Merge pull request #4 from LCTT/master

update from LCTT
This commit is contained in:
jdh8383 2019-05-31 18:35:42 +08:00 committed by GitHub
commit d23bf24480
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
344 changed files with 33863 additions and 10220 deletions

View File

@ -7,37 +7,37 @@
**`/dev/urandom` 不安全。加密用途必须使用 `/dev/random`**
事实:`/dev/urandom` 才是类 Unix 操作系统下推荐的加密种子。
*事实*`/dev/urandom` 才是类 Unix 操作系统下推荐的加密种子。
**`/dev/urandom` 是<ruby>伪随机数生成器<rt>pseudo random number generator</rt></ruby>PRND`/dev/random` 是“真”随机数生成器。**
事实:它们两者本质上用的是同一种 CSPRNG (一种密码学伪随机数生成器)。它们之间细微的差别和“真”“真”随机完全无关
*事实*:它们两者本质上用的是同一种 CSPRNG (一种密码学伪随机数生成器)。它们之间细微的差别和“真”“真”随机完全无关参见“Linux 随机数生成器的构架”一节)
**`/dev/random` 在任何情况下都是密码学应用更好地选择。即便 `/dev/urandom` 也同样安全,我们还是不应该用它。**
事实:`/dev/random` 有个很恶心人的问题它是阻塞的。LCTT 译注:意味着请求都得逐个执行,等待前一个请求完成)
*事实*`/dev/random` 有个很恶心人的问题:它是阻塞的。(参见:“阻塞有什么问题?”一节)LCTT 译注:意味着请求都得逐个执行,等待前一个请求完成)
**但阻塞不是好事吗!`/dev/random` 只会给出电脑收集的信息熵足以支持的随机量。`/dev/urandom` 在用完了所有熵的情况下还会不断吐不安全的随机数给你。**
**但阻塞不是好事吗!`/dev/random` 只会给出电脑收集的信息熵足以支持的随机量。`/dev/urandom` 在用完了所有熵的情况下还会不断吐不安全的随机数给你。**
事实:这是误解。就算我们不去考虑应用层面后续对随机种子的用法,“用完信息熵池”这个概念本身就不存在。仅仅 256 位的熵就足以生成计算上安全的随机数很长、很长的一段时间了。
*事实*:这是误解。就算我们不去考虑应用层面后续对随机种子的用法,“用完信息熵池”这个概念本身就不存在。仅仅 256 位的熵就足以生成计算上安全的随机数很长、很长的一段时间了。(参见:“那熵池快空了的情况呢?”一节)
问题的关键还在后头:`/dev/random` 怎么知道有系统会*多少*可用的信息熵?接着看!
**但密码学家老是讨论重新选种子re-seeding。这难道不和上一条冲突吗**
事实:你说的也没错!某种程度上吧。确实,随机数生成器一直在使用系统信息熵的状态重新选种。但这么做(一部分)是因为别的原因。
*事实*:你说的也没错!某种程度上吧。确实,随机数生成器一直在使用系统信息熵的状态重新选种。但这么做(一部分)是因为别的原因。(参见:“重新选种”一节)
这样说吧,我没有说引入新的信息熵是坏的。更多的熵肯定更好。我只是说在熵池低的时候阻塞是没必要的。
**好,就算你说的都对,但是 `/dev/(u)random` 的 man 页面和你说的也不一样啊!到底有没有专家同意你说的这堆啊?**
事实:其实 man 页面和我说的不冲突。它看似好像在说 `/dev/urandom` 对密码学用途来说不安全,但如果你真的理解这堆密码学术语你就知道它说的并不是这个意思。
*事实*:其实 man 页面和我说的不冲突。它看似好像在说 `/dev/urandom` 对密码学用途来说不安全,但如果你真的理解这堆密码学术语你就知道它说的并不是这个意思。参见“random 和 urandom 的 man 页面”一节)
man 页面确实说在一些情况下推荐使用 `/dev/random` (我觉得也没问题,但绝对不是说必要的),但它也推荐在大多数“一般”的密码学应用下使用 `/dev/urandom`
虽然诉诸权威一般来说不是好事,但在密码学这么严肃的事情上,和专家统一意见是很有必要的。
所以说呢,还确实有一些*专家*和我的一件事一致的:`/dev/urandom` 就应该是类 UNIX 操作系统下密码学应用的首选。显然的,是他们的观点说服了我而不是反过来的。
所以说呢,还确实有一些*专家*和我的一件事一致的:`/dev/urandom` 就应该是类 UNIX 操作系统下密码学应用的首选。显然的,是他们的观点说服了我而不是反过来的。(参见:“正道”一节)
------
@ -45,9 +45,9 @@ man 页面确实说在一些情况下推荐使用 `/dev/random` (我觉得也
我尝试不讲太高深的东西,但是有两点内容必须先提一下才能让我们接着论证观点。
首当其冲的,*什么是随机性*,或者更准确地:我们在探讨什么样的随机性?
首当其冲的,*什么是随机性*,或者更准确地:我们在探讨什么样的随机性?(参见:“真随机”一节)
另外一点很重要的是,我*没有尝试以说教的态度*对你们写这段话。我写这篇文章是为了日后可以在讨论起的时候指给别人看。比 140 字长LCTT 译注:推特长度)。这样我就不用一遍遍重复我的观点了。能把论点磨炼成一篇文章本身就很有助于将来的讨论。
另外一点很重要的是,我*没有尝试以说教的态度*对你们写这段话。我写这篇文章是为了日后可以在讨论起的时候指给别人看。比 140 字长LCTT 译注:推特长度)。这样我就不用一遍遍重复我的观点了。能把论点磨炼成一篇文章本身就很有助于将来的讨论。(参见:“你是在说我笨?!”一节)
并且我非常乐意听到不一样的观点。但我只是认为单单地说 `/dev/urandom` 坏是不够的。你得能指出到底有什么问题,并且剖析它们。
@ -55,43 +55,43 @@ man 页面确实说在一些情况下推荐使用 `/dev/random` (我觉得也
绝对没有!
事实上我自己也相信了 “`/dev/urandom` 是不安全的” 好些年。这几乎不是我们的错,因为那么德高望重的人在 Usenet、论坛、推特上跟我们重复这个观点。甚至*连 man 手册*都似是而非地说着。我们当年怎么可能鄙视诸如“信息熵太低了”这种看上去就很让人信服的观点呢?
事实上我自己也相信了 “`/dev/urandom` 是不安全的” 好些年。这几乎不是我们的错,因为那么德高望重的人在 Usenet、论坛、推特上跟我们重复这个观点。甚至*连 man 手册*都似是而非地说着。我们当年怎么可能鄙视诸如“信息熵太低了”这种看上去就很让人信服的观点呢?参见“random 和 urandom 的 man 页面”一节)
整个流言之所以如此广为流传不是因为人们太蠢,而是因为但凡有点关于信息熵和密码学概念的人都会觉得这个说法很有道理。直觉似乎都在告诉我们这流言讲的很有道理。很不幸直觉在密码学里通常不管用,这次也一样。
### 真随机
什么叫一个随机变量是“真随机的”
随机数是“真正随机”是什么意思
我不想搞的太复杂以至于变成哲学范畴的东西。这种讨论很容易走偏因为随机模型大家见仁见智,讨论很快变得毫无意义。
我不想搞的太复杂以至于变成哲学范畴的东西。这种讨论很容易走偏因为对于随机模型大家见仁见智,讨论很快变得毫无意义。
在我看来“真随机”的“试金石”是量子效应。一个光子穿过或不穿过一个半透镜。或者观察一个放射性粒子衰变。这类东西是现实世界最接近真随机的东西。当然,有些人也不相信这类过程是真随机的,或者这个世界根本不存在任何随机性。这个就百家争鸣了,我也不好多说什么了。
密码学家一般都会通过不去讨论什么是“真随机”来避免这种争论。它们更关心的是<ruby>不可预测性<rt> unpredictability</rt></ruby>。只要没有*任何*方法能猜出下一个随机数就可以了。所以当你以密码学应用为前提讨论一个随机数好不好的时候,在我看来这才是最重要的。
密码学家一般都会通过不去讨论什么是“真随机”来避免这种哲学辩论。他们更关心的是<ruby>不可预测性<rt>unpredictability</rt></ruby>。只要没有*任何*方法能猜出下一个随机数就可以了。所以当你以密码学应用为前提讨论一个随机数好不好的时候,在我看来这才是最重要的。
无论如何,我不怎么关心“哲学上安全”的随机数,这也包括别人嘴里的“真”随机数。
## 两种安全,一种有用
### 两种安全,一种有用
但就让我们退一步说,你有了一个“真”随机变量。你下一步做什么呢?
你把它们打印出来然后挂在墙上来展示量子宇宙的美与和谐?牛逼!我很理解你。
你把它们打印出来然后挂在墙上来展示量子宇宙的美与和谐?牛逼!我支持你。
但是等等,你说你要*用*它们?做密码学用途?额,那这就废了,因为这事情就有点复杂了。
事情是这样的,你的真随机,量子力学加护的随机数即将被用进不理想的现实世界程序里
事情是这样的,你的真随机、量子力学加护的随机数即将被用进不理想的现实世界算法里去
因为我们使用的大多数算法并不是<ruby>理论信息学<rt>information-theoretic</rt></ruby>上安全的。它们“只能”提供 **计算意义上的安全**。我能想到为数不多的例外就只有 Shamir 密钥分享 和 One-time pad 算法。并且就算前者是名副其实的(如果你实际打算用的话),后者则毫无可行性可言。
因为我们使用的几乎所有的算法都并不是<ruby>信息论安全性<rt>information-theoretic security </rt></ruby>的。它们“只能”提供**计算意义上的安全**。我能想到为数不多的例外就只有 Shamir 密钥分享和<ruby>一次性密码本<rt>One-time pad</rt></ruby>OTP算法。并且就算前者是名副其实的(如果你实际打算用的话),后者则毫无可行性可言。
但所有那些大名鼎鼎的密码学算法AES、RSA、Diffie-Hellman、椭圆曲线还有所有那些加密软件包OpenSSL、GnuTLS、Keyczar、你的操作系统的加密 API都仅仅是计算意义上安全的。
但所有那些大名鼎鼎的密码学算法AES、RSA、Diffie-Hellman、椭圆曲线还有所有那些加密软件包OpenSSL、GnuTLS、Keyczar、你的操作系统的加密 API都仅仅是计算意义上安全的。
那区别是什么呢?理论信息学上的安全肯定是安全的,绝对是,其它那些的算法都可能在理论上被拥有无限计算力的穷举破解。我们依然愉快地使用它们因为全世界的计算机加起来都不可能在宇宙年龄的时间里破解,至少现在是这样。而这就是我们文章里说的“不安全”。
那区别是什么呢?信息论安全的算法肯定是安全的,绝对是,其它那些的算法都可能在理论上被拥有无限计算力的穷举破解。我们依然愉快地使用它们因为全世界的计算机加起来都不可能在宇宙年龄的时间里破解,至少现在是这样。而这就是我们文章里说的“不安全”。
除非哪个聪明的家伙破解了算法本身——在只需要极少量计算力的情况下。这也是每个密码学家梦寐以求的圣杯:破解 AES 本身、破解 RSA 本身等等。
除非哪个聪明的家伙破解了算法本身 —— 在只需要更少量计算力、在今天可实现的计算力的情况下。这也是每个密码学家梦寐以求的圣杯:破解 AES 本身、破解 RSA 本身等等。
所以现在我们来到了更底层的东西:随机数生成器,你坚持要“真随机”而不是“伪随机”。但是没过一会儿你的真随机数就被喂进了你极为鄙视的伪随机算法里了!
真相是,如果我们最先进的 hash 算法被破解了,或者最先进的块加密被破解了,你得到这些那些“哲学上不安全的”甚至无所谓了,因为反正你也没有安全的应用方法了。
真相是,如果我们最先进的哈希算法被破解了,或者最先进的分组加密算法被破解了,你得到的这些“哲学上不安全”的随机数甚至无所谓了,因为反正你也没有安全的应用方法了。
所以把计算性上安全的随机数喂给你的仅仅是计算性上安全的算法就可以了,换而言之,用 `/dev/urandom`
@ -103,7 +103,7 @@ man 页面确实说在一些情况下推荐使用 `/dev/random` (我觉得也
![image: mythical structure of the kernel's random number generator][1]
“真随机数”,尽管可能有点瑕疵,进入操作系统然后它的熵立刻被加入内部熵计数器。然后经过“矫偏”和“漂白”之后它进入内核的熵池,然后 `/dev/random``/dev/urandom` 从里面生成随机数。
“真正的随机性”,尽管可能有点瑕疵,进入操作系统然后它的熵立刻被加入内部熵计数器。然后经过“矫偏”和“漂白”之后它进入内核的熵池,然后 `/dev/random``/dev/urandom` 从里面生成随机数。
“真”随机数生成器,`/dev/random`,直接从池里选出随机数,如果熵计数器表示能满足需要的数字大小,那就吐出数字并且减少熵计数。如果不够的话,它会阻塞程序直至有足够的熵进入系统。
@ -123,25 +123,25 @@ man 页面确实说在一些情况下推荐使用 `/dev/random` (我觉得也
![image: actual structure of the kernel's random number generator before Linux 4.8][2]
> 这是个很粗糙的简化。实际上不仅有一个,而是三个熵池。一个主池,另一个给 `/dev/random`,还有一个给 `/dev/urandom`,后两者依靠从主池里获取熵。这三个池都有各自的熵计数器,但二级池(后两个)的计数器基本都在 0 附近,而“新鲜”的熵总在需要的时候从主池流过来。同时还有好多混合和回流进系统在同时进行。整个过程对于这篇文档来说都过于复杂了我们跳过。
你看到最大的区别了吗CSPRNG 并不是和随机数生成器一起跑的,以 `/dev/urandom` 需要输出但熵不够的时候进行填充。CSPRNG 是整个随机数生成过程的内部组件之一。从来就没有什么 `/dev/random` 直接从池里输出纯纯的随机性。每个随机源的输入都在 CSPRNG 里充分混合和散列过了,这一切都发生在实际变成一个随机数,被 `/dev/urandom` 或者 `/dev/random` 吐出去之前。
你看到最大的区别了吗CSPRNG 并不是和随机数生成器一起跑的,它在 `/dev/urandom` 需要输出但熵不够的时候进行填充。CSPRNG 是整个随机数生成过程的内部组件之一。从来就没有什么 `/dev/random` 直接从池里输出纯纯的随机性。每个随机源的输入都在 CSPRNG 里充分混合和散列过了,这一切都发生在实际变成一个随机数,被 `/dev/urandom` 或者 `/dev/random` 吐出去之前。
另外一个重要的区别是这里没有熵计数器的任何事情,只有预估。一个源给你的熵的量并不是什么很明确能直接得到的数字。你得预估它。注意,如果你太乐观地预估了它,那 `/dev/random` 最重要的特性——只给出熵允许的随机量——就荡然无存了。很不幸的,预估熵的量是很困难的。
Linux 内核只使用事件的到达时间来预估熵的量。它通过多项式插值,某种模型,来预估实际的到达时间有多“出乎意料”。这种多项式插值的方法到底是不是好的预估熵量的方法本身就是个问题。同时硬件情况会不会以某种特定的方式影响到达时间也是个问题。而所有硬件的取样率也是个问题,因为这基本上就直接决定了随机数到达时间的颗粒度。
> 这是个很粗糙的简化。实际上不仅有一个,而是三个熵池。一个主池,另一个给 `/dev/random`,还有一个给 `/dev/urandom`,后两者依靠从主池里获取熵。这三个池都有各自的熵计数器,但二级池(后两个)的计数器基本都在 0 附近,而“新鲜”的熵总在需要的时候从主池流过来。同时还有好多混合和回流进系统在同时进行。整个过程对于这篇文档来说都过于复杂了,我们跳过。
Linux 内核只使用事件的到达时间来预估熵的量。根据模型,它通过多项式插值来预估实际的到达时间有多“出乎意料”。这种多项式插值的方法到底是不是好的预估熵量的方法本身就是个问题。同时硬件情况会不会以某种特定的方式影响到达时间也是个问题。而所有硬件的取样率也是个问题,因为这基本上就直接决定了随机数到达时间的颗粒度。
说到最后,至少现在看来,内核的熵预估还是不错的。这也意味着它比较保守。有些人会具体地讨论它有多好,这都超出我的脑容量了。就算这样,如果你坚持不想在没有足够多的熵的情况下吐出随机数,那你看到这里可能还会有一丝紧张。我睡的就很香了,因为我不关心熵预估什么的。
最后强调一下终点`/dev/random` 和 `/dev/urandom` 都是被同一个 CSPRNG 喂的输入。只有它们在用完各自熵池(根据某种预估标准)的时候,它们的行为会不同:`/dev/random` 阻塞,`/dev/urandom` 不阻塞。
最后要明确一下`/dev/random` 和 `/dev/urandom` 都是被同一个 CSPRNG 喂的。只有它们在用完各自熵池(根据某种预估标准)的时候,它们的行为会不同:`/dev/random` 阻塞,`/dev/urandom` 不阻塞。
##### Linux 4.8 以后
在 Linux 4.8 里,`/dev/random` 和 `/dev/urandom` 的等价性被放弃了。现在 `/dev/urandom` 的输出不来自于熵池,而是直接从 CSPRNG 来。
![image: actual structure of the kernel's random number generator from Linux 4.8 onward][3]
*我们很快会理解*为什么这不是一个安全问题。
在 Linux 4.8 里,`/dev/random` 和 `/dev/urandom` 的等价性被放弃了。现在 `/dev/urandom` 的输出不来自于熵池,而是直接从 CSPRNG 来。
*我们很快会理解*为什么这不是一个安全问题。参见“CSPRNG 没问题”一节)
### 阻塞有什么问题?
@ -149,7 +149,7 @@ Linux 内核只使用事件的到达时间来预估熵的量。它通过多项
这些都是问题。阻塞本质上会降低可用性。换而言之你的系统不干你让它干的事情。不用我说,这是不好的。要是它不干活你干嘛搭建它呢?
> 我在工厂自动化里做过和安全相关的系统。猜猜看安全系统失效的主要原因是什么?被错误操作。就这么简单。很多安全措施的流程让工人恼火了。比如时间太长,或者太不方便。你要知道人很会找捷径来“解决”问题。
> 我在工厂自动化里做过和安全相关的系统。猜猜看安全系统失效的主要原因是什么?操作问题。就这么简单。很多安全措施的流程让工人恼火了。比如时间太长,或者太不方便。你要知道人很会找捷径来“解决”问题。
但其实有个更深刻的问题:人们不喜欢被打断。它们会找一些绕过的方法,把一些诡异的东西接在一起仅仅因为这样能用。一般人根本不知道什么密码学什么乱七八糟的,至少正常的人是这样吧。
@ -157,23 +157,23 @@ Linux 内核只使用事件的到达时间来预估熵的量。它通过多项
到头来如果东西太难用的话,你的用户就会被迫开始做一些降低系统安全性的事情——你甚至不知道它们会做些什么。
我们很容易会忽视可用性之类的重要性。毕竟安全第一对吧?所以比起牺牲安全,不可用,难用,不方便都是次要的?
我们很容易会忽视可用性之类的重要性。毕竟安全第一对吧?所以比起牺牲安全,不可用、难用、不方便都是次要的?
这种二元对立的想法是错的。阻塞不一定就安全了。正如我们看到的,`/dev/urandom` 直接从 CSPRNG 里给你一样好的随机数。用它不好吗!
### CSPRNG 没问题
现在情况听上去很沧桑。如果连高质量的 `/dev/random` 都是从一个 CSPRNG 里来的,我们怎么敢在高安全性的需求上使用它呢?
现在情况听上去很惨淡。如果连高质量的 `/dev/random` 都是从一个 CSPRNG 里来的,我们怎么敢在高安全性的需求上使用它呢?
实际上,“看上去随机”是现存大多数密码学基础组件的基本要求。如果你观察一个密码学哈希的输出,它一定得和随机的字符串不可区分,密码学家才会认可这个算法。如果你生成一个加密,它的输出(在你不知道密钥的情况下)也必须和随机数据不可区分才行。
实际上,“看上去随机”是现存大多数密码学基础组件的基本要求。如果你观察一个密码学哈希的输出,它一定得和随机的字符串不可区分,密码学家才会认可这个算法。如果你生成一个分组加密,它的输出(在你不知道密钥的情况下)也必须和随机数据不可区分才行。
如果任何人能比暴力穷举要更有效地破解一个加密,比如它利用了某些 CSPRNG 伪随机的弱点,那这就又是老一套了:一切都废了,也别谈后面的了。加密、哈希,一切都是基于某个数学算法,比如 CSPRNG。所以别害怕到头来都一样。
如果任何人能比暴力穷举要更有效地破解一个加密,比如它利用了某些 CSPRNG 伪随机的弱点,那这就又是老一套了:一切都废了,也别谈后面的了。分组加密、哈希,一切都是基于某个数学算法,比如 CSPRNG。所以别害怕到头来都一样。
### 那熵池快空了的情况呢?
毫无影响。
加密算法的根基建立在攻击者不能预测输出上,只要最一开始有足够的随机性(熵)就行了。一般的下限是 256 位,不需要更多了。
加密算法的根基建立在攻击者不能预测输出上,只要最一开始有足够的随机性(熵)就行了。“足够”的下限可以是 256 位,不需要更多了。
介于我们一直在很随意的使用“熵”这个概念,我用“位”来量化随机性希望读者不要太在意细节。像我们之前讨论的那样,内核的随机数生成器甚至没法精确地知道进入系统的熵的量。只有一个预估。而且这个预估的准确性到底怎么样也没人知道。
@ -211,7 +211,7 @@ Linux 内核只使用事件的到达时间来预估熵的量。它通过多项
我们在回到 man 页面说:“使用 `/dev/random`”。我们已经知道了,虽然 `/dev/urandom` 不阻塞,但是它的随机数和 `/dev/random` 都是从同一个 CSPRNG 里来的。
如果你真的需要信息论理论上安全的随机数(你不需要的,相信我),那才有可能成为唯一一个你需要等足够熵进入 CSPRNG 的理由。而且你也不能用 `/dev/random`
如果你真的需要信息论安全的随机数(你不需要的,相信我),那才有可能成为唯一一个你需要等足够熵进入 CSPRNG 的理由。而且你也不能用 `/dev/random`
man 页面有毒,就这样。但至少它还稍稍挽回了一下自己:
@ -227,7 +227,7 @@ man 页面有毒,就这样。但至少它还稍稍挽回了一下自己:
### 正道
本篇文章里的观点显然在互联网上是“小众”的。但如果问一个真正的密码学家,你很难找到一个认同阻塞 `/dev/random` 的人。
本篇文章里的观点显然在互联网上是“小众”的。但如果问一个真正的密码学家,你很难找到一个认同阻塞 `/dev/random` 的人。
比如我们看看 [Daniel Bernstein][5](即著名的 djb的看法
@ -238,8 +238,6 @@ man 页面有毒,就这样。但至少它还稍稍挽回了一下自己:
>
> 对密码学家来说这甚至都不好笑了
或者 [Thomas Pornin][6] 的看法,他也是我在 stackexchange 上见过最乐于助人的一位:
> 简单来说,是的。展开说,答案还是一样。`/dev/urandom` 生成的数据可以说和真随机完全无法区分,至少在现有科技水平下。使用比 `/dev/urandom` “更好的“随机性毫无意义,除非你在使用极为罕见的“信息论安全”的加密算法。这肯定不是你的情况,不然你早就说了。
@ -260,13 +258,13 @@ Linux 的 `/dev/urandom` 会很乐意给你吐点不怎么随机的随机数,
FreeBSD 的行为更正确点:`/dev/random` 和 `/dev/urandom` 是一样的,在系统启动的时候 `/dev/random` 会阻塞到有足够的熵为止,然后它们都再也不阻塞了。
> 与此同时 Linux 实行了一个新的<ruby>系统调用<rt>syscall</rt></ruby>,最早由 OpenBSD 引入叫 `getentrypy(2)`,在 Linux 下这个叫 `getrandom(2)`。这个系统调用有着上述正确的行为阻塞到有足够的熵为止然后再也不阻塞了。当然这是个系统调用而不是一个字节设备LCTT 译注:不在 `/dev/` 下),所以它在 shell 或者别的脚本语言里没那么容易获取。这个系统调用 自 Linux 3.17 起存在。
> 与此同时 Linux 实行了一个新的<ruby>系统调用<rt>syscall</rt></ruby>,最早由 OpenBSD 引入叫 `getentrypy(2)`,在 Linux 下这个叫 `getrandom(2)`。这个系统调用有着上述正确的行为阻塞到有足够的熵为止然后再也不阻塞了。当然这是个系统调用而不是一个字节设备LCTT 译注:不在 `/dev/` 下),所以它在 shell 或者别的脚本语言里没那么容易获取。这个系统调用 自 Linux 3.17 起存在。
在 Linux 上其实这个问题不太大,因为 Linux 发行版会在启动的过程中储蓄一点随机数(这发生在已经有一些熵之后,因为启动程序不会在按下电源的一瞬间就开始运行)到一个种子文件中,以便系统下次启动的时候读取。所以每次启动的时候系统都会从上一次会话里带一点随机性过来。
在 Linux 上其实这个问题不太大,因为 Linux 发行版会在启动的过程中保存一点随机数(这发生在已经有一些熵之后,因为启动程序不会在按下电源的一瞬间就开始运行)到一个种子文件中,以便系统下次启动的时候读取。所以每次启动的时候系统都会从上一次会话里带一点随机性过来。
显然这比不上在关机脚本里写入一些随机种子,因为这样的显然就有更多熵可以操作了。但这样做显而易见的好处就是它不用关心系统是不是正确关机了,比如可能你系统崩溃了。
而且这种做法在你真正第一次启动系统的时候也没法帮你随机,不过好在系统安装器一般会写一个种子文件,所以基本上问题不大。
而且这种做法在你真正第一次启动系统的时候也没法帮你随机,不过好在 Linux 系统安装程序一般会保存一个种子文件,所以基本上问题不大。
虚拟机是另外一层问题。因为用户喜欢克隆它们,或者恢复到某个之前的状态。这种情况下那个种子文件就帮不到你了。

