例子中,主体按照 lambda 编程的思想编写,由一个简单的布尔表达式 `(n & 0x1) == 0` 组成。
> `collect` 函数将偶数值收集到引用为 `evens` 的 list 中。如下例所示,`collect` 函数是线程安全的,因此,即使在多个线程之间共享了过滤操作,该函数也可以正常工作。
### 方便的功能和轻松实现多线程
在生产环境中,数据流的源可能是文件或网络连接。为了学习流 API, Java 提供了诸如 `IntStream` 这样的类型,它可以用各种类型的元素生成流。这里有一个 `IntStream` 的例子:
```
IntStream // 整型流
.range(1, 2048) // 生成此范围内的整型流
.parallel() // 为多个线程分区数据
.filter(i -> ((i & 0x1) > 0)) // 奇偶校验 - 只允许奇数通过
.forEach(System.out::println); // 打印每个值
```
`IntStream` 类型包括一个 `range` 函数,该函数在指定的范围内生成一个整数值流,在本例中,以 1 为增量,从 1 递增到 2,048。`parallel` 函数自动工作划分到多个线程中,在各个线程中进行过滤和打印。(线程数通常与主机系统上的 CPU 数量匹配。)函数 `forEach` 参数是一个_方法引用_在本例中是对封装在 `System.out` 中的 `println` 方法的引用,方法输出类型为 `PrintStream`。方法和构造器引用的语法将在稍后讨论。
由于具有多线程,因此整数值整体上以任意顺序打印,但在给定线程中按顺序打印。例如,如果线程 T1 打印 409 和 411那么 T1 将按照顺序 409-411 打印,但是其它某个线程可能会预先打印 2,045。`parallel` 调用后面的线程是并发执行的,因此它们的输出顺序是不确定的。
### map/reduce 模式
_map/reduce_ 模式在处理大型数据集方面已变得很流行。一个 map/reduce 宏操作由两个微操作构成。首先将数据分散_mapped_到各个工作程序中然后将单独的结果收集在一起 —— 也可能收集统计起来成为一个值,即 _reduction_。Reduction 可以采用不同的形式,如以下示例所示。
下面 `Number` 类的实例用 **EVEN****ODD** 表示有奇偶校验的整数值:
```
public class Number {
enum Parity { EVEN, ODD }
private int value;
public Number(int n) { setValue(n); }
public void setValue(int value) { this.value = value; }
public int getValue() { return this.value; }
public Parity getParity() {
return ((value & 0x1) == 0) ? Parity.EVEN : Parity.ODD;
}
public void dump() {
System.out.format("Value: %2d (parity: %s)\n", getValue(),
(getParity() == Parity.ODD ? "odd" : "even"));
}
}
```
下面的代码演示了带有 `Number` 流进行 map/reduce 的情形,从而表明流 API 不仅可以处理 `int``float` 等基本类型,还可以处理程序员自定义的类类型。
在下面的代码段中,使用了 `parallelStream` 而不是 `stream` 函数对随机整数值列表进行流化处理。与前面介绍的 `parallel` 函数一样,`parallelStream` 变体也可以自动执行多线程。
```
final int howMany = 200;
Random r = new Random();
Number[] nums = new Number[howMany];
for (int i = 0; i < howMany; i++) nums[i] = new Number(r.nextInt(100));
List<Number> listOfNums = Arrays.asList(nums); // 将数组转化为 list
Integer sum4All = listOfNums
.parallelStream() // 自动执行多线程
.mapToInt(Number::getValue) // 使用方法引用,而不是 lambda
.sum(); // 将流值计算出和值
System.out.println("The sum of the randomly generated values is: " + sum4All);
```
高阶的 `mapToInt` 函数可以接受一个 lambda 作为参数,但在本例中,它接受一个方法引用,即 `Number::getValue`。`getValue` 方法不需要参数,它返回给定的 `Number` 实例的 `int` 值。语法并不复杂:类名 `Number` 后跟一个双冒号和方法名。回想一下先前的例子 `System.out::println`,它在 `System` 类中的 `static` 属性 `out` 后面有一个双冒号。