View File

@ -1,37 +1,39 @@
[#]: collector: (lujun9972)
[#]: translator: (robsean)
[#]: reviewer: ( )
[#]: publisher: ( )
[#]: url: ( )
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10850-1.html)
[#]: subject: (Build a game framework with Python using the module Pygame)
[#]: via: (https://opensource.com/article/17/12/game-framework-python)
[#]: author: (Seth Kenlon https://opensource.com/users/seth)
使用 Python 和 Pygame 模块构建一个游戏框架
======
这系列的第一篇通过创建一个简单的骰子游戏来探究 Python。现在是来从零制作你自己的游戏的时间。
> 这系列的第一篇通过创建一个简单的骰子游戏来探究 Python。现在是来从零制作你自己的游戏的时间。
![](https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/python2-header.png?itok=tEvOVo4A)
在我的 [这系列的第一篇文章][1] 中, 我已经讲解如何使用 Python 创建一个简单的,基于文本的骰子游戏。这次,我将展示如何使用 Python 和 Pygame 模块来创建一个图形化游戏。它将占用一些文章来得到一个确实完成一些东西的游戏,但是在这系列的结尾,你将有一个更好的理解,如何查找和学习新的 Python 模块和如何从其基础上构建一个应用程序。
在我的[这系列的第一篇文章][1] 中, 我已经讲解如何使用 Python 创建一个简单的、基于文本的骰子游戏。这次,我将展示如何使用 Python 模块 Pygame 来创建一个图形化游戏。它将需要几篇文章才能来得到一个确实做成一些东西的游戏,但是到这系列的结尾,你将更好地理解如何查找和学习新的 Python 模块和如何从其基础上构建一个应用程序。
在开始前,你必须安装 [Pygame][2]。
### 安装新的 Python 模块
这里有一些方法来安装 Python 模块,但是最通用的两个是:
有几种方法来安装 Python 模块,但是最通用的两个是:
* 从你的发行版的软件存储库
* 使用 Python 的软件包管理器pip
* 使用 Python 的软件包管理器 `pip`
两个方法都工作很好,并且每一个都有它自己的一套优势。如果你是在 Linux 或 BSD 上开发,促使你的发行版的软件存储库确保自动及时更新。
两个方法都工作很好,并且每一个都有它自己的一套优势。如果你是在 Linux 或 BSD 上开发,可以利用你的发行版的软件存储库来自动和及时地更新。
然而,使用 Python 的内置软件包管理器给予你控制更新模块时间的能力。而且,它不是明确指定操作系统的意味着即使当你不是在你常用的开发机器上时你也可以使用它。pip 的其它的优势是允许模块局部安装,如果你没有一台正在使用的计算机的权限,它是有用的。
然而,使用 Python 的内置软件包管理器可以给予你控制更新模块时间的能力。而且,它不是特定于操作系统的,这意味着,即使当你不是在你常用的开发机器上时,你也可以使用它。`pip` 的其它的优势是允许本地安装模块,如果你没有正在使用的计算机的管理权限,这是有用的。
### 使用 pip
如果 Python 和 Python3 都安装在你的系统上,你想使用的命令很可能是 `pip3`,它区分来自Python 2.x 的 `pip` 的命令。如果你不确定,先尝试 `pip3`
如果 Python 和 Python3 都安装在你的系统上,你想使用的命令很可能是 `pip3`,它用来区分 Python 2.x 的 `pip` 的命令。如果你不确定,先尝试 `pip3`
`pip` 命令有些像大多数 Linux 软件包管理器的工作。你可以使用 `search` 搜索 Pythin 模块,然后使用 `install` 安装它们。如果你没有你正在使用的计算机的权限来安装软件,你可以使用 `--user` 选项来仅仅安装模块到你的 home 目录。
`pip` 命令有些像大多数 Linux 软件包管理器一样工作。你可以使用 `search` 搜索 Python 模块,然后使用 `install` 安装它们。如果你没有你正在使用的计算机的管理权限来安装软件,你可以使用 `--user` 选项来仅仅安装模块到你的目录。
```
$ pip3 search pygame
@ -44,11 +46,11 @@ pygame_cffi (0.2.1)            - A cffi-based SDL wrapper that copies the
$ pip3 install Pygame --user
```
Pygame 是一个 Python 模块,这意味着它仅仅是一套可以使用在你的 Python 程序中库。换句话说,它不是一个你启动的程序,像 [IDLE][3] 或 [Ninja-IDE][4] 一样。
Pygame 是一个 Python 模块,这意味着它仅仅是一套可以使用在你的 Python 程序中库。换句话说,它不是一个像 [IDLE][3] 或 [Ninja-IDE][4] 一样可以让你启动的程序
### Pygame 新手入门
一个电子游戏需要一个故事背景;一个发生的地点。在 Python 中,有两种不同的方法来创建你的故事背景:
一个电子游戏需要一个背景设定:故事发生的地点。在 Python 中,有两种不同的方法来创建你的故事背景:
* 设置一种背景颜色
* 设置一张背景图片
@ -57,15 +59,15 @@ Pygame 是一个 Python 模块,这意味着它仅仅是一套可以被使用
### 设置你的 Pygame 脚本
为了开始一个新的 Pygame 脚本,在计算机上创建一个文件夹。游戏的全部文件被放在这个目录中。在工程文件夹内部保持所需要的所有的文件来运行游戏是极其重要的。
要开始一个新的 Pygame 工程,先在计算机上创建一个文件夹。游戏的全部文件被放在这个目录中。在你的工程文件夹内部保持所需要的所有的文件来运行游戏是极其重要的。
![](https://opensource.com/sites/default/files/u128651/project.jpg)
一个 Python 脚本以文件类型,你的姓名,和你想使用的协议开始。使用一个开放源码协议,以便你的朋友可以改善你的游戏并与你一起分享他们的更改:
一个 Python 脚本以文件类型、你的姓名,和你想使用的许可证开始。使用一个开放源码许可证,以便你的朋友可以改善你的游戏并与你一起分享他们的更改:
```
#!/usr/bin/env python3
# Seth Kenlon 编写
# by Seth Kenlon
## GPLv3
# This program is free software: you can redistribute it and/or
@ -75,14 +77,14 @@ Pygame 是一个 Python 模块,这意味着它仅仅是一套可以被使用
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
# along with this program. If not, see <http://www.gnu.org/licenses/>.
```
然后,你告诉 Python 你想使用的模块。一些模块是常见的 Python 库,当然,你想包括一个你刚刚安装的Pygame
然后,你告诉 Python 你想使用的模块。一些模块是常见的 Python 库,当然,你想包括一个你刚刚安装的 Pygame 模块
```
import pygame  # 加载 pygame 关键字
@ -90,7 +92,7 @@ import sys     # 让 python 使用你的文件系统
import os      # 帮助 python 识别你的操作系统
```
由于你将用这个脚本文件工作很多,在文件中制作成段落是有帮助的,以便你知道在哪里放原料。使用语句块注释来做这些,这些注释仅在看你的源文件代码时是可见的。在你的代码中创建三个语句块。
由于你将用这个脚本文件做很多工作,在文件中分成段落是有帮助的,以便你知道在哪里放代码。你可以使用块注释来做这些,这些注释仅在看你的源文件代码时是可见的。在你的代码中创建三个块。
```
'''
@ -114,7 +116,7 @@ Main Loop
接下来,为你的游戏设置窗口大小。注意,不是每一个人都有大计算机屏幕,所以,最好使用一个适合大多数人的计算机的屏幕大小。
这里有一个方法来切换全屏模式,很多现代电子游戏做的方法,但是,由于你刚刚开始,保存它简单和仅设置一个大小
这里有一个方法来切换全屏模式,很多现代电子游戏都会这样做,但是,由于你刚刚开始,简单起见仅设置一个大小即可
```
'''
@ -124,7 +126,7 @@ worldx = 960
worldy = 720
```
一个脚本中使用 Pygame 引擎前,你需要一些基本的设置。你必需设置帧频,启动它的内部时钟,然后开始 (`init`) Pygame 。
在脚本中使用 Pygame 引擎前,你需要一些基本的设置。你必须设置帧频,启动它的内部时钟,然后开始 `init`Pygame 。
```
fps   = 40  # 帧频
@ -137,17 +139,15 @@ pygame.init()
### 设置背景
在你继续前,打开一个图形应用程序,为你的游戏世界创建一个背景。在你的工程目录中的 `images` 文件夹内部保存它为 `stage.png`
在你继续前,打开一个图形应用程序,为你的游戏世界创建一个背景。在你的工程目录中的 `images` 文件夹内部保存它为 `stage.png`
这里有一些你可以使用的自由图形应用程序。
* [Krita][5] 是一个专业级绘图原料模拟器,它可以被用于创建漂亮的图片。如果你对电子游戏创建艺术作品非常感兴趣,你甚至可以购买一系列的[游戏艺术作品教程][6].
* [Pinta][7] 是一个基本的,易于学习的绘图应用程序。
* [Inkscape][8] 是一个矢量图形应用程序。使用它来绘制形状,线,样条曲线,和 Bézier 曲线。
* [Krita][5] 是一个专业级绘图素材模拟器,它可以被用于创建漂亮的图片。如果你对创建电子游戏艺术作品非常感兴趣,你甚至可以购买一系列的[游戏艺术作品教程][6]
* [Pinta][7] 是一个基本的,易于学习的绘图应用程序。
* [Inkscape][8] 是一个矢量图形应用程序。使用它来绘制形状、线、样条曲线和贝塞尔曲线。
你的图像不必很复杂,你可以以后回去更改它。一旦你有它,在你文件的 setup 部分添加这些代码:
你的图像不必很复杂,你可以以后回去更改它。一旦有了它,在你文件的 Setup 部分添加这些代码:
```
world    = pygame.display.set_mode([worldx,worldy])
@ -155,13 +155,13 @@ backdrop = pygame.image.load(os.path.join('images','stage.png').convert())
backdropbox = world.get_rect()
```
如果你仅仅用一种颜色来填充你的游戏的背景,你需要做的全部是:
如果你仅仅用一种颜色来填充你的游戏的背景,你需要做的是:
```
world = pygame.display.set_mode([worldx,worldy])
```
你也必需定义一个来使用的颜色。在你的 setup 部分,使用红,绿,蓝 (RGB) 的值来创建一些颜色的定义。
你也必须定义颜色以使用。在你的 Setup 部分,使用红、绿、蓝 (RGB) 的值来创建一些颜色的定义。
```
'''
@ -173,13 +173,13 @@ BLACK = (23,23,23 )
WHITE = (254,254,254)
```
在这点上,你能理论上启动你的游戏。问题是,它可能仅持续一毫秒。
至此,你理论上可以启动你的游戏了。问题是,它可能仅持续了一毫秒。
为证明这一点,保存你的文件为 `your-name_game.py` (用你真实的名称替换 `your-name` )。然后启动你的游戏。
为证明这一点,保存你的文件为 `your-name_game.py`(用你真实的名称替换 `your-name`。然后启动你的游戏。
如果你正在使用 IDLE ,通过选择来自 Run 菜单的 `Run Module` 来运行你的游戏。
如果你正在使用 IDLE,通过选择来自 “Run” 菜单的 “Run Module” 来运行你的游戏。
如果你正在使用 Ninja ,在左侧按钮条中单击 `Run file` 按钮。
如果你正在使用 Ninja,在左侧按钮条中单击 “Run file” 按钮。
![](https://opensource.com/sites/default/files/u128651/ninja_run_0.png)
@ -189,27 +189,27 @@ WHITE = (254,254,254)
$ python3 ./your-name_game.py
```
如果你正在使用 Windows ,使用这命令:
如果你正在使用 Windows使用这命令
```
py.exe your-name_game.py
```
启动它,不过不要期望很多,因为你的游戏现在仅仅持续几毫秒。你可以在下一部分中修复它。
启动它,不过不要期望很多,因为你的游戏现在仅仅持续几毫秒。你可以在下一部分中修复它。
### 循环
除非另有说明,一个 Python 脚本运行一次并仅一次。近来计算机的运行速度是非常快的,所以你的 Python 脚本运行时间少于1秒钟。
除非另有说明,一个 Python 脚本运行一次并仅一次。近来计算机的运行速度是非常快的,所以你的 Python 脚本运行时间少于 1 秒钟。
为强制你的游戏来处于足够长的打开和活跃状态来让人看到它(更不要说玩它),使用一个 `while` 循环。为使你的游戏保存打开,你可以设置一个变量为一些值,然后告诉一个 `while` 循环只要变量保持未更改则一直保存循环。
这经常被称为一个"主循环",你可以使用术语 `main` 作为你的变量。在你的 setup 部分的任意位置添加这些代码:
这经常被称为一个“主循环”,你可以使用术语 `main` 作为你的变量。在你的 Setup 部分的任意位置添加代码:
```
main = True
```
在主循环期间,使用 Pygame 关键字来检查是否在键盘上的按键已经被按下或释放。添加这些代码到你的主循环部分:
在主循环期间,使用 Pygame 关键字来检查键盘上的按键是否已经被按下或释放。添加这些代码到你的主循环部分:
```
'''
@ -228,7 +228,7 @@ while main == True:
                main = False
```
也在你的循环中,刷新你世界的背景。
在你的循环中,刷新你世界的背景。
如果你使用一个图片作为背景:
@ -242,33 +242,33 @@ world.blit(backdrop, backdropbox)
world.fill(BLUE)
```
最后,告诉 Pygame 来刷新屏幕上的所有内容并推进游戏的内部时钟。
最后,告诉 Pygame 来重新刷新屏幕上的所有内容并推进游戏的内部时钟。
```
    pygame.display.flip()
    clock.tick(fps)
```
保存你的文件,再次运行它来查看曾经创建的最无趣的游戏。
保存你的文件,再次运行它来查看曾经创建的最无趣的游戏。
退出游戏,在你的键盘上按 `q` 键。
在这系列的 [下一篇文章][9] 中,我将向你演示,如何加强你当前空的游戏世界,所以,继续学习并创建一些将要使用的图形!
在这系列的 [下一篇文章][9] 中,我将向你演示,如何加强你当前空空如也的游戏世界,所以,继续学习并创建一些将要使用的图形!
--------------------------------------------------------------------------------
通过: https://opensource.com/article/17/12/game-framework-python
via: https://opensource.com/article/17/12/game-framework-python
作者:[Seth Kenlon][a]
选题:[lujun9972][b]
译者:[robsean](https://github.com/robsean)
校对:[校对者ID](https://github.com/校对者ID)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://opensource.com/users/seth
[b]: https://github.com/lujun9972
[1]: https://opensource.com/article/17/10/python-101
[1]: https://linux.cn/article-9071-1.html
[2]: http://www.pygame.org/wiki/about
[3]: https://en.wikipedia.org/wiki/IDLE
[4]: http://ninja-ide.org/

View File

@ -0,0 +1,163 @@
[#]: collector: (lujun9972)
[#]: translator: (cycoe)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10858-1.html)
[#]: subject: (How to add a player to your Python game)
[#]: via: (https://opensource.com/article/17/12/game-python-add-a-player)
[#]: author: (Seth Kenlon https://opensource.com/users/seth)
如何在你的 Python 游戏中添加一个玩家
======
> 这是用 Python 从头开始构建游戏的系列文章的第三部分。
![](https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/python3-game.png?itok=jG9UdwC3)
在 [这个系列的第一篇文章][1] 中,我解释了如何使用 Python 创建一个简单的基于文本的骰子游戏。在第二部分中,我向你们展示了如何从头开始构建游戏,即从 [创建游戏的环境][2] 开始。但是每个游戏都需要一名玩家,并且每个玩家都需要一个可操控的角色,这也就是我们接下来要在这个系列的第三部分中需要做的。
在 Pygame 中,玩家操控的图标或者化身被称作<ruby>妖精<rt>sprite</rt></ruby>。如果你现在还没有任何可用于玩家妖精的图像,你可以使用 [Krita][3] 或 [Inkscape][4] 来自己创建一些图像。如果你对自己的艺术细胞缺乏自信,你也可以在 [OpenClipArt.org][5] 或 [OpenGameArt.org][6] 搜索一些现成的图像。如果你还未按照上一篇文章所说的单独创建一个 `images` 文件夹,那么你需要在你的 Python 项目目录中创建它。将你想要在游戏中使用的图片都放 `images` 文件夹中。
为了使你的游戏真正的刺激,你应该为你的英雄使用一张动态的妖精图片。这意味着你需要绘制更多的素材,并且它们要大不相同。最常见的动画就是走路循环,通过一系列的图像让你的妖精看起来像是在走路。走路循环最快捷粗糙的版本需要四张图像。
![](https://opensource.com/sites/default/files/u128651/walk-cycle-poses.jpg)
注意:这篇文章中的代码示例同时兼容静止的和动态的玩家妖精。
将你的玩家妖精命名为 `hero.png`。如果你正在创建一个动态的妖精,则需要在名字后面加上一个数字,从 `hero1.png` 开始。
### 创建一个 Python 类
在 Python 中,当你在创建一个你想要显示在屏幕上的对象时,你需要创建一个类。
在你的 Python 脚本靠近顶端的位置,加入如下代码来创建一个玩家。在以下的代码示例中,前三行已经在你正在处理的 Python 脚本中:
```
import pygame
import sys
import os # 以下是新代码
class Player(pygame.sprite.Sprite):
    '''
    生成一个玩家
    '''
    def __init__(self):
        pygame.sprite.Sprite.__init__(self)
        self.images = []
    img = pygame.image.load(os.path.join('images','hero.png')).convert()
    self.images.append(img)
    self.image = self.images[0]
    self.rect  = self.image.get_rect()
```
如果你的可操控角色拥有一个走路循环,在 `images` 文件夹中将对应图片保存为 `hero1.png``hero4.png` 的独立文件。
使用一个循环来告诉 Python 遍历每个文件。
```
'''
对象
'''
class Player(pygame.sprite.Sprite):
    '''
    生成一个玩家
    '''
    def __init__(self):
        pygame.sprite.Sprite.__init__(self)
        self.images = []
        for i in range(1,5):
            img = pygame.image.load(os.path.join('images','hero' + str(i) + '.png')).convert()
            self.images.append(img)
            self.image = self.images[0]
            self.rect  = self.image.get_rect()
```
### 将玩家带入游戏世界
现在已经创建好了一个 Player 类,你需要使用它在你的游戏世界中生成一个玩家妖精。如果你不调用 Player 类,那它永远不会起作用,(游戏世界中)也就不会有玩家。你可以通过立马运行你的游戏来验证一下。游戏会像上一篇文章末尾看到的那样运行,并得到明确的结果:一个空荡荡的游戏世界。
为了将一个玩家妖精带到你的游戏世界,你必须通过调用 Player 类来生成一个妖精,并将它加入到 Pygame 的妖精组中。在如下的代码示例中,前三行是已经存在的代码,你需要在其后添加代码:
```
world       = pygame.display.set_mode([worldx,worldy])
backdrop    = pygame.image.load(os.path.join('images','stage.png')).convert()
backdropbox = screen.get_rect()
# 以下是新代码
player = Player()   # 生成玩家
player.rect.x = 0   # 移动 x 坐标
player.rect.y = 0   # 移动 y 坐标
player_list = pygame.sprite.Group()
player_list.add(player)
```
尝试启动你的游戏来看看发生了什么。高能预警:它不会像你预期的那样工作,当你启动你的项目,玩家妖精没有出现。事实上它生成了,只不过只出现了一毫秒。你要如何修复一个只出现了一毫秒的东西呢?你可能回想起上一篇文章中,你需要在主循环中添加一些东西。为了使玩家的存在时间超过一毫秒,你需要告诉 Python 在每次循环中都绘制一次。
将你的循环底部的语句更改如下:
```
    world.blit(backdrop, backdropbox)
    player_list.draw(screen) # 绘制玩家
    pygame.display.flip()
    clock.tick(fps)
```
现在启动你的游戏,你的玩家出现了!
### 设置 alpha 通道
根据你如何创建你的玩家妖精,在它周围可能会有一个色块。你所看到的是 alpha 通道应该占据的空间。它本来是不可见的“颜色”,但 Python 现在还不知道要使它不可见。那么你所看到的,是围绕在妖精周围的边界区(或现代游戏术语中的“<ruby>命中区<rt>hit box</rt></ruby>”)内的空间。
![](https://opensource.com/sites/default/files/u128651/greenscreen.jpg)
你可以通过设置一个 alpha 通道和 RGB 值来告诉 Python 使哪种颜色不可见。如果你不知道你使用 alpha 通道的图像的 RGB 值,你可以使用 Krita 或 Inkscape 打开它,并使用一种独特的颜色,比如 `#00ff00`(差不多是“绿屏绿”)来填充图像周围的空白区域。记下颜色对应的十六进制值(此处为 `#00ff00`,绿屏绿)并将其作为 alpha 通道用于你的 Python 脚本。
使用 alpha 通道需要在你的妖精生成相关代码中添加如下两行。类似第一行的代码已经存在于你的脚本中,你只需要添加另外两行:
```
            img = pygame.image.load(os.path.join('images','hero' + str(i) + '.png')).convert()
            img.convert_alpha()     # 优化 alpha
            img.set_colorkey(ALPHA) # 设置 alpha
```
除非你告诉它,否则 Python 不知道将哪种颜色作为 alpha 通道。在你代码的设置相关区域,添加一些颜色定义。将如下的变量定义添加于你的设置相关区域的任意位置:
```
ALPHA = (0, 255, 0)
```
在以上示例代码中,`0,255,0` 被我们使用,它在 RGB 中所代表的值与 `#00ff00` 在十六进制中所代表的值相同。你可以通过一个优秀的图像应用程序,如 [GIMP][7]、Krita 或 Inkscape来获取所有这些颜色值。或者你可以使用一个优秀的系统级颜色选择器如 [KColorChooser][8],来检测颜色。
![](https://opensource.com/sites/default/files/u128651/kcolor.png)
如果你的图像应用程序将你的妖精背景渲染成了其他的值,你可以按需调整 `ALPHA` 变量的值。不论你将 alpha 设为多少最后它都将“不可见”。RGB 颜色值是非常严格的,因此如果你需要将 alpha 设为 000但你又想将 000 用于你图像中的黑线,你只需要将图像中线的颜色设为 111。这样一来图像中的黑线就足够接近黑色但除了电脑以外没有人能看出区别。
运行你的游戏查看结果。
![](https://opensource.com/sites/default/files/u128651/alpha.jpg)
在 [这个系列的第四篇文章][9] 中,我会向你们展示如何使你的妖精动起来。多么的激动人心啊!
--------------------------------------------------------------------------------
via: https://opensource.com/article/17/12/game-python-add-a-player
作者:[Seth Kenlon][a]
选题:[lujun9972][b]
译者:[cycoe](https://github.com/cycoe)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://opensource.com/users/seth
[b]: https://github.com/lujun9972
[1]: https://linux.cn/article-9071-1.html
[2]: https://linux.cn/article-10850-1.html
[3]: http://krita.org
[4]: http://inkscape.org
[5]: http://openclipart.org
[6]: https://opengameart.org/
[7]: http://gimp.org
[8]: https://github.com/KDE/kcolorchooser
[9]: https://opensource.com/article/17/12/program-game-python-part-4-moving-your-sprite