方法引用 `Number::getValue` 可以用下面的 lambda 表达式替换。参数 `n` 是流中的 `Number` 实例中的之一:
```
`mapToInt(n -> n.getValue())`
```
通常lambdas 和方法引用是可互换的:如果像 `mapToInt` 这样的高阶函数可以采用一种形式作为参数,那么这个函数也可以采用另一种形式。这两个函数式编程结构具有相同的目的 —— 对作为参数传入的数据执行一些自定义操作。在两者之间进行选择通常是为了方便。例如lambda 可以在没有封装类的情况下编写,而方法则不能。。我的习惯是使用 lambda除非已经有了适当的封装方法。
当前示例末尾的 `sum` 函数通过结合来自 `parallelStream` 线程的部分和,以线程安全的方式进行归约。但是,程序员有责任确保在 `parallelStream` 调用引发的多线程过程中,程序员自己的函数调用(在本例中为 `getValue`)是线程安全的。
最后一点值得强调。lambda 语法鼓励编写 _<ruby>纯函数<rt>pure function</rt></ruby>_,即函数的返回值仅取决于传入的参数(如果有);纯函数没有副作用,例如更新类中的 `static` 字段。因此,纯函数是线程安全的,并且如果传递给高阶函数的函数参数(例如 `filter``map` )是纯函数,则流 API 效果最佳。
对于更细粒度的控制,有另一个流 API 函数,名为 `reduce`,可用于对 `Number` 流中的值求和:
```
Integer sum4AllHarder = listOfNums
.parallelStream() // 多线程
.map(Number::getValue) // 每个 Number 的值
.reduce(0, (sofar, next) -> sofar + next); // 求和
```
此版本的 `reduce` 函数带有两个参数,第二个参数是一个函数:
> 第一个参数(在这种情况下为零)是 _特征_ 值,该值用作求和操作的初始值,并且在求和过程中流结束时用作默认值。
> 第二个参数是 _累加器_,在本例中,这个 lambda 表达式有两个参数:第一个参数(`sofar`)是正在运行的和,第二个参数(`next`)是来自流的下一个值。运行总和以及下一个值相加,然后更新累加器。请记住,由于开始时调用了 `parallelStream`,因此 `map``reduce` 函数现在都在多线程上下文中执行。
在到目前为止的示例中,流值被收集,然后被归并,但是,通常情况下,流 API 中的 `Collectors` 可以累积值,而不需要将它们减少到单个值。正如下一个代码段所示,收集活动可以生成任意丰富的数据结构。该示例使用与前面示例相同的 `listOfNums`
```
Map<Number.Parity, List<Number>> numMap = listOfNums
.parallelStream()
.collect(Collectors.groupingBy(Number::getParity));
List<Number> evens = numMap.get(Number.Parity.EVEN);
List<Number> odds = numMap.get(Number.Parity.ODD);
```
第一行中的 `numMap` 指的是一个 `Map`,它的键是一个 `Number` 奇偶校验位(**ODD** 或 **EVEN**),其值是一个具有指定奇偶校验位值的 `Number` 实例的`List`。同样,通过 `parallelStream` 调用进行多线程处理,然后 `collect` 调用(以线程安全的方式)将部分结果组装到 `numMap` 引用的 `Map` 中。然后,在 `numMap` 上调用 `get` 方法两次,一次获取 `evens`,第二次获取 `odds`
实用函数 `dumpList` 再次使用来自流 API 的高阶 `forEach` 函数:
```
private void dumpList(String msg, List<Number> list) {
System.out.println("\n" + msg);
list.stream().forEach(n -> n.dump()); // 或者使用 forEach(Number::dump)
}
```
这是示例运行中程序输出的一部分:
```
The sum of the randomly generated values is: 3322
The sum again, using a different method: 3322
Evens:
Value: 72 (parity: even)
Value: 54 (parity: even)
...
Value: 92 (parity: even)
Odds:
Value: 35 (parity: odd)
Value: 37 (parity: odd)
...