View File

@ -0,0 +1,130 @@
DomTerm一款为 Linux 打造的终端模拟器
======
> 了解一下 DomTerm这是一款终端模拟器和复用器带有 HTML 图形和其它不多见的功能。
![](https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/osdc_terminals.png?itok=CfBqYBah)
[DomTerm][1] 是一款现代化的终端模拟器,它使用浏览器引擎作为 “GUI 工具包”。这就支持了一些相关的特性例如可嵌入图像和链接、HTML 富文本以及可折叠(显示/隐藏)命令。除此以外,它看起来感觉就像一个功能完整、独立的终端模拟器,有着出色 xterm 兼容性(包括鼠标处理和 24 位色)和恰当的 “装饰” (菜单)。另外它内置支持了会话管理和副窗口(如同 `tmux``GNU Screen` 中一样)、基本输入编辑(如在 `readline` 中)以及分页(如在 `less` 中)。
![](https://opensource.com/sites/default/files/u128651/domterm1.png)
*图 1: DomTerminal 终端模拟器。*
在以下部分我们将看一看这些特性。我们将假设你已经安装好了 `domterm` (如果你需要获取并构建 Dormterm 请跳到本文最后)。开始之前先让我们概览一下这项技术。
### 前端 vs. 后端
DomTerm 大部分是用 JavaScript 写的,它运行在一个浏览器引擎中。它可以是像例如 Chrome 或者 Firefox 一样的桌面浏览器(见图 3也可以是一个内嵌的浏览器。使用一个通用的网页浏览器没有问题但是用户体验却不够好因为菜单是为通用的网页浏览而不是为了终端模拟器所打造),并且其安全模型也会妨碍使用。因此使用内嵌的浏览器更好一些。
目前以下这些是支持的:
* qdomterm使用了 Qt 工具包 和 QtWebEngine
* 一个内嵌的 [Electron][2](见图 1
* atom-domterm 以 [Atom 文本编辑器][3](同样基于 Electron包的形式运行 DomTerm并和 Atom 面板系统集成在一起(见图 2
* 一个为 JavaFX 的 WebEngine 包装器,这对 Java 编程十分有用(见图 4
* 之前前端使用 [Firefox-XUL][4] 作为首选,但是 Mozilla 已经终止了 XUL
![在 Atom 编辑器中的 DomTerm 终端面板][6]
*图 2在 Atom 编辑器中的 DomTerm 终端面板。*
目前Electron 前端可能是最佳选择,紧随其后的是 Qt 前端。如果你使用 Atomatom-domterm 也工作得相当不错。
后端服务器是用 C 写的。它管理着伪终端PTY和会话。它同样也是一个为前端提供 Javascript 和其它文件的 HTTP 服务器。`domterm` 命令启动终端任务和执行其它请求。如果没有服务器在运行domterm 就会自己来服务。后端与服务器之间的通讯通常是用 WebSockets在服务器端是[libwebsockets][8]完成的。然而JavaFX 的嵌入既不用 Websockets 也不用 DomTerm 服务器。相反 Java 应用直接通过 Java-Javascript 桥接进行通讯。
### 一个稳健的可兼容 xterm 的终端模拟器
DomTerm 看上去感觉像一个现代的终端模拟器。它处理鼠标事件、24 位色、Unicode、倍宽字符CJK以及输入方式。DomTerm 在 [vttest 测试套件][9] 上工作地十分出色。
其不同寻常的特性包括:
**展示/隐藏按钮(“折叠”):** 小三角(如上图 2是隐藏/展示相应输出的按钮。仅需在[提示符][11]中添加特定的[转义字符][10]就可以创建按钮。
**对于 readline 和类似输入编辑器的鼠标点击支持:** 如果你点击输入区域黄色DomTerm 会向应用发送正确的方向键按键序列。(可以通过提示符中的转义字符启用这一特性,你也可以通过 `Alt+点击` 强制使用。)
**用 CSS 样式化终端:** 这通常是在 `~/.domterm/settings.ini` 里完成的,保存时会自动重载。例如在图 2 中,设置了终端专用的背景色。
### 一个更好的 REPL 控制台
一个经典的终端模拟器基于长方形的字符单元格工作的。这在 REPL命令行上没问题但是并不理想。这里有些通常在终端模拟器中不常见的 REPL 很有用的 DomTerm 特性:
**一个能“打印”图片、图形、数学公式或者一组可点击的链接的命令:** 应用可以发送包含几乎任何 HTML 的转义字符。HTML 会被剔除部分,以移除 JavaScript 和其它危险特性。)
图 3 显示了来自 [gnuplot][12] 会话的一个片段。Gnuplot2.1 或者跟高版本)支持 DormTerm 作为终端类型。图形输出被转换成 [SVG 图片][13],然后被打印到终端。我的博客帖子[在 DormTerm 上的 Gnuplot 展示][14]在这方面提供了更多信息。
![](https://opensource.com/sites/default/files/dt-gnuplot.png)
*图 3Gnuplot 截图。*
[Kawa][15] 语言有一个创建并转换[几何图像值][16]的库。如果你将这样的图片值打印到 DomTerm 终端,图片就会被转换成 SVG 形式并嵌入进输出中。
![](https://opensource.com/sites/default/files/dt-kawa1.png)
*图 4Kawa 中可计算的几何形状。*
**富文本输出:** 有着 HTML 样式的帮助信息更加便于阅读,看上去也更漂亮。图片 1 的下面面板展示 `dormterm help` 的输出。(如果没在 DomTerm 下运行的话输出的是普通文本。)注意自带的分页器中的 `PAUSED` 消息。
**包括可点击链接的错误消息:** DomTerm 可以识别语法 `filename:line:column` 并将其转化成一个能在可定制文本编辑器中打开文件并定位到行的链接。(这适用于相对路径的文件名,如果你用 `PROMPT_COMMAND` 或类似的跟踪目录。)
编译器可以侦测到它在 DomTerm 下运行,并直接用转义字符发出文件链接。这比依赖 DomTerm 的样式匹配要稳健得多,因为它可以处理空格和其他字符并且无需依赖目录追踪。在图 4 中,你可以看到来自 [Kawa Compiler][15] 的错误消息。悬停在文件位置上会使其出现下划线,`file:` URL 出现在 `atom-domterm` 消息栏(窗口底部)中。(当不用 atom-domterm 时,这样的消息会在一个浮层的框中显示,如图 1 中所看到的 `PAUSED` 消息所示。)
点击链接时的动作是可以配置的。默认对于带有 `#position` 后缀的 `file:` 链接的动作是在文本编辑器中打开那个文件。
**结构化内部表示:**以下内容均以内部节点结构表示:命令、提示符、输入行、正常和错误输出、标签,如果“另存为 HTML”则保留结构。HTML 文件与 XML 兼容,因此你可以使用 XML 工具搜索或转换输出。命令 `domterm view-saved` 会以一种启用命令折叠(显示/隐藏按钮处于活动状态)和重新调整窗口大小的方式打开保存的 HTML 文件。
**内建的 Lisp 样式优美打印:** 你可以在输出中包括优美打印指令比如grouping这样断行会根据窗口大小调整而重新计算。查看我的文章 [DomTerm 中的动态优美打印][17]以更深入探讨。
**基本的内建行编辑**,带着历史记录(像 GNU readline 一样): 这使用浏览器自带的编辑器,因此它有着优秀的鼠标和选择处理机制。你可以在正常字符模式(大多数输入的字符被指接送向进程);或者行模式(通常的字符是直接插入的,而控制字符导致编辑操作,回车键会向进程发送被编辑行)之间转换。默认的是自动模式,根据 PTY 是在原始模式还是终端模式中DomTerm 在字符模式与行模式间转换。
**自带的分页器**(类似简化版的 `less`):键盘快捷键控制滚动。在“页模式”中,输出在每个新的屏幕(或者单独的行,如果你想一行行地向前移)后暂停;页模式对于用户输入简单智能,因此(如果你想的话)你无需阻碍交互式程序就可以运行它。
### 多路复用和会话
**标签和平铺:** 你不仅可以创建多个终端标签,也可以平铺它们。你可以要么使用鼠标或键盘快捷键来创建或者切换面板和标签。它们可以用鼠标重新排列并调整大小。这是通过 [GoldenLayout][18] JavaScript 库实现的。图 1 展示了一个有着两个面板的窗口。上面的有两个标签,一个运行 [Midnight Commander][20];底下的面板以 HTML 形式展示了 `dormterm help` 输出。然而相反在 Atom 中我们使用其自带的可拖拽的面板和标签。你可以在图 2 中看到这个。
**分离或重接会话:** 与 `tmux` 和 GNU `screen` 类似DomTerm 支持会话安排。你甚至可以给同样的会话接上多个窗口或面板。这支持多用户会话分享和远程链接。(为了安全,同一个服务器的所有会话都需要能够读取 Unix 域接口和一个包含随机密钥的本地文件。当我们有了良好、安全的远程链接,这个限制将会有所放松。)
**domterm 命令** 类似与 `tmux` 和 GNU `screen`,它有多个选项可以用于控制或者打开单个或多个会话的服务器。主要的差别在于,如果它没在 DomTerm 下运行,`dormterm` 命令会创建一个新的顶层窗口,而不是在现有的终端中运行。
`tmux``git` 类似,`dormterm` 命令有许多子命令。一些子命令创建窗口或者会话。另一些(例如“打印”一张图片)仅在现有的 DormTerm 会话下起作用。
命令 `domterm browse` 打开一个窗口或者面板以浏览一个指定的 URL例如浏览文档的时候。
### 获取并安装 DomTerm
DomTerm 可以从其 [Github 仓库][21]获取。目前没有提前构建好的包,但是有[详细指导][22]。所有的前提条件在 Fedora 27 上都有,这使得其特别容易被搭建。
--------------------------------------------------------------------------------
via: https://opensource.com/article/18/1/introduction-domterm-terminal-emulator
作者:[Per Bothner][a]
译者:[tomjlw](https://github.com/tomjlw)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]:https://opensource.com/users/perbothner
[1]:http://domterm.org/
[2]:https://electronjs.org/
[3]:https://atom.io/
[4]:https://en.wikipedia.org/wiki/XUL
[5]:/file/385346
[6]:https://opensource.com/sites/default/files/images/dt-atom1.png (DomTerm terminal panes in Atom editor)
[7]:https://opensource.com/sites/default/files/images/dt-atom1.png
[8]:https://libwebsockets.org/
[9]:http://invisible-island.net/vttest/
[10]:http://domterm.org/Wire-byte-protocol.html
[11]:http://domterm.org/Shell-prompts.html
[12]:http://www.gnuplot.info/
[13]:https://developer.mozilla.org/en-US/docs/Web/SVG
[14]:http://per.bothner.com/blog/2016/gnuplot-in-domterm/
[15]:https://www.gnu.org/software/kawa/
[16]:https://www.gnu.org/software/kawa/Composable-pictures.html
[17]:http://per.bothner.com/blog/2017/dynamic-prettyprinting/
[18]:https://golden-layout.com/
[19]:https://opensource.com/sites/default/files/u128651/domterm1.png
[20]:https://midnight-commander.org/
[21]:https://github.com/PerBothner/DomTerm
[22]:http://domterm.org/Downloading-and-building.html

View File

@ -0,0 +1,229 @@
ddgr一个从终端搜索 DuckDuckGo 的命令行工具
======
在 Linux 中Bash 技巧非常棒,它使 Linux 中的一切成为可能。
对于开发人员或系统管理员来说,它真的很管用,因为他们大部分时间都在使用终端。你知道他们为什么喜欢这种技巧吗?
因为这些技巧可以提高他们的工作效率,也能使他们工作更快。
### 什么是 ddgr
[ddgr][1] 是一个命令行实用程序,用于从终端搜索 DuckDuckGo。如果设置了 `BROWSER` 环境变量ddgr 可以在几个基于文本的浏览器中开箱即用。
确保你的系统安装了任何一个基于文本的浏览器。你可能知道 [googler][2],它允许用户从 Linux 命令行进行 Google 搜索。
它在命令行用户中非常受欢迎,他们期望对隐私敏感的 DuckDuckGo 也有类似的实用程序,这就是 `ddgr` 出现的原因。
与 Web 界面不同,你可以指定每页要查看的搜索结果数。
**建议阅读:**
- [Googler 从 Linux 命令行搜索 Google][2]
- [Buku Linux 中一个强大的命令行书签管理器][3]
- [SoCLI 从终端搜索和浏览 StackOverflow 的简单方法][4]
- [RTVReddit 终端查看器)- 一个简单的 Reddit 终端查看器][5]
### 什么是 DuckDuckGo
DDG 即 DuckDuckGo。DuckDuckGoDDG是一个真正保护用户搜索和隐私的互联网搜索引擎。它没有过滤用户的个性化搜索结果对于给定的搜索词它会向所有用户显示相同的搜索结果。
大多数用户更喜欢谷歌搜索引擎,但是如果你真的担心隐私,那么你可以放心地使用 DuckDuckGo。
### ddgr 特性
* 快速且干净(没有广告、多余的 URL 或杂物参数),自定义颜色
* 旨在以最小的空间提供最高的可读性
* 指定每页显示的搜索结果数
* 可以在 omniprompt 中导航结果,在浏览器中打开 URL
* 用于 Bash、Zsh 和 Fish 的搜索和选项补完脚本
* 支持 DuckDuckGo Bang带有自动补完
* 直接在浏览器中打开第一个结果(如同 “Im Feeling Ducky”
* 不间断搜索:无需退出即可在 omniprompt 中触发新搜索
* 关键字支持例如filetype:mime、site:somesite.com
* 按时间、指定区域搜索,禁用安全搜索
* 支持 HTTPS 代理,支持 Do Not Track可选择禁用用户代理字符串
* 支持自定义 URL 处理程序脚本或命令行实用程序
* 全面的文档man 页面有方便的使用示例
* 最小的依赖关系
### 需要条件
`ddgr` 需要 Python 3.4 或更高版本。因此,确保你的系统应具有 Python 3.4 或更高版本。
```
$ python3 --version
Python 3.6.3
```
### 如何在 Linux 中安装 ddgr
我们可以根据发行版使用以下命令轻松安装 `ddgr`
对于 Fedora ,使用 [DNF 命令][6]来安装 `ddgr`
```
# dnf install ddgr
```
或者我们可以使用 [SNAP 命令][7]来安装 `ddgr`
```
# snap install ddgr
```
对于 LinuxMint/Ubuntu使用 [APT-GET 命令][8] 或 [APT 命令][9]来安装 `ddgr`
```
$ sudo add-apt-repository ppa:twodopeshaggy/jarun
$ sudo apt-get update
$ sudo apt-get install ddgr
```
对于基于 Arch Linux 的系统,使用 [Yaourt 命令][10]或 [Packer 命令][11]从 AUR 仓库安装 `ddgr`
```
$ yaourt -S ddgr
$ packer -S ddgr
```
对于 Debian使用 [DPKG 命令][12] 安装 `ddgr`
```
# wget https://github.com/jarun/ddgr/releases/download/v1.2/ddgr_1.2-1_debian9.amd64.deb
# dpkg -i ddgr_1.2-1_debian9.amd64.deb
```
对于 CentOS 7使用 [YUM 命令][13]来安装 `ddgr`
```
# yum install https://github.com/jarun/ddgr/releases/download/v1.2/ddgr-1.2-1.el7.3.centos.x86_64.rpm
```
对于 opensuse使用 [zypper 命令][14]来安装 `ddgr`
```
# zypper install https://github.com/jarun/ddgr/releases/download/v1.2/ddgr-1.2-1.opensuse42.3.x86_64.rpm
```
### 如何启动 ddgr
在终端上输入 `ddgr` 命令,不带任何选项来进行 DuckDuckGo 搜索。你将获得类似于下面的输出。
```
$ ddgr
```
![][16]
### 如何使用 ddgr 进行搜索
我们可以通过两种方式启动搜索。从 omniprompt 或者直接从终端开始。你可以搜索任何你想要的短语。
直接从终端:
```
$ ddgr 2daygeek
```
![][17]
从 omniprompt
![][18]
### Omniprompt 快捷方式
输入 `?` 以获得 omniprompt它将显示关键字列表和进一步使用 `ddgr` 的快捷方式。
![][19]
### 如何移动下一页、上一页和第一页
它允许用户移动下一页、上一页或第一页。
* `n` 移动到下一组搜索结果
* `p` 移动到上一组搜索结果
* `f` 跳转到第一页
![][20]
### 如何启动新搜索
`d` 选项允许用户从 omniprompt 发起新的搜索。例如,我搜索了 “2daygeek website”现在我将搜索 “Magesh Maruthamuthu” 这个新短语。
从 omniprompt
```
ddgr (? for help) d magesh maruthmuthu
```
![][21]
### 在搜索结果中显示完整的 URL
默认情况下,它仅显示文章标题,在搜索中添加 `x` 选项以在搜索结果中显示完整的文章网址。
```
$ ddgr -n 5 -x 2daygeek
```
![][22]
### 限制搜索结果
默认情况下,搜索结果每页显示 10 个结果。如果你想为方便起见限制页面结果,可以使用 `ddgr` 带有 `--num`` -n` 参数。
```
$ ddgr -n 5 2daygeek
```
![][23]
### 网站特定搜索
要搜索特定网站的特定页面,使用以下格式。这将从网站获取给定关键字的结果。例如,我们在 2daygeek 网站下搜索 “Package Manager”查看结果。
```
$ ddgr -n 5 --site 2daygeek "package manager"
```
![][24]
--------------------------------------------------------------------------------
via: https://www.2daygeek.com/ddgr-duckduckgo-search-from-the-command-line-in-linux/
作者:[Magesh Maruthamuthu][a]
译者:[MjSeven](https://github.com/MjSeven)
校对:[wxy](https://github.com/wxy)
选题:[lujun9972](https://github.com/lujun9972)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]:https://www.2daygeek.com/author/magesh/
[1]:https://github.com/jarun/ddgr
[2]:https://www.2daygeek.com/googler-google-search-from-the-command-line-on-linux/
[3]:https://www.2daygeek.com/buku-command-line-bookmark-manager-linux/
[4]:https://www.2daygeek.com/socli-search-and-browse-stack-overflow-from-linux-terminal/
[5]:https://www.2daygeek.com/rtv-reddit-terminal-viewer-a-simple-terminal-viewer-for-reddit/
[6]:https://www.2daygeek.com/dnf-command-examples-manage-packages-fedora-system/
[7]:https://www.2daygeek.com/snap-command-examples/
[8]:https://www.2daygeek.com/apt-get-apt-cache-command-examples-manage-packages-debian-ubuntu-systems/
[9]:https://www.2daygeek.com/apt-command-examples-manage-packages-debian-ubuntu-systems/
[10]:https://www.2daygeek.com/install-yaourt-aur-helper-on-arch-linux/
[11]:https://www.2daygeek.com/install-packer-aur-helper-on-arch-linux/
[12]:https://www.2daygeek.com/dpkg-command-to-manage-packages-on-debian-ubuntu-linux-mint-systems/
[13]:https://www.2daygeek.com/yum-command-examples-manage-packages-rhel-centos-systems/
[14]:https://www.2daygeek.com/zypper-command-examples-manage-packages-opensuse-system/
[15]:
[16]:https://www.2daygeek.com/wp-content/uploads/2018/03/ddgr-duckduckgo-command-line-search-for-linux1.png
[17]:https://www.2daygeek.com/wp-content/uploads/2018/03/ddgr-duckduckgo-command-line-search-for-linux-3.png
[18]:https://www.2daygeek.com/wp-content/uploads/2018/03/ddgr-duckduckgo-command-line-search-for-linux-2.png
[19]:https://www.2daygeek.com/wp-content/uploads/2018/03/ddgr-duckduckgo-command-line-search-for-linux-4.png
[20]:https://www.2daygeek.com/wp-content/uploads/2018/03/ddgr-duckduckgo-command-line-search-for-linux-5a.png
[21]:https://www.2daygeek.com/wp-content/uploads/2018/03/ddgr-duckduckgo-command-line-search-for-linux-6a.png
[22]:https://www.2daygeek.com/wp-content/uploads/2018/03/ddgr-duckduckgo-command-line-search-for-linux-7a.png
[23]:https://www.2daygeek.com/wp-content/uploads/2018/03/ddgr-duckduckgo-command-line-search-for-linux-8.png
[24]:https://www.2daygeek.com/wp-content/uploads/2018/03/ddgr-duckduckgo-command-line-search-for-linux-9a.png

View File

@ -0,0 +1,155 @@
PHP PDO 简单教程
======
![](http://www.theitstuff.com/wp-content/uploads/2018/04/php-language.jpg)
大约 80% 的 Web 应用程序由 PHP 提供支持。类似地SQL 也是如此。PHP 5.5 版本之前,我们有用于访问 MySQL 数据库的 mysql_ 命令,但由于安全性不足,它们最终被弃用。
弃用这件事是发生在 2013 年的 PHP 5.5 上,我写这篇文章的时间是 2018 年PHP 版本为 7.2。mysql_ 的弃用带来了访问数据库的两种主要方法mysqli 和 PDO 库。
虽然 mysqli 库是官方指定的,但由于 mysqli 只能支持 mysql 数据库,而 PDO 可以支持 12 种不同类型的数据库驱动程序,因此 PDO 获得了更多的赞誉。此外PDO 还有其它一些特性,使其成为大多数开发人员的更好选择。你可以在下表中看到一些特性比较:
| | PDO | MySQLi
---|---|---
| 数据库支持 | 12 种驱动 | 只有 MySQL
| 范例 | OOP | 过程 + OOP
| 预处理语句(客户端侧) | Yes | No
| 1命名参数 | Yes | No
现在我想对于大多数开发人员来说PDO 是首选的原因已经很清楚了。所以让我们深入研究它,并希望在本文中尽量涵盖关于 PDO 你需要的了解的。
### 连接
第一步是连接到数据库,由于 PDO 是完全面向对象的,所以我们将使用 PDO 类的实例。
我们要做的第一件事是定义主机、数据库名称、用户名、密码和数据库字符集。
```
$host = 'localhost';
$db = 'theitstuff';
$user = 'root';
$pass = 'root';
$charset = 'utf8mb4';
$dsn = "mysql:host=$host;dbname=$db;charset=$charset";
$conn = new PDO($dsn, $user, $pass);
```
之后,正如你在上面的代码中看到的,我们创建了 DSN 变量DSN 变量只是一个保存数据库信息的变量。对于一些在外部服务器上运行 MySQL 的人,你还可以通过提供一个 `port=$port_number` 来调整端口号。
最后,你可以创建一个 PDO 类的实例,我使用了 `$conn` 变量,并提供了 `$dsn`、`$user`、`$pass` 参数。如果你遵循这些步骤,你现在应该有一个名为 `$conn` 的对象,它是 PDO 连接类的一个实例。现在是时候进入数据库并运行一些查询。
### 一个简单的 SQL 查询
现在让我们运行一个简单的 SQL 查询。
```
$tis = $conn->query('SELECT name, age FROM students');
while ($row = $tis->fetch())
{
echo $row['name']."\t";
echo $row['age'];
echo "<br>";
}
```
这是使用 PDO 运行查询的最简单形式。我们首先创建了一个名为 `tis`TheITStuff 的缩写 )的变量,然后你可以看到我们使用了创建的 `$conn` 对象中的查询函数。
然后我们运行一个 `while` 循环并创建了一个 `$row` 变量来从 `$tis` 对象中获取内容,最后通过调用列名来显示每一行。
很简单,不是吗?现在让我们来看看预处理语句。
### 预处理语句
预处理语句是人们开始使用 PDO 的主要原因之一,因为它提供了可以阻止 SQL 注入的语句。
有两种基本方法可供使用,你可以使用位置参数或命名参数。
#### 位置参数
让我们看一个使用位置参数的查询示例。
```
$tis = $conn->prepare("INSERT INTO STUDENTS(name, age) values(?, ?)");
$tis->bindValue(1,'mike');
$tis->bindValue(2,22);
$tis->execute();
```
在上面的例子中,我们放置了两个问号,然后使用 `bindValue()` 函数将值映射到查询中。这些值绑定到语句问号中的位置。
我还可以使用变量而不是直接提供值,通过使用 `bindParam()` 函数相同例子如下:
```
$name='Rishabh'; $age=20;
$tis = $conn->prepare("INSERT INTO STUDENTS(name, age) values(?, ?)");
$tis->bindParam(1,$name);
$tis->bindParam(2,$age);
$tis->execute();
```
### 命名参数
命名参数也是预处理语句,它将值/变量映射到查询中的命名位置。由于没有位置绑定,因此在多次使用相同变量的查询中非常有效。
```
$name='Rishabh'; $age=20;
$tis = $conn->prepare("INSERT INTO STUDENTS(name, age) values(:name, :age)");
$tis->bindParam(':name', $name);
$tis->bindParam(':age', $age);
$tis->execute();
```
你可以注意到,唯一的变化是我使用 `:name``:age` 作为占位符,然后将变量映射到它们。冒号在参数之前使用,让 PDO 知道该位置是一个变量,这非常重要。
你也可以类似地使用 `bindValue()` 来使用命名参数直接映射值。
### 获取数据
PDO 在获取数据时非常丰富,它实际上提供了许多格式来从数据库中获取数据。
你可以使用 `PDO::FETCH_ASSOC` 来获取关联数组,`PDO::FETCH_NUM` 来获取数字数组,使用 `PDO::FETCH_OBJ` 来获取对象数组。
```
$tis = $conn->prepare("SELECT * FROM STUDENTS");
$tis->execute();
$result = $tis->fetchAll(PDO::FETCH_ASSOC);
```
你可以看到我使用了 `fetchAll`,因为我想要所有匹配的记录。如果只需要一行,你可以简单地使用 `fetch`
现在我们已经获取了数据,现在是时候循环它了,这非常简单。
```
foreach ($result as $lnu){
echo $lnu['name'];
echo $lnu['age']."<br>";
}
```
你可以看到,因为我请求了关联数组,所以我正在按名称访问各个成员。
虽然在定义希望如何传输递数据方面没有要求,但在定义 `$conn` 变量本身时,实际上可以将其设置为默认值。
你需要做的就是创建一个 `$options` 数组,你可以在其中放入所有默认配置,只需在 `$conn` 变量中传递数组即可。
```
$options = [
PDO::ATTR_DEFAULT_FETCH_MODE => PDO::FETCH_ASSOC,
];
$conn = new PDO($dsn, $user, $pass, $options);
```
这是一个非常简短和快速的 PDO 介绍,我们很快就会制作一个高级教程。如果你在理解本教程的任何部分时遇到任何困难,请在评论部分告诉我,我会在那你为你解答。
--------------------------------------------------------------------------------
via: http://www.theitstuff.com/easiest-pdo-tutorial-basics
作者:[Rishabh Kandari][a]
选题:[lujun9972](https://github.com/lujun9972)
译者:[MjSeven](https://github.com/MjSeven)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]:http://www.theitstuff.com/author/reevkandari

View File

@ -1,21 +1,22 @@
没有恶棍,英雄又将如何?如何向你的 Python 游戏中添加一个敌人
如何向你的 Python 游戏中添加一个敌人
======
> 在本系列的第五部分,学习如何增加一个坏蛋与你的好人战斗。
![](https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/game-dogs-chess-play-lead.png?itok=NAuhav4Z)
在本系列的前几篇文章中(参见 [第一部分][1]、[第二部分][2]、[第三部分][3] 以及 [第四部分][4]),你已经学习了如何使用 Pygame 和 Python 在一个空白的视频游戏世界中生成一个可玩的角色。但没有恶棍,英雄又将如何?
如果你没有敌人,那将会是一个非常无聊的游戏。所以在此篇文章中,你将为你的游戏添加一个敌人并构建一个用于创建关卡的框架。
在对玩家妖精实现全部功能仍有许多事情可做之前,跳向敌人似乎就很奇怪。但你已经学到了很多东西,创造恶棍与与创造玩家妖精非常相似。所以放轻松,使用你已经掌握的知识,看看能挑起怎样一些麻烦。
在对玩家妖精实现全部功能之前,就来实现一个敌人似乎就很奇怪。但你已经学到了很多东西,创造恶棍与与创造玩家妖精非常相似。所以放轻松,使用你已经掌握的知识,看看能挑起怎样一些麻烦。
针对本次训练,你能够从 [Open Game Art][5] 下载一些预创建的素材。此处是我使用的一些素材:
+ 印加花砖(译注:游戏中使用的花砖贴图)
+ 印加花砖LCTT 译注:游戏中使用的花砖贴图)
+ 一些侵略者
+ 妖精、角色、物体以及特效
### 创造敌方妖精
是的,不管你意识到与否,你其实已经知道如何去实现敌人。这个过程与创造一个玩家妖精非常相似:
@ -24,40 +25,27 @@
2. 创建 `update` 方法使得敌人能够检测碰撞
3. 创建 `move` 方法使得敌人能够四处游荡
从类入手。从概念上看,它与你的 Player 类大体相同。你设置一张或者一组图片,然后设置妖精的初始位置。
从类入手。从概念上看,它与你的 `Player` 类大体相同。你设置一张或者一组图片,然后设置妖精的初始位置。
在继续下一步之前,确保你有一张你的敌人的图像,即使只是一张临时图像。将图像放在你的游戏项目的 `images` 目录(你放置你的玩家图像的相同目录)。
如果所有的活物都拥有动画,那么游戏看起来会好得多。为敌方妖精设置动画与为玩家妖精设置动画具有相同的方式。但现在,为了保持简单,我们使用一个没有动画的妖精。
在你代码 `objects` 节的顶部,使用以下代码创建一个叫做 `Enemy` 的类:
```
class Enemy(pygame.sprite.Sprite):
    '''
生成一个敌人
    '''
    def __init__(self,x,y,img):
        pygame.sprite.Sprite.__init__(self)
        self.image = pygame.image.load(os.path.join('images',img))
        self.image.convert_alpha()
        self.image.set_colorkey(ALPHA)
        self.rect = self.image.get_rect()
        self.rect.x = x
        self.rect.y = y
```
如果你想让你的敌人动起来,使用让你的玩家拥有动画的 [相同方式][4]。
@ -67,25 +55,21 @@ class Enemy(pygame.sprite.Sprite):
你能够通过告诉类,妖精应使用哪张图像,应出现在世界上的什么地方,来生成不只一个敌人。这意味着,你能够使用相同的敌人类,在游戏世界的任意地方生成任意数量的敌方妖精。你需要做的仅仅是调用这个类,并告诉它应使用哪张图像,以及你期望生成点的 X 和 Y 坐标。
再次,这从原则上与生成一个玩家精灵相似。在你脚本的 `setup` 节添加如下代码:
```
enemy   = Enemy(20,200,'yeti.png') # 生成敌人
enemy_list = pygame.sprite.Group() # 创建敌人组
enemy_list.add(enemy)              # 将敌人加入敌人组
```
在示例代码中X 坐标为 20Y 坐标为 200。你可能需要根据你的敌方妖精的大小来调整这些数字但尽量生成在一个地方,使得你的玩家妖精能够到它。`Yeti.png` 是用于敌人的图像。
在示例代码中X 坐标为 20Y 坐标为 200。你可能需要根据你的敌方妖精的大小来调整这些数字但尽量生成在一个范围内,使得你的玩家妖精能够碰到它。`Yeti.png` 是用于敌人的图像。
接下来,将敌人组的所有敌人绘制在屏幕上。现在,你只有一个敌人,如果你想要更多你可以稍后添加。一但你将一个敌人加入敌人组,它就会在主循环中被绘制在屏幕上。中间这一行是你需要添加的新行:
```
    player_list.draw(world)
    enemy_list.draw(world)  # 刷新敌人
    pygame.display.flip()
```
启动你的游戏,你的敌人会出现在游戏世界中你选择的 X 和 Y 坐标处。
@ -96,42 +80,31 @@ enemy_list.add(enemy)              # 将敌人加入敌人组
思考一下“关卡”是什么。你如何知道你是在游戏中的一个特定关卡中呢?
你可以把关卡想成一系列项目的集合。就像你刚刚创建的这个平台中,一个关卡,包含了平台、敌人放置、赃物等的一个特定排列。你可以创建一个类,用来在你的玩家附近创建关卡。最终,当你创建了超过一个关卡,你就可以在你的玩家达到特定目标时,使用这个类生成下一个关卡。
你可以把关卡想成一系列项目的集合。就像你刚刚创建的这个平台中,一个关卡,包含了平台、敌人放置、战利品等的一个特定排列。你可以创建一个类,用来在你的玩家附近创建关卡。最终,当你创建了一个以上的关卡,你就可以在你的玩家达到特定目标时,使用这个类生成下一个关卡。
将你写的用于生成敌人及其群组的代码,移动到一个每次生成新关卡时都会被调用的新函数中。你需要做一些修改,使得每次你创建新关卡时,你都能够创建一些敌人。
```
class Level():
    def bad(lvl,eloc):
        if lvl == 1:
            enemy = Enemy(eloc[0],eloc[1],'yeti.png') # 生成敌人
            enemy_list = pygame.sprite.Group() # 生成敌人组
            enemy_list.add(enemy)              # 将敌人加入敌人组
        if lvl == 2:
            print("Level " + str(lvl) )
        return enemy_list
```
`return` 语句确保了当你调用 `Level.bad` 方法时,你将会得到一个 `enemy_list` 变量包含了所有你定义的敌人。
因为你现在将创造敌人作为每个关卡的一部分,你的 `setup` 部分也需要做些更改。不同于创造一个敌人,取而代之的是你必须去定义敌人在那里生成,以及敌人属于哪个关卡。
```
eloc = []
eloc = [200,20]
enemy_list = Level.bad( 1, eloc )
```
再次运行游戏来确认你的关卡生成正确。与往常一样,你应该会看到你的玩家,并且能看到你在本章节中添加的敌人。
@ -140,31 +113,27 @@ enemy_list = Level.bad( 1, eloc )
一个敌人如果对玩家没有效果,那么它不太算得上是一个敌人。当玩家与敌人发生碰撞时,他们通常会对玩家造成伤害。
因为你可能想要去跟踪玩家的生命值,因此碰撞检测发生在 Player 类,而不是 Enemy 类中。当然如果你想,你也可以跟踪敌人的生命值。它们之间的逻辑与代码大体相似,现在,我们只需要跟踪玩家的生命值。
因为你可能想要去跟踪玩家的生命值,因此碰撞检测发生在 `Player` 类,而不是 `Enemy` 类中。当然如果你想,你也可以跟踪敌人的生命值。它们之间的逻辑与代码大体相似,现在,我们只需要跟踪玩家的生命值。
为了跟踪玩家的生命值,你必须为它确定一个变量。代码示例中的第一行是上下文提示,那么将第二行代码添加到你的 Player 类中:
```
        self.frame  = 0
        self.health = 10
```
在你 Player 类的 `update` 方法中,添加如下代码块:
在你 `Player` 类的 `update` 方法中,添加如下代码块:
```
        hit_list = pygame.sprite.spritecollide(self, enemy_list, False)
        for enemy in hit_list:
            self.health -= 1
            print(self.health)
```
这段代码使用 Pygame 的 `sprite.spritecollide` 方法,建立了一个碰撞检测器,称作 `enemy_hit`。每当它的父类妖精(生成检测器的玩家妖精)的碰撞区触碰到 `enemy_list` 中的任一妖精的碰撞区时,碰撞检测器都会发出一个信号。当这个信号被接收,`for` 循环就会被触发,同时扣除一点玩家生命值。
一旦这段代码出现在你 Player 类的 `update` 方法,并且 `update` 方法在你的主循环中被调用Pygame 会在每个时钟 tick 检测一次碰撞。
一旦这段代码出现在你 `Player` 类的 `update` 方法,并且 `update` 方法在你的主循环中被调用Pygame 会在每个时钟滴答中检测一次碰撞。
### 移动敌人
@ -176,60 +145,41 @@ enemy_list = Level.bad( 1, eloc )
举个例子,你告诉你的敌方妖精向右移动 10 步,向左移动 10 步。但敌方妖精不会计数,因此你需要创建一个变量来跟踪你的敌人已经移动了多少步,并根据计数变量的值来向左或向右移动你的敌人。
首先,在你的 Enemy 类中创建计数变量。添加以下代码示例中的最后一行代码:
首先,在你的 `Enemy` 类中创建计数变量。添加以下代码示例中的最后一行代码:
```
        self.rect = self.image.get_rect()
        self.rect.x = x
        self.rect.y = y
        self.counter = 0 # 计数变量
```
然后,在你的 Enemy 类中创建一个 `move` 方法。使用 if-else 循环来创建一个所谓的死循环:
然后,在你的 `Enemy` 类中创建一个 `move` 方法。使用 if-else 循环来创建一个所谓的死循环:
* 如果计数在 0 到 100 之间,向右移动;
* 如果计数在 100 到 200 之间,向左移动;
* 如果计数大于 200则将计数重置为 0。
死循环没有终点,因为循环判断条件永远为真,所以它将永远循环下去。在此情况下,计数器总是介于 0 到 100 或 100 到 200 之间,因此敌人会永远地从左向右再从右向左移动。
你用于敌人在每个方向上移动距离的具体值,取决于你的屏幕尺寸,更确切地说,取决于你的敌人移动的平台大小。从较小的值开始,依据习惯逐步提高数值。首先进行如下尝试:
```
    def move(self):
        '''
敌人移动
        '''
        distance = 80
        speed = 8
        if self.counter >= 0 and self.counter <= distance:
            self.rect.x += speed
        elif self.counter >= distance and self.counter <= distance*2:
            self.rect.x -= speed
        else:
            self.counter = 0
        self.counter += 1
```
你可以根据需要调整距离和速度。
@ -237,13 +187,11 @@ enemy_list = Level.bad( 1, eloc )
当你现在启动游戏,这段代码有效果吗?
当然不,你应该也知道原因。你必须在主循环中调用 `move` 方法。如下示例代码中的第一行是上下文提示,那么添加最后两行代码:
```
    enemy_list.draw(world) #refresh enemy
    for e in enemy_list:
        e.move()
```
启动你的游戏看看当你打击敌人时发生了什么。你可能需要调整妖精的生成地点,使得你的玩家和敌人能够碰撞。当他们发生碰撞时,查看 [IDLE][6] 或 [Ninja-IDE][7] 的控制台,你可以看到生命值正在被扣除。
@ -261,15 +209,15 @@ via: https://opensource.com/article/18/5/pygame-enemy
作者:[Seth Kenlon][a]
选题:[lujun9972](https://github.com/lujun9972)
译者:[cycoe](https://github.com/cycoe)
校对:[校对者ID](https://github.com/校对者ID)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://opensource.com/users/seth
[1]:https://opensource.com/article/17/10/python-101
[2]:https://opensource.com/article/17/12/game-framework-python
[3]:https://opensource.com/article/17/12/game-python-add-a-player
[4]:https://opensource.com/article/17/12/game-python-moving-player
[1]:https://linux.cn/article-9071-1.html
[2]:https://linux.cn/article-10850-1.html
[3]:https://linux.cn/article-10858-1.html
[4]:https://linux.cn/article-10874-1.html
[5]:https://opengameart.org
[6]:https://docs.python.org/3/library/idle.html
[7]:http://ninja-ide.org/