Value: 41 (parity: odd)
```
### 用于代码简化的函数式结构
函数式结构(如方法引用和 lambdas非常适合在流 API 中使用。这些构造代表了 Java 中对高阶函数的主要简化。即使在糟糕的过去Java 也通过 `Method``Constructor` 类型在技术上支持高阶函数,这些类型的实例可以作为参数传递给其它函数。由于其复杂性,这些类型在生产级 Java 中很少使用。例如,调用 `Method` 需要对象引用(如果方法是非**静态**的)或至少一个类标识符(如果方法是**静态**的)。然后,被调用的 `Method` 的参数作为**对象**实例传递给它如果没有发生多态那会出现另一种复杂性则可能需要显式向下转换。相比之下lambda 和方法引用很容易作为参数传递给其它函数。
但是,新的函数式结构在流 API 之外具有其它用途。考虑一个 Java GUI 程序,该程序带有一个供用户按下的按钮,例如,按下以获取当前时间。按钮按下的事件处理程序可能编写如下:
```
JButton updateCurrentTime = new JButton("Update current time");
updateCurrentTime.addActionListener(new ActionListener() {
@Override
public void actionPerformed(ActionEvent e) {
currentTime.setText(new Date().toString());
}
});
```
这个简短的代码段很难解释。关注第二行,其中方法 `addActionListener` 的参数开始如下:
```
`new ActionListener() {`
```
这似乎是错误的,因为 `ActionListener` 是一个**抽象**接口,而**抽象**类型不能通过调用 `new` 实例化。但是,事实证明,还有其它一些实例被实例化了:一个实现此接口的未命名内部类。如果上面的代码封装在名为 `OldJava` 的类中,则该未命名的内部类将被编译为 `OldJava$1.class`。`actionPerformed` 方法在这个未命名的内部类中被重写。
现在考虑使用新的函数式结构进行这个令人耳目一新的更改:
```
`updateCurrentTime.addActionListener(e -> currentTime.setText(new Date().toString()));`
```
lambda 表达式中的参数 `e` 是一个 `ActionEvent` 实例,而 lambda 的主体是对按钮上的 `setText` 的简单调用。
### 函数式接口和函数组合
到目前为止,使用的 lambda 已经写好了。但是,为了方便起见,我们可以像引用封装方法一样引用 lambda 表达式。以下一系列简短示例说明了这一点。
考虑以下接口定义:
```
@FunctionalInterface // 可选,通常省略
interface BinaryIntOp {
abstract int compute(int arg1, int arg2); // abstract 声明可以被删除
}
```
注释 `@FunctionalInterface` 适用于声明 _唯一_ 抽象方法的任何接口;在本例中,这个抽象接口是 `compute`。一些标准接口,(例如具有唯一声明方法 `run``Runnable` 接口)同样符合这个要求。在此示例中,`compute` 是已声明的方法。该接口可用作引用声明中的目标类型:
```
BinaryIntOp div = (arg1, arg2) -> arg1 / arg2;
div.compute(12, 3); // 4
```
`java.util.function` 提供各种函数式接口。以下是一些示例。
下面的代码段介绍了参数化的 `Predicate` 函数式接口。在此示例中,带有参数 `String``Predicate<String>` 类型可以引用具有 `String` 参数的 lambda 表达式或诸如 `isEmpty` 之类的 `String` 方法。通常情况下_predicate_ 是一个返回布尔值的函数。
```
Predicate<String> pred = String::isEmpty; // String 方法的 predicate 声明
String[] strings = {"one", "two", "", "three", "four"};
Arrays.asList(strings)
.stream()
.filter(pred) // 过滤掉非空字符串
.forEach(System.out::println); // 只打印空字符串
```
在字符串长度为零的情况下,`isEmpty` predicate 判定结果为 `true`。 因此,只有空字符串才能进入管道的 `forEach` 阶段。
下一段代码将演示如何将简单的 lambda 或方法引用组合成更丰富的 lambda 或方法引用。考虑这一系列对 `IntUnaryOperator` 类型的引用的赋值,它接受一个整型参数并返回一个整型值:
```
IntUnaryOperator doubled = n -> n * 2;
IntUnaryOperator tripled = n -> n * 3;
IntUnaryOperator squared = n -> n * n;
```
`IntUnaryOperator` 是一个 `FunctionalInterface`,其唯一声明的方法为 `applyAsInt`。现在可以单独使用或以各种组合形式使用这三个引用 `doubled`、`tripled` 和 `squared`
```
int arg = 5;
doubled.applyAsInt(arg); // 10
tripled.applyAsInt(arg); // 15
squared.applyAsInt(arg); // 25
```
以下是一些函数组合的样例:
```
int arg = 5;
doubled.compose(squared).applyAsInt(arg); // 5 求 2 次方后乘 250
tripled.compose(doubled).applyAsInt(arg); // 5 乘 2 后再乘 330
doubled.andThen(squared).applyAsInt(arg); // 5 乘 2 后求 2 次方100
squared.andThen(tripled).applyAsInt(arg); // 5 求 2 次方后乘 375
```
函数组合可以直接使用 lambda 表达式实现,但是引用使代码更简洁。