View File

@ -0,0 +1,130 @@
[#]: collector: (lujun9972)
[#]: translator: (geekpi)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10830-1.html)
[#]: subject: (How to use autofs to mount NFS shares)
[#]: via: (https://opensource.com/article/18/6/using-autofs-mount-nfs-shares)
[#]: author: (Alan Formy-Duval https://opensource.com/users/alanfdoss)
如何使用 autofs 挂载 NFS 共享
======
> 给你的网络文件系统NFS配置一个基本的自动挂载功能。
![](https://img.linux.net.cn/data/attachment/album/201905/08/115328rva7kqw9wqh2qees.jpg)
大多数 Linux 文件系统在引导时挂载,并在系统运行时保持挂载状态。对于已在 `fstab` 中配置的任何远程文件系统也是如此。但是,有时你可能希望仅按需挂载远程文件系统。例如,通过减少网络带宽使用来提高性能,或出于安全原因隐藏或混淆某些目录。[autofs][1] 软件包提供此功能。在本文中,我将介绍如何配置基本的自动挂载。
首先做点假设:假设有台 NFS 服务器 `tree.mydatacenter.net` 已经启动并运行。另外假设一个名为 `ourfiles` 的数据目录还有供 Carl 和 Sarah 使用的用户目录,它们都由服务器共享。
一些最佳实践可以使工作更好:服务器上的用户和任何客户端工作站上的帐号有相同的用户 ID。此外你的工作站和服务器应有相同的域名。检查相关配置文件应该确认。
```
alan@workstation1:~$ sudo getent passwd carl sarah
[sudo] password for alan:
carl:x:1020:1020:Carl,,,:/home/carl:/bin/bash
sarah:x:1021:1021:Sarah,,,:/home/sarah:/bin/bash
alan@workstation1:~$ sudo getent hosts
127.0.0.1 localhost
127.0.1.1 workstation1.mydatacenter.net workstation1
10.10.1.5 tree.mydatacenter.net tree
```
如你所见,客户端工作站和 NFS 服务器都在 `hosts` 文件中配置。我假设这是一个基本的家庭甚至小型办公室网络,可能缺乏适合的内部域名服务(即 DNS
### 安装软件包
你只需要安装两个软件包:用于 NFS 客户端的 `nfs-common` 和提供自动挂载的 `autofs`
```
alan@workstation1:~$ sudo apt-get install nfs-common autofs
```
你可以验证 autofs 相关的文件是否已放在 `/etc` 目录中:
```
alan@workstation1:~$ cd /etc; ll auto*
-rw-r--r-- 1 root root 12596 Nov 19 2015 autofs.conf
-rw-r--r-- 1 root root 857 Mar 10 2017 auto.master
-rw-r--r-- 1 root root 708 Jul 6 2017 auto.misc
-rwxr-xr-x 1 root root 1039 Nov 19 2015 auto.net*
-rwxr-xr-x 1 root root 2191 Nov 19 2015 auto.smb*
alan@workstation1:/etc$
```
### 配置 autofs
现在你需要编辑其中几个文件并添加 `auto.home` 文件。首先,将以下两行添加到文件 `auto.master` 中:
```
/mnt/tree  /etc/auto.misc
/home/tree  /etc/auto.home
```
每行以挂载 NFS 共享的目录开头。继续创建这些目录:
```
alan@workstation1:/etc$ sudo mkdir /mnt/tree /home/tree
```
接下来,将以下行添加到文件 `auto.misc`
```
ourfiles        -fstype=nfs     tree:/share/ourfiles
```
该行表示 autofs 将挂载 `auto.master` 文件中匹配 `auto.misc``ourfiles` 共享。如上所示,这些文件将在 `/mnt/tree/ourfiles` 目录中。
第三步,使用以下行创建文件 `auto.home`
```
*               -fstype=nfs     tree:/home/&
```
该行表示 autofs 将挂载 `auto.master` 文件中匹配 `auto.home` 的用户共享。在这种情况下Carl 和 Sarah 的文件将分别在目录 `/home/tree/carl``/home/tree/sarah`中。星号 `*`(称为通配符)使每个用户的共享可以在登录时自动挂载。`` 符号也可以作为表示服务器端用户目录的通配符。它们的主目录会相应地根据 `passwd` 文件映射。如果你更喜欢本地主目录,则无需执行此操作。相反,用户可以将其用作特定文件的简单远程存储。
最后,重启 `autofs` 守护进程,以便识别并加载这些配置的更改。
```
alan@workstation1:/etc$ sudo service autofs restart
```
### 测试 autofs
如果更改文件 `auto.master` 中的列出目录,并运行 `ls` 命令,那么不会立即看到任何内容。例如,切换到目录 `/mnt/tree`。首先,`ls` 的输出不会显示任何内容,但在运行 `cd ourfiles` 之后,将自动挂载 `ourfiles` 共享目录。 `cd` 命令也将被执行,你将进入新挂载的目录中。
```
carl@workstation1:~$ cd /mnt/tree
carl@workstation1:/mnt/tree$ ls
carl@workstation1:/mnt/tree$ cd ourfiles
carl@workstation1:/mnt/tree/ourfiles$
```
为了进一步确认正常工作,`mount` 命令会显示已挂载共享的细节。
```
carl@workstation1:~$ mount
tree:/mnt/share/ourfiles on /mnt/tree/ourfiles type nfs4 (rw,relatime,vers=4.0,rsize=131072,wsize=131072,namlen=255,hard,proto=tcp,timeo=600,retrans=2,sec=sys,clientaddr=10.10.1.22,local_lock=none,addr=10.10.1.5)
```
对于 Carl 和 Sarah`/home/tree` 目录工作方式相同。
我发现在我的文件管理器中添加这些目录的书签很有用,可以用来快速访问。
--------------------------------------------------------------------------------
via: https://opensource.com/article/18/6/using-autofs-mount-nfs-shares
作者:[Alan Formy-Duval][a]
选题:[lujun9972](https://github.com/lujun9972)
译者:[geekpi](https://github.com/geekpi)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]:https://opensource.com/users/alanfdoss
[1]:https://wiki.archlinux.org/index.php/autofs

View File

@ -0,0 +1,86 @@
Adobe Lightroom 的三个开源替代品
=======
> 摄影师们:在没有 Lightroom 套件的情况下,可以看看这些 RAW 图像处理器。
![](https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/camera-photography-film.jpg?itok=oe2ixyu6)
如今智能手机的摄像功能已经完备到多数人认为可以代替传统摄影了。虽然这在傻瓜相机的市场中是个事实,但是对于许多摄影爱好者和专业摄影师看来,一个高端单反相机所能带来的照片景深、清晰度以及真实质感是口袋中的智能手机无法与之相比的。
所有的这些功能在便利性上要付出一些很小的代价;就像传统的胶片相机中的反色负片,单反照相得到的 RAW 格式文件必须预先处理才能印刷或编辑;因此对于单反相机,照片的后期处理是无可替代的,并且 首选应用就是 Adobe Lightroom。但是由于 Adobe Lightroom 的昂贵价格、基于订阅的定价模式以及专有许可证都使更多人开始关注其开源替代品。
Lightroom 有两大主要功能:处理 RAW 格式的图片文件以及数字资产管理系统DAM —— 通过标签、评星以及其他元数据信息来简单清晰地整理照片。
在这篇文章中我们将介绍三个开源的图片处理软件Darktable、LightZone 以及 RawTherapee。所有的软件都有 DAM 系统,但没有任何一个具有 Lightroom 基于机器学习的图像分类和标签功能。如果你想要知道更多关于开源的 DAM 系统的软件,可以看 Terry Hacock 的文章:“[开源项目的 DAM 管理][2]”,他分享了他在自己的 [Lunatics!][3] 电影项目研究过的开源多媒体软件。
### Darktable
![Darktable][4]
类似其他两个软件Darktable 可以处理 RAW 格式的图像并将它们转换成可用的文件格式 —— JPEG、PNG、TIFF、PPM、PFM 和 EXR它同时支持 Google 和 Facebook 的在线相册,上传至 Flikr通过邮件附件发送以及创建在线相册。
它有 61 个图像处理模块,可以调整图像的对比度、色调、明暗、色彩、噪点;添加水印;切割以及旋转;等等。如同另外两个软件一样,不论你做出多少次修改,这些修改都是“无损的” —— 你的初始 RAW 图像文件始终会被保存。
Darktable 可以从 400 多种相机型号中直接导入照片,以及有 JPEG、CR2、DNG、OpenEXR 和 PFM 等格式的支持。图像在一个数据库中显示,因此你可以轻易地过滤并查询这些元数据,包括了文字标签、评星以及颜色标签。软件同时支持 21 种语言,支持 Linux、MacOS、BSD、Solaris 11/GNOME 以及 WindowsWindows 版本是最新发布的Darktable 声明它比起其他版本可能还有一些不完备之处,有一些未实现的功能)。
Darktable 在开源许可证 [GPLv3][7] 下发布,你可以了解更多它的 [特性][8],查阅它的 [用户手册][9],或者直接去 Github 上看[源代码][10] 。
### LightZone
![LightZone's tool stack][11]
[LightZone][12] 和其他两个软件类似同样是无损的 RAW 格式图像处理工具:它是跨平台的,有 Windows、MacOS 和 Linux 版本,除 RAW 格式之外,它还支持 JPG 和 TIFF 格式的图像处理。接下来说说 LightZone 其他独特特性。
这个软件最初在 2005 年时,是以专有许可证发布的图像处理软件,后来在 BSD 证书下开源。此外,在你下载这个软件之前,你必须注册一个免费账号,以便 LightZone的 开发团队可以跟踪软件的下载数量以及建立相关社区。(许可很快,而且是自动的,因此这不是一个很大的使用障碍。)
除此之外的一个特性是这个软件的图像处理通常是通过很多可组合的工具实现的,而不是叠加滤镜(就像大多数图像处理软件),这些工具组可以被重新编排以及移除,以及被保存并且复制用到另一些图像上。如果想要编辑图片的部分区域,你还可以通过矢量工具或者根据色彩和亮度来选择像素。
想要了解更多,见 LightZone 的[论坛][13] 或者查看 Github上的 [源代码][14]。
### RawTherapee
![RawTherapee][15]
[RawTherapee][16] 是另一个值得关注的开源([GPL][17])的 RAW 图像处理器。就像 Darktable 和 LightZone它是跨平台的支持 Windows、MacOS 和 Linux一切修改都在无损条件下进行因此不论你叠加多少滤镜做出多少改变你都可以回到你最初的 RAW 文件。
RawTherapee 采用的是一个面板式的界面,包括一个历史记录面板来跟踪你做出的修改,以方便随时回到先前的图像;一个快照面板可以让你同时处理一张照片的不同版本;一个可滚动的工具面板可以方便准确地选择工具。这些工具包括了一系列的调整曝光、色彩、细节、图像变换以及去马赛克功能。
这个软件可以从多数相机直接导入 RAW 文件,并且支持超过 25 种语言,得到了广泛使用。批量处理以及 [SSE][18] 优化这类功能也进一步提高了图像处理的速度以及对 CPU 性能的利用。
RawTherapee 还提供了很多其他 [功能][19];可以查看它的 [官方文档][20] 以及 [源代码][21] 了解更多细节。
你是否在摄影中使用另外的开源 RAW 图像处理工具?有任何建议和推荐都可以在评论中分享。
------
via: https://opensource.com/alternatives/adobe-lightroom
作者:[Opensource.com][a]
选题:[lujun9972](https://github.com/lujun9972)
译者:[scoutydren](https://github.com/scoutydren)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://opensource.com
[1]: https://en.wikipedia.org/wiki/Raw_image_format
[2]: https://opensource.com/article/18/3/movie-open-source-software
[3]: http://lunatics.tv/
[4]: https://opensource.com/sites/default/files/styles/panopoly_image_original/public/uploads/raw-image-processors_darkroom1.jpg?itok=0fjk37tC "Darktable"
[5]: http://www.darktable.org/
[6]: https://www.darktable.org/about/faq/#faq-windows
[7]: https://github.com/darktable-org/darktable/blob/master/LICENSE
[8]: https://www.darktable.org/about/features/
[9]: https://www.darktable.org/resources/
[10]: https://github.com/darktable-org/darktable
[11]: https://opensource.com/sites/default/files/styles/panopoly_image_original/public/uploads/raw-image-processors_lightzone1tookstack.jpg?itok=1e3s85CZ
[12]: http://www.lightzoneproject.org/
[13]: http://www.lightzoneproject.org/Forum
[14]: https://github.com/ktgw0316/LightZone
[15]: https://opensource.com/sites/default/files/styles/panopoly_image_original/public/uploads/raw-image-processors_rawtherapee.jpg?itok=meiuLxPw "RawTherapee"
[16]: http://rawtherapee.com/
[17]: https://github.com/Beep6581/RawTherapee/blob/dev/LICENSE.txt
[18]: https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
[19]: http://rawpedia.rawtherapee.com/Features
[20]: http://rawpedia.rawtherapee.com/Main_Page
[21]: https://github.com/Beep6581/RawTherapee

View File

@ -0,0 +1,593 @@
[#]: collector: (lujun9972)
[#]: translator: (robsean)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10902-1.html)
[#]: subject: (Put platforms in a Python game with Pygame)
[#]: via: (https://opensource.com/article/18/7/put-platforms-python-game)
[#]: author: (Seth Kenlon https://opensource.com/users/seth)
在 Pygame 游戏中放置平台
======
> 在这个从零构建一个 Python 游戏系列的第六部分中,为你的角色创建一些平台来旅行。
![](https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/header.png?itok=iq8HFoEJ)
这是仍在进行中的关于使用 Pygame 模块来在 Python 3 中创建电脑游戏的系列文章的第六部分。先前的文章是:
+ [通过构建一个简单的掷骰子游戏去学习怎么用 Python 编程][24]
+ [使用 Python 和 Pygame 模块构建一个游戏框架][25]
+ [如何在你的 Python 游戏中添加一个玩家][26]
+ [用 Pygame 使你的游戏角色移动起来][27]
+ [如何向你的 Python 游戏中添加一个敌人][28]
一个平台类游戏需要平台。
在 [Pygame][1] 中,平台本身也是个妖精,正像你那个可玩的妖精。这一点是重要的,因为有个是对象的平台,可以使你的玩家妖精更容易与之互动。
创建平台有两个主要步骤。首先,你必须给该对象编写代码,然后,你必须映射出你希望该对象出现的位置。
### 编码平台对象
要构建一个平台对象,你要创建一个名为 `Platform` 的类。它是一个妖精,正像你的 `Player` [妖精][2] 一样,带有很多相同的属性。
你的 `Platform` 类需要知道很多平台类型的信息,它应该出现在游戏世界的哪里、它应该包含的什么图片等等。这其中很多信息可能还尚不存在,这要看你为你的游戏计划了多少,但是没有关系。正如直到[移动你的游戏角色][3]那篇文章结束时,你都没有告诉你的玩家妖精移动速度有多快,你不必事先告诉 `Platform` 每一件事。
在这系列中你所写的脚本的开头附近,创建一个新的类。在这个代码示例中前三行是用于说明上下文,因此在注释的下面添加代码:
```
import pygame
import sys
import os
## 新代码如下:
class Platform(pygame.sprite.Sprite):
# x location, y location, img width, img height, img file    
def __init__(self,xloc,yloc,imgw,imgh,img):
    pygame.sprite.Sprite.__init__(self)
    self.image = pygame.image.load(os.path.join('images',img)).convert()
    self.image.convert_alpha()
    self.image.set_colorkey(ALPHA)
    self.rect = self.image.get_rect()
    self.rect.y = yloc
    self.rect.x = xloc
```
当被调用时,这个类在某个 X 和 Y 位置上创建一个屏上对象,具有某种宽度和高度,并使用某种图像作为纹理。这与如何在屏上绘制出玩家或敌人非常类似。
### 平台的类型
下一步是绘制出你的平台需要出现的地方。
#### 瓷砖方式
实现平台类游戏世界有几种不同的方法。在最初的横向滚轴游戏中,例如,马里奥超级兄弟和刺猬索尼克,这个技巧是使用“瓷砖”方式,也就是说有几个代表地面和各种平台的块,并且这些块被重复使用来制作一个关卡。你只能有 8 或 12 种不同的块,你可以将它们排列在屏幕上来创建地面、浮动的平台,以及你游戏中需要的一切其它的事物。有人发现这是制作游戏最容易的方法了,因为你只需要制作(或下载)一小组关卡素材就能创建很多不同的关卡。然而,这里的代码需要一点数学知识。
![Supertux, a tile-based video game][5]
*[SuperTux][6] ,一个基于瓷砖的电脑游戏。*
#### 手工绘制方式
另一种方法是将每个素材作为一个整体图像。如果你喜欢为游戏世界创建素材,那你会在用图形应用程序构建游戏世界的每个部分上花费很多时间。这种方法不需要太多的数学知识,因为所有的平台都是整体的、完整的对象,你只需要告诉 [Python][7] 将它们放在屏幕上的什么位置。
每种方法都有优势和劣势,并且根据于你选择使用的方式,代码稍有不同。我将覆盖这两方面,所以你可以在你的工程中使用一种或另一种,甚至两者的混合。
### 关卡绘制
总的来说,绘制你的游戏世界是关卡设计和游戏编程中的一个重要的部分。这需要数学知识,但是没有什么太难的,而且 Python 擅长数学,它会有所帮助。
你也许发现先在纸张上设计是有用的。拿一张表格纸,并绘制一个方框来代表你的游戏窗体。在方框中绘制平台,并标记其每一个平台的 X 和 Y 坐标,以及它的宽度和高度。在方框中的实际位置没有必要是精确的,你只要保持数字合理即可。譬如,假设你的屏幕是 720 像素宽,那么你不能在一个屏幕上放 8 块 100 像素的平台。
当然,不是你游戏中的所有平台都必须容纳在一个屏幕大小的方框里,因为你的游戏将随着你的玩家行走而滚动。所以,可以继续绘制你的游戏世界到第一屏幕的右侧,直到关卡结束。
如果你更喜欢精确一点,你可以使用方格纸。当设计一个瓷砖类的游戏时,这是特别有用的,因为每个方格可以代表一个瓷砖。
![Example of a level map][9]
*一个关卡地图示例。*
#### 坐标系
你可能已经在学校中学习过[笛卡尔坐标系][10]。你学习的东西也适用于 Pygame除了在 Pygame 中你的游戏世界的坐标系的原点 `0,0` 是放置在你的屏幕的左上角而不是在中间,是你在地理课上用过的坐标是在中间的。
![Example of coordinates in Pygame][12]
*在 Pygame 中的坐标示例。*
X 轴起始于最左边的 0向右无限增加。Y 轴起始于屏幕顶部的 0向下延伸。
#### 图片大小
如果你不知道你的玩家、敌人、平台是多大的,绘制出一个游戏世界是毫无意义的。你可以在图形程序中找到你的平台或瓷砖的尺寸。例如在 [Krita][13] 中,单击“图像”菜单,并选择“属性”。你可以在“属性”窗口的最顶部处找到它的尺寸。
另外,你也可以创建一个简单的 Python 脚本来告诉你的一个图像的尺寸。打开一个新的文本文件,并输入这些代码到其中:
```
#!/usr/bin/env python3
from PIL import Image
import os.path
import sys
if len(sys.argv) > 1:
    print(sys.argv[1])
else:
    sys.exit('Syntax: identify.py [filename]')
pic = sys.argv[1]
dim = Image.open(pic)
X   = dim.size[0]
Y   = dim.size[1]
print(X,Y)
```
保存该文本文件为 `identify.py`
要使用这个脚本,你必须安装一些额外的 Python 模块,它们包含了这个脚本中新使用的关键字:
```
$ pip3 install Pillow --user
```
一旦安装好,在你游戏工程目录中运行这个脚本:
```
$ python3 ./identify.py images/ground.png
(1080, 97)
```
在这个示例中,地面平台的图形的大小是 1080 像素宽和 97 像素高。
### 平台块
如果你选择单独地绘制每个素材,你必须创建想要插入到你的游戏世界中的几个平台和其它元素,每个素材都放在它自己的文件中。换句话说,你应该让每个素材都有一个文件,像这样:
![One image file per object][15]
*每个对象一个图形文件。*
你可以按照你希望的次数重复使用每个平台,只要确保每个文件仅包含一个平台。你不能使用一个文件包含全部素材,像这样:
![Your level cannot be one image file][17]
*你的关卡不能是一个图形文件。*
当你完成时,你可能希望你的游戏看起来像这样,但是如果你在一个大文件中创建你的关卡,你就没有方法从背景中区分出一个平台,因此,要么把对象绘制在它们自己的文件中,要么从一个更大的文件中裁剪出它们,并保存为单独的副本。
**注意:** 如同你的其它素材,你可以使用 [GIMP][18]、Krita、[MyPaint][19],或 [Inkscape][20] 来创建你的游戏素材。
平台出现在每个关卡开始的屏幕上,因此你必须在你的 `Level` 类中添加一个 `platform` 函数。在这里特例是地面平台,它重要到应该拥有它自己的一个组。通过把地面看作一组特殊类型的平台,你可以选择它是否滚动,或它上面是否可以站立,而其它平台可以漂浮在它上面。这取决于你。
添加这两个函数到你的 `Level` 类:
```
def ground(lvl,x,y,w,h):
    ground_list = pygame.sprite.Group()
    if lvl == 1:
        ground = Platform(x,y,w,h,'block-ground.png')
        ground_list.add(ground)
    if lvl == 2:
        print("Level " + str(lvl) )
    return ground_list
def platform( lvl ):
    plat_list = pygame.sprite.Group()
    if lvl == 1:
        plat = Platform(200, worldy-97-128, 285,67,'block-big.png')
        plat_list.add(plat)
        plat = Platform(500, worldy-97-320, 197,54,'block-small.png')
        plat_list.add(plat)
    if lvl == 2:
        print("Level " + str(lvl) )
       
    return plat_list
```
`ground` 函数需要一个 X 和 Y 位置,以便 Pygame 知道在哪里放置地面平台。它也需要知道平台的宽度和高度,这样 Pygame 知道地面延伸到每个方向有多远。该函数使用你的 `Platform` 类来生成一个屏上对象,然后将这个对象添加到 `ground_list` 组。
`platform` 函数本质上是相同的,除了其有更多的平台。在这个示例中,仅有两个平台,但是你可以想有多少就有多少。在进入一个平台后,在列出另一个前你必须添加它到 `plat_list` 中。如果你不添加平台到组中,那么它将不出现在你的游戏中。
> **提示:** 很难想象你的游戏世界的 0 是在顶部,因为在真实世界中发生的情况是相反的;当估计你有多高时,你不会从上往下测量你自己,而是从脚到头顶来测量。
>
> 如果对你来说从“地面”上来构建你的游戏世界更容易,将 Y 轴值表示为负数可能有帮助。例如,你知道你的游戏世界的底部是 `worldy` 的值。因此 `worldy` 减去地面的高度(在这个示例中是 97是你的玩家正常站立的位置。如果你的角色是 64 像素高,那么地面减去 128 正好是你的玩家的两倍高。事实上,一个放置在 128 像素处平台大约是相对于你的玩家的两层楼高度。一个平台在 -320 处比三层楼更高。等等。
正像你现在可能所知的,如果你不使用它们,你的类和函数是没有价值的。添加这些代码到你的设置部分(第一行只是上下文,所以添加最后两行):
```
enemy_list  = Level.bad( 1, eloc )
ground_list = Level.ground( 1,0,worldy-97,1080,97 )
plat_list   = Level.platform( 1 )
```
并把这些行加到你的主循环(再一次,第一行仅用于上下文):
```
enemy_list.draw(world)  # 刷新敌人
ground_list.draw(world)  # 刷新地面
plat_list.draw(world)  # 刷新平台
```
### 瓷砖平台
瓷砖类游戏世界更容易制作,因为你只需要在前面绘制一些块,就能在游戏中一再使用它们创建每个平台。在像 [OpenGameArt.org][21] 这样的网站上甚至有一套瓷砖供你来使用。
`Platform` 类与在前面部分中的类是相同的。
`ground``platform``Level` 类中,然而,必须使用循环来计算使用多少块来创建每个平台。
如果你打算在你的游戏世界中有一个坚固的地面,这种地面是很简单的。你只需要从整个窗口的一边到另一边“克隆”你的地面瓷砖。例如,你可以创建一个 X 和 Y 值的列表来规定每个瓷砖应该放置的位置,然后使用一个循环来获取每个值并绘制每一个瓷砖。这仅是一个示例,所以不要添加这到你的代码:
```
# Do not add this to your code
gloc = [0,656,64,656,128,656,192,656,256,656,320,656,384,656]
```
不过,如果你仔细看,你可以看到所有的 Y 值是相同的X 值以 64 的增量不断地增加 —— 这就是瓷砖的大小。这种重复是精确地,是计算机擅长的,因此你可以使用一点数学逻辑来让计算机为你做所有的计算:
添加这些到你的脚本的设置部分:
```
gloc = []
tx   = 64
ty   = 64
i=0
while i <= (worldx/tx)+tx:
    gloc.append(i*tx)
    i=i+1
ground_list = Level.ground( 1,gloc,tx,ty )
```
现在不管你的窗口的大小Python 会通过瓷砖的宽度分割游戏世界的宽度,并创建一个数组列表列出每个 X 值。这里不计算 Y 值,因为在平的地面上这个从不会变化。
为了在一个函数中使用数组,使用一个 `while` 循环,查看每个条目并在适当的位置添加一个地面瓷砖:
```
def ground(lvl,gloc,tx,ty):
    ground_list = pygame.sprite.Group()
    i=0
    if lvl == 1:
        while i < len(gloc):
            ground = Platform(gloc[i],worldy-ty,tx,ty,'tile-ground.png')
            ground_list.add(ground)
            i=i+1
    if lvl == 2:
        print("Level " + str(lvl) )
    return ground_list
```
除了 `while` 循环,这几乎与在上面一部分中提供的瓷砖类平台的 `ground` 函数的代码相同。
对于移动的平台,原理是相似的,但是这里有一些技巧可以使它简单。
你可以通过它的起始像素(它的 X 值)、距地面的高度(它的 Y 值)、绘制多少瓷砖来定义一个平台,而不是通过像素绘制每个平台。这样,你不必操心每个平台的宽度和高度。
这个技巧的逻辑有一点复杂,因此请仔细复制这些代码。有一个 `while` 循环嵌套在另一个 `while` 循环的内部,因为这个函数必须考虑每个数组项的三个值来成功地建造一个完整的平台。在这个示例中,这里仅有三个平台以 `ploc.append` 语句定义,但是你的游戏可能需要更多,因此你需要多少就定义多少。当然,有一些不会出现,因为它们远在屏幕外,但是一旦当你进行滚动时,它们将呈现在眼前。
```
def platform(lvl,tx,ty):
    plat_list = pygame.sprite.Group()
    ploc = []
    i=0
    if lvl == 1:
        ploc.append((200,worldy-ty-128,3))
        ploc.append((300,worldy-ty-256,3))
        ploc.append((500,worldy-ty-128,4))
        while i < len(ploc):
            j=0
            while j <= ploc[i][2]:
                plat = Platform((ploc[i][0]+(j*tx)),ploc[i][1],tx,ty,'tile.png')
                plat_list.add(plat)
                j=j+1
            print('run' + str(i) + str(ploc[i]))
            i=i+1
           
    if lvl == 2:
        print("Level " + str(lvl) )
    return plat_list
```
要让这些平台出现在你的游戏世界,它们必须出现在你的主循环中。如果你还没有这样做,添加这些行到你的主循环(再一次,第一行仅被用于上下文)中:
```
        enemy_list.draw(world)  # 刷新敌人
        ground_list.draw(world) # 刷新地面
        plat_list.draw(world)   # 刷新平台
```
启动你的游戏,根据需要调整你的平台的放置位置。如果你看不见屏幕外产生的平台,不要担心;你不久后就可以修复它。
到目前为止,这是游戏的图片和代码:
![Pygame game][23]
*到目前为止,我们的 Pygame 平台。*
```
#!/usr/bin/env python3
# draw a world
# add a player and player control
# add player movement
# add enemy and basic collision
# add platform
# GNU All-Permissive License
# Copying and distribution of this file, with or without modification,
# are permitted in any medium without royalty provided the copyright
# notice and this notice are preserved.  This file is offered as-is,
# without any warranty.
import pygame
import sys
import os
'''
Objects
'''
class Platform(pygame.sprite.Sprite):
    # x location, y location, img width, img height, img file    
    def __init__(self,xloc,yloc,imgw,imgh,img):
        pygame.sprite.Sprite.__init__(self)
        self.image = pygame.image.load(os.path.join('images',img)).convert()
        self.image.convert_alpha()
        self.rect = self.image.get_rect()
        self.rect.y = yloc
        self.rect.x = xloc
class Player(pygame.sprite.Sprite):
    '''
    Spawn a player
    '''
    def __init__(self):
        pygame.sprite.Sprite.__init__(self)
        self.movex = 0
        self.movey = 0
        self.frame = 0
        self.health = 10
        self.score = 1
        self.images = []
        for i in range(1,9):
            img = pygame.image.load(os.path.join('images','hero' + str(i) + '.png')).convert()
            img.convert_alpha()
            img.set_colorkey(ALPHA)
            self.images.append(img)
            self.image = self.images[0]
            self.rect  = self.image.get_rect()
    def control(self,x,y):
        '''
        control player movement
        '''
        self.movex += x
        self.movey += y
    def update(self):
        '''
        Update sprite position
        '''
        self.rect.x = self.rect.x + self.movex
        self.rect.y = self.rect.y + self.movey
        # moving left
        if self.movex < 0:
            self.frame += 1
            if self.frame > ani*3:
                self.frame = 0
            self.image = self.images[self.frame//ani]
        # moving right
        if self.movex > 0:
            self.frame += 1
            if self.frame > ani*3:
                self.frame = 0
            self.image = self.images[(self.frame//ani)+4]
        # collisions
        enemy_hit_list = pygame.sprite.spritecollide(self, enemy_list, False)
        for enemy in enemy_hit_list:
            self.health -= 1
            print(self.health)
        ground_hit_list = pygame.sprite.spritecollide(self, ground_list, False)
        for g in ground_hit_list:
            self.health -= 1
            print(self.health)
class Enemy(pygame.sprite.Sprite):
    '''
    Spawn an enemy
    '''
    def __init__(self,x,y,img):
        pygame.sprite.Sprite.__init__(self)
        self.image = pygame.image.load(os.path.join('images',img))
        #self.image.convert_alpha()
        #self.image.set_colorkey(ALPHA)
        self.rect = self.image.get_rect()
        self.rect.x = x
        self.rect.y = y
        self.counter = 0
    def move(self):
        '''
        enemy movement
        '''
        distance = 80
        speed = 8
        if self.counter >= 0 and self.counter <= distance:
            self.rect.x += speed
        elif self.counter >= distance and self.counter <= distance*2:
            self.rect.x -= speed
        else:
            self.counter = 0
        self.counter += 1
class Level():
    def bad(lvl,eloc):
        if lvl == 1:
            enemy = Enemy(eloc[0],eloc[1],'yeti.png') # spawn enemy
            enemy_list = pygame.sprite.Group() # create enemy group
            enemy_list.add(enemy)              # add enemy to group
        if lvl == 2:
            print("Level " + str(lvl) )
        return enemy_list
    def loot(lvl,lloc):
        print(lvl)
    def ground(lvl,gloc,tx,ty):
        ground_list = pygame.sprite.Group()
        i=0
        if lvl == 1:
            while i < len(gloc):
                print("blockgen:" + str(i))
                ground = Platform(gloc[i],worldy-ty,tx,ty,'ground.png')
                ground_list.add(ground)
                i=i+1
        if lvl == 2:
            print("Level " + str(lvl) )
        return ground_list
'''
Setup
'''
worldx = 960
worldy = 720
fps = 40 # frame rate
ani = 4  # animation cycles
clock = pygame.time.Clock()
pygame.init()
main = True
BLUE  = (25,25,200)
BLACK = (23,23,23 )
WHITE = (254,254,254)
ALPHA = (0,255,0)
world = pygame.display.set_mode([worldx,worldy])
backdrop = pygame.image.load(os.path.join('images','stage.png')).convert()
backdropbox = world.get_rect()
player = Player() # spawn player
player.rect.x = 0
player.rect.y = 0
player_list = pygame.sprite.Group()
player_list.add(player)
steps = 10 # how fast to move
eloc = []
eloc = [200,20]
gloc = []
#gloc = [0,630,64,630,128,630,192,630,256,630,320,630,384,630]
tx = 64 #tile size
ty = 64 #tile size
i=0
while i <= (worldx/tx)+tx:
    gloc.append(i*tx)
    i=i+1
    print("block: " + str(i))
enemy_list = Level.bad( 1, eloc )
ground_list = Level.ground( 1,gloc,tx,ty )
'''
Main loop
'''
while main == True:
    for event in pygame.event.get():
        if event.type == pygame.QUIT:
            pygame.quit(); sys.exit()
            main = False
        if event.type == pygame.KEYDOWN:
            if event.key == pygame.K_LEFT or event.key == ord('a'):
                player.control(-steps,0)
            if event.key == pygame.K_RIGHT or event.key == ord('d'):
                player.control(steps,0)
            if event.key == pygame.K_UP or event.key == ord('w'):
                print('jump')
        if event.type == pygame.KEYUP:
            if event.key == pygame.K_LEFT or event.key == ord('a'):
                player.control(steps,0)
            if event.key == pygame.K_RIGHT or event.key == ord('d'):
                player.control(-steps,0)
            if event.key == ord('q'):
                pygame.quit()
                sys.exit()
                main = False
#    world.fill(BLACK)
    world.blit(backdrop, backdropbox)
    player.update()
    player_list.draw(world) #refresh player position
    enemy_list.draw(world)  # refresh enemies
    ground_list.draw(world)  # refresh enemies
    for e in enemy_list:
        e.move()
    pygame.display.flip()
    clock.tick(fps)
```
LCTT 译注:到本文翻译完为止,该系列已经近一年没有继续更新了~
--------------------------------------------------------------------------------
via: https://opensource.com/article/18/7/put-platforms-python-game
作者:[Seth Kenlon][a]
选题:[lujun9972][b]
译者:[robsean](https://github.com/robsean)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://opensource.com/users/seth
[b]: https://github.com/lujun9972
[1]: https://www.pygame.org/news
[2]: https://opensource.com/article/17/12/game-python-add-a-player
[3]: https://opensource.com/article/17/12/game-python-moving-player
[4]: /file/403841
[5]: https://opensource.com/sites/default/files/uploads/supertux.png (Supertux, a tile-based video game)
[6]: https://www.supertux.org/
[7]: https://www.python.org/
[8]: /file/403861
[9]: https://opensource.com/sites/default/files/uploads/layout.png (Example of a level map)
[10]: https://en.wikipedia.org/wiki/Cartesian_coordinate_system
[11]: /file/403871
[12]: https://opensource.com/sites/default/files/uploads/pygame_coordinates.png (Example of coordinates in Pygame)
[13]: https://krita.org/en/
[14]: /file/403876
[15]: https://opensource.com/sites/default/files/uploads/pygame_floating.png (One image file per object)
[16]: /file/403881
[17]: https://opensource.com/sites/default/files/uploads/pygame_flattened.png (Your level cannot be one image file)
[18]: https://www.gimp.org/
[19]: http://mypaint.org/about/
[20]: https://inkscape.org/en/
[21]: https://opengameart.org/content/simplified-platformer-pack
[22]: /file/403886
[23]: https://opensource.com/sites/default/files/uploads/pygame_platforms.jpg (Pygame game)
[24]: https://linux.cn/article-9071-1.html
[25]: https://linux.cn/article-10850-1.html
[26]: https://linux.cn/article-10858-1.html
[27]: https://linux.cn/article-10874-1.html
[28]: https://linux.cn/article-10883-1.html

View File

@ -0,0 +1,596 @@
[#]: collector: (lujun9972)
[#]: translator: (wxy)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10848-1.html)
[#]: subject: (TLP An Advanced Power Management Tool That Improve Battery Life On Linux Laptop)
[#]: via: (https://www.2daygeek.com/tlp-increase-optimize-linux-laptop-battery-life/)
[#]: author: (Magesh Maruthamuthu https://www.2daygeek.com/author/magesh/)
TLP一个可以延长 Linux 笔记本电池寿命的高级电源管理工具
======
![](https://img.linux.net.cn/data/attachment/album/201905/13/094413iu77i8w75t80tq7h.jpg)
笔记本电池是针对 Windows 操作系统进行了高度优化的,当我在笔记本电脑中使用 Windows 操作系统时,我已经意识到这一点,但对于 Linux 来说却不一样。
多年来Linux 在电池优化方面取得了很大进步,但我们仍然需要做一些必要的事情来改善 Linux 中笔记本电脑的电池寿命。
当我考虑延长电池寿命时,我没有多少选择,但我觉得 TLP 对我来说是一个更好的解决方案,所以我会继续使用它。
在本教程中,我们将详细讨论 TLP 以延长电池寿命。
我们之前在我们的网站上写过三篇关于 Linux [笔记本电池节电工具][1] 的文章:[PowerTOP][2] 和 [电池充电状态][3]。
### TLP
[TLP][4] 是一款自由开源的高级电源管理工具,可在不进行任何配置更改的情况下延长电池寿命。
由于它的默认配置已针对电池寿命进行了优化,因此你可能只需要安装,然后就忘记它吧。
此外它可以高度定制化以满足你的特定要求。TLP 是一个具有自动后台任务的纯命令行工具。它不包含GUI。
TLP 适用于各种品牌的笔记本电脑。设置电池充电阈值仅适用于 IBM/Lenovo ThinkPad。
所有 TLP 设置都存储在 `/etc/default/tlp` 中。其默认配置提供了开箱即用的优化的节能设置。
以下 TLP 设置可用于自定义,如果需要,你可以相应地进行必要的更改。
### TLP 功能
* 内核笔记本电脑模式和脏缓冲区超时
* 处理器频率调整,包括 “turbo boost”/“turbo core”
* 限制最大/最小的 P 状态以控制 CPU 的功耗
* HWP 能源性能提示
* 用于多核/超线程的功率感知进程调度程序
* 处理器性能与节能策略(`x86_energy_perf_policy`
* 硬盘高级电源管理级别APM和降速超时按磁盘
* AHCI 链路电源管理ALPM与设备黑名单
* PCIe 活动状态电源管理PCIe ASPM
* PCI(e) 总线设备的运行时电源管理
* Radeon 图形电源管理KMS 和 DPM
* Wifi 省电模式
* 关闭驱动器托架中的光盘驱动器
* 音频省电模式
* I/O 调度程序(按磁盘)
* USB 自动暂停,支持设备黑名单/白名单(输入设备自动排除)
* 在系统启动和关闭时启用或禁用集成的 wifi、蓝牙或 wwan 设备
* 在系统启动时恢复无线电设备状态(从之前的关机时的状态)
* 无线电设备向导:在网络连接/断开和停靠/取消停靠时切换无线电
* 禁用 LAN 唤醒
* 挂起/休眠后恢复集成的 WWAN 和蓝牙状态
* 英特尔处理器的动态电源降低 —— 需要内核和 PHC-Patch 支持
* 电池充电阈值 —— 仅限 ThinkPad
* 重新校准电池 —— 仅限 ThinkPad
### 如何在 Linux 上安装 TLP
TLP 包在大多数发行版官方存储库中都可用,因此,使用发行版的 [包管理器][5] 来安装它。
对于 Fedora 系统,使用 [DNF 命令][6] 安装 TLP。
```
$ sudo dnf install tlp tlp-rdw
```
ThinkPad 需要一些附加软件包。
```
$ sudo dnf install https://download1.rpmfusion.org/free/fedora/rpmfusion-free-release-$(rpm -E %fedora).noarch.rpm
$ sudo dnf install http://repo.linrunner.de/fedora/tlp/repos/releases/tlp-release.fc$(rpm -E %fedora).noarch.rpm
$ sudo dnf install akmod-tp_smapi akmod-acpi_call kernel-devel
```
安装 smartmontool 以显示 tlp-stat 中 S.M.A.R.T. 数据。
```
$ sudo dnf install smartmontools
```
对于 Debian/Ubuntu 系统,使用 [APT-GET 命令][7] 或 [APT 命令][8] 安装 TLP。
```
$ sudo apt install tlp tlp-rdw
```
ThinkPad 需要一些附加软件包。
```
$ sudo apt-get install tp-smapi-dkms acpi-call-dkms
```
安装 smartmontool 以显示 tlp-stat 中 S.M.A.R.T. 数据。
```
$ sudo apt-get install smartmontools
```
当基于 Ubuntu 的系统的官方软件包过时时,请使用以下 PPA 存储库,该存储库提供最新版本。运行以下命令以使用 PPA 安装 TLP。
```
$ sudo add-apt-repository ppa:linrunner/tlp
$ sudo apt-get update
$ sudo apt-get install tlp
```
对于基于 Arch Linux 的系统,使用 [Pacman 命令][9] 安装 TLP。
```
$ sudo pacman -S tlp tlp-rdw
```
ThinkPad 需要一些附加软件包。
```
$ pacman -S tp_smapi acpi_call
```
安装 smartmontool 以显示 tlp-stat 中 S.M.A.R.T. 数据。
```
$ sudo pacman -S smartmontools
```
对于基于 Arch Linux 的系统,在启动时启用 TLP 和 TLP-Sleep 服务。
```
$ sudo systemctl enable tlp.service
$ sudo systemctl enable tlp-sleep.service
```
对于基于 Arch Linux 的系统,你还应该屏蔽以下服务以避免冲突,并确保 TLP 的无线电设备切换选项的正确操作。
```
$ sudo systemctl mask systemd-rfkill.service
$ sudo systemctl mask systemd-rfkill.socket
```
对于 RHEL/CentOS 系统,使用 [YUM 命令][10] 安装 TLP。
```
$ sudo yum install tlp tlp-rdw
```
安装 smartmontool 以显示 tlp-stat 中 S.M.A.R.T. 数据。
```
$ sudo yum install smartmontools
```
对于 openSUSE Leap 系统,使用 [Zypper 命令][11] 安装 TLP。
```
$ sudo zypper install TLP
```
安装 smartmontool 以显示 tlp-stat 中 S.M.A.R.T. 数据。
```
$ sudo zypper install smartmontools
```
成功安装 TLP 后,使用以下命令启动服务。
```
$ systemctl start tlp.service
```
### 使用方法
#### 显示电池信息
```
$ sudo tlp-stat -b
$ sudo tlp-stat --battery
```
```
--- TLP 1.1 --------------------------------------------
+++ Battery Status
/sys/class/power_supply/BAT0/manufacturer = SMP
/sys/class/power_supply/BAT0/model_name = L14M4P23
/sys/class/power_supply/BAT0/cycle_count = (not supported)
/sys/class/power_supply/BAT0/energy_full_design = 60000 [mWh]
/sys/class/power_supply/BAT0/energy_full = 48850 [mWh]
/sys/class/power_supply/BAT0/energy_now = 48850 [mWh]
/sys/class/power_supply/BAT0/power_now = 0 [mW]
/sys/class/power_supply/BAT0/status = Full
Charge = 100.0 [%]
Capacity = 81.4 [%]
```
#### 显示磁盘信息
```
$ sudo tlp-stat -d
$ sudo tlp-stat --disk
```
```
--- TLP 1.1 --------------------------------------------
+++ Storage Devices
/dev/sda:
Model = WDC WD10SPCX-24HWST1
Firmware = 02.01A02
APM Level = 128
Status = active/idle
Scheduler = mq-deadline
Runtime PM: control = on, autosuspend_delay = (not available)
SMART info:
4 Start_Stop_Count = 18787
5 Reallocated_Sector_Ct = 0
9 Power_On_Hours = 606 [h]
12 Power_Cycle_Count = 1792
193 Load_Cycle_Count = 25775
194 Temperature_Celsius = 31 [°C]
+++ AHCI Link Power Management (ALPM)
/sys/class/scsi_host/host0/link_power_management_policy = med_power_with_dipm
/sys/class/scsi_host/host1/link_power_management_policy = med_power_with_dipm
/sys/class/scsi_host/host2/link_power_management_policy = med_power_with_dipm
/sys/class/scsi_host/host3/link_power_management_policy = med_power_with_dipm
+++ AHCI Host Controller Runtime Power Management
/sys/bus/pci/devices/0000:00:17.0/ata1/power/control = on
/sys/bus/pci/devices/0000:00:17.0/ata2/power/control = on
/sys/bus/pci/devices/0000:00:17.0/ata3/power/control = on
/sys/bus/pci/devices/0000:00:17.0/ata4/power/control = on
```
#### 显示 PCI 设备信息
```
$ sudo tlp-stat -e
$ sudo tlp-stat --pcie
```
```
$ sudo tlp-stat -e
or
$ sudo tlp-stat --pcie
--- TLP 1.1 --------------------------------------------
+++ Runtime Power Management
Device blacklist = (not configured)
Driver blacklist = amdgpu nouveau nvidia radeon pcieport
/sys/bus/pci/devices/0000:00:00.0/power/control = auto (0x060000, Host bridge, skl_uncore)
/sys/bus/pci/devices/0000:00:01.0/power/control = auto (0x060400, PCI bridge, pcieport)
/sys/bus/pci/devices/0000:00:02.0/power/control = auto (0x030000, VGA compatible controller, i915)
/sys/bus/pci/devices/0000:00:14.0/power/control = auto (0x0c0330, USB controller, xhci_hcd)
......
```
#### 显示图形卡信息
```
$ sudo tlp-stat -g
$ sudo tlp-stat --graphics
```
```
--- TLP 1.1 --------------------------------------------
+++ Intel Graphics
/sys/module/i915/parameters/enable_dc = -1 (use per-chip default)
/sys/module/i915/parameters/enable_fbc = 1 (enabled)
/sys/module/i915/parameters/enable_psr = 0 (disabled)
/sys/module/i915/parameters/modeset = -1 (use per-chip default)
```
#### 显示处理器信息
```
$ sudo tlp-stat -p
$ sudo tlp-stat --processor
```
```
--- TLP 1.1 --------------------------------------------
+++ Processor
CPU model = Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz
/sys/devices/system/cpu/cpu0/cpufreq/scaling_driver = intel_pstate
/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor = powersave
/sys/devices/system/cpu/cpu0/cpufreq/scaling_available_governors = performance powersave
/sys/devices/system/cpu/cpu0/cpufreq/scaling_min_freq = 800000 [kHz]
/sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq = 3500000 [kHz]
/sys/devices/system/cpu/cpu0/cpufreq/energy_performance_preference = balance_power
/sys/devices/system/cpu/cpu0/cpufreq/energy_performance_available_preferences = default performance balance_performance balance_power power
......
/sys/devices/system/cpu/intel_pstate/min_perf_pct = 22 [%]
/sys/devices/system/cpu/intel_pstate/max_perf_pct = 100 [%]
/sys/devices/system/cpu/intel_pstate/no_turbo = 0
/sys/devices/system/cpu/intel_pstate/turbo_pct = 33 [%]
/sys/devices/system/cpu/intel_pstate/num_pstates = 28
x86_energy_perf_policy: program not installed.
/sys/module/workqueue/parameters/power_efficient = Y
/proc/sys/kernel/nmi_watchdog = 0
+++ Undervolting
PHC kernel not available.
```
#### 显示系统数据信息
```
$ sudo tlp-stat -s
$ sudo tlp-stat --system
```
```
--- TLP 1.1 --------------------------------------------
+++ System Info
System = LENOVO Lenovo ideapad Y700-15ISK 80NV
BIOS = CDCN35WW
Release = "Manjaro Linux"
Kernel = 4.19.6-1-MANJARO #1 SMP PREEMPT Sat Dec 1 12:21:26 UTC 2018 x86_64
/proc/cmdline = BOOT_IMAGE=/boot/vmlinuz-4.19-x86_64 root=UUID=69d9dd18-36be-4631-9ebb-78f05fe3217f rw quiet resume=UUID=a2092b92-af29-4760-8e68-7a201922573b
Init system = systemd
Boot mode = BIOS (CSM, Legacy)
+++ TLP Status
State = enabled
Last run = 11:04:00 IST, 596 sec(s) ago
Mode = battery
Power source = battery
```
#### 显示温度和风扇速度信息
```
$ sudo tlp-stat -t
$ sudo tlp-stat --temp