### 构造器引用
构造器引用是另一种函数式编程构造,而这些引用在比 lambda 和方法引用更微妙的上下文中非常有用。再一次重申,代码示例似乎是最好的解释方式。
考虑这个 [POJO][13] 类:
```
public class BedRocker { // 基岩的居民
private String name;
public BedRocker(String name) { this.name = name; }
public String getName() { return this.name; }
public void dump() { System.out.println(getName()); }
}
```
该类只有一个构造函数,它需要一个 `String` 参数。给定一个名字数组,目标是生成一个 `BedRocker` 元素数组,每个名字代表一个元素。下面是使用了函数式结构的代码段:
```
String[] names = {"Fred", "Wilma", "Peebles", "Dino", "Baby Puss"};
Stream<BedRocker> bedrockers = Arrays.asList(names).stream().map(BedRocker::new);
BedRocker[] arrayBR = bedrockers.toArray(BedRocker[]::new);
Arrays.asList(arrayBR).stream().forEach(BedRocker::dump);
```
在较高的层次上,这个代码段将名字转换为 `BedRocker` 数组元素。具体来说,代码如下所示。`Stream` 接口(在包 `java.util.stream` 中)可以被参数化,而在本例中,生成了一个名为 `bedrockers``BedRocker` 流。
`Arrays.asList` 实用程序再次用于流化一个数组 `names`,然后将流的每一项传递给 `map` 函数,该函数的参数现在是构造器引用 `BedRocker::new`。这个构造器引用通过在每次调用时生成和初始化一个 `BedRocker` 实例来充当一个对象工厂。在第二行执行之后,名为 `bedrockers` 的流由五项 `BedRocker` 组成。
这个例子可以通过关注高阶 `map` 函数来进一步阐明。在通常情况下,一个映射将一个类型的值(例如,一个 `int`)转换为另一个 _相同_ 类型的值(例如,一个整数的后继):
```
map(n -> n + 1) // 将 n 映射到其后继
```
然而,在 `BedRocker` 这个例子中,转换更加戏剧化,因为一个类型的值(代表一个名字的 `String`)被映射到一个 _不同_ 类型的值,在这个例子中,就是一个 `BedRocker` 实例,这个字符串就是它的名字。转换是通过一个构造器调用来完成的,它是由构造器引用来实现的:
```
`map(BedRocker::new) // 将 String 映射到 BedRocker
```
传递给构造器的值是 `names` 数组中的其中一项。
此代码示例的第二行还演示了一个你目前已经非常熟悉的转换:先将数组先转换成 `List`,然后再转换成 `Stream`
```
`Stream<BedRocker> bedrockers = Arrays.asList(names).stream().map(BedRocker::new);`
```
第三行则是另一种方式 —— 流 `bedrockers` 通过使用_数组_构造器引用 `BedRocker[]::new` 调用 `toArray` 方法:
```
`BedRocker[ ] arrayBR = bedrockers.toArray(BedRocker[]::new);`
```
该构造器引用不会创建单个 `BedRocker` 实例,而是创建这些实例的整个数组:该构造器引用现在为 `BedRocker[]:new`,而不是 `BedRocker::new`。为了进行确认,将 `arrayBR` 转换为 `List`,再次对其进行流式处理,以便可以使用 `forEach` 来打印 `BedRocker` 的名字。
```
Fred
Wilma
Peebles
Dino
Baby Puss
```
该示例对数据结构的微妙转换仅用几行代码即可完成,从而突出了可以将 lambda方法引用或构造器引用作为参数的各种高阶函数的功能。
### <ruby>柯里化<rt>Currying</rt></ruby>
_柯里化_ 函数是指减少函数执行任何工作所需的显式参数的数量(通常减少到一个)。(该术语是为了纪念逻辑学家 Haskell Curry。一般来说函数的参数越少调用起来就越容易也更健壮。回想一下一些需要半打左右参数的噩梦般的函数因此应将柯里化视为简化函数调用的一种尝试。`java.util.function` 包中的接口类型适合于柯里化,如以下示例所示。
引用的 `IntBinaryOperator` 接口类型是为函数接受两个整型参数,并返回一个整型值:
```
IntBinaryOperator mult2 = (n1, n2) -> n1 * n2;
mult2.applyAsInt(10, 20); // 200
mult2.applyAsInt(10, 30); // 300
```
引用 `mult2` 强调了需要两个显式参数,在本例中是 10 和 20。
前面介绍的 `IntUnaryOperator``IntBinaryOperator` 简单,因为前者只需要一个参数,而后者则需要两个参数。两者均返回整数值。因此,目标是将名为 `mult2` 的两个参数 `IntBinraryOperator` 柯里化成一个单一的 `IntUnaryOperator` 版本 `curriedMult2`
考虑 `IntFunction<R>` 类型。此类型的函数采用整型参数,并返回类型为 `R` 的结果,该结果可以是另一个函数 —— 更准确地说,是 `IntBinaryOperator`。让一个 lambda 返回另一个 lambda 很简单:
```
arg1 -> (arg2 -> arg1 * arg2) // 括号可以省略
```
完整的 lambda 以 `arg1,` 开头,而该 lambda 的主体以及返回的值是另一个以 `arg2` 开头的 lambda。返回的 lambda 仅接受一个参数(`arg2`),但返回了两个数字的乘积(`arg1` 和 `arg2`)。下面的概述,再加上代码,应该可以更好地进行说明。
以下是如何柯里化 `mult2` 的概述:
> 类型为 `IntFunction<IntUnaryOperator>` 的 lambda 被写入并调用,其整型值为 10。返回的 `IntUnaryOperator` 缓存了值 10因此变成了已柯里化版本的 `mult2`,在本例中为 `curriedMult2`
> 然后使用单个显式参数例如20调用 `curriedMult2` 函数,该参数与缓存的参数(在本例中为 10相乘以生成返回的乘积。。
这是代码的详细信息:
```
// 创建一个接受一个参数 n1 并返回一个单参数 n2 -> n1 * n2 的函数该函数返回一个n1 * n2 乘积的)整型数。
IntFunction<IntUnaryOperator> curriedMult2Maker = n1 -> (n2 -> n1 * n2);
```
调用 `curriedMult2Maker` 生成所需的 `IntUnaryOperator` 函数:
```
// 使用 curriedMult2Maker 获取已柯里化版本的 mult2。
// 参数 10 是上面的 lambda 的 n1。
IntUnaryOperator curriedMult2 = curriedMult2Maker2.apply(10);
```
值 10 现在缓存在 `curriedMult2` 函数中,以便 `curriedMult2` 调用中的显式整型参数乘以 10
```
curriedMult2.applyAsInt(20); // 200 = 10 * 20
curriedMult2.applyAsInt(80); // 800 = 10 * 80
```
缓存的值可以随意更改:
```
curriedMult2 = curriedMult2Maker.apply(50); // 缓存 50
curriedMult2.applyAsInt(101); // 5050 = 101 * 50
```
当然,可以通过这种方式创建多个已柯里化版本的 `mult2`,每个版本都有一个 `IntUnaryOperator`
柯里化充分利用了 lambda 的强大功能:可以很容易地编写 lambda 表达式来返回需要的任何类型的值,包括另一个 lambda。
### 总结
Java 仍然是基于类的面向对象的编程语言。但是,借助流 API 及其支持的函数式构造Java 向函数式语言(例如 Lisp迈出了决定性的同时也是受欢迎的一步。结果是 Java 更适合处理现代编程中常见的海量数据流。在函数式方向上的这一步还使以在前面的代码示例中突出显示的管道的方式编写清晰简洁的 Java 代码更加容易:
```
dataStream
.parallelStream() // 多线程以提高效率
.filter(...) // 阶段 1
.map(...) // 阶段 2
.filter(...) // 阶段 3
...
.collect(...); // 或者,也可以进行归约:阶段 N
```
自动多线程,以 `parallel``parallelStream` 调用为例,建立在 Java 的 fork/join 框架上,该框架支持 _<ruby>任务窃取<rt>task stealing</rt></ruby>_ 以提高效率。假设 `parallelStream` 调用后面的线程池由八个线程组成,并且 `dataStream` 被八种方式分区。某个线程例如T1可能比另一个线程例如T7工作更快这意味着应该将 T7 的某些任务移到 T1 的工作队列中。这会在运行时自动发生。
在这个简单的多线程世界中,程序员的主要职责是编写线程安全函数,这些函数作为参数传递给在流 API 中占主导地位的高阶函数。 尤其是 lambda 鼓励编写纯函数(因此是线程安全的)函数。
--------------------------------------------------------------------------------
via: https://opensource.com/article/20/1/javastream
作者:[Marty Kalin][a]
选题:[lujun9972][b]
译者:[laingke](https://github.com/laingke)
校对:[校对者ID](https://github.com/校对者ID)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://opensource.com/users/mkalindepauledu
[b]: https://github.com/lujun9972
[1]: https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/features_solutions_command_data.png?itok=4_VQN3RK (computer screen )
[2]: http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+random
[3]: http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+list
[4]: http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
[5]: http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+number
[6]: http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+arrays
[7]: http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+integer
[8]: http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
[9]: http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+jbutton
[10]: http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+actionlistener
[11]: http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+actionevent
[12]: http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+date
[13]: https://en.wikipedia.org/wiki/Plain_old_Java_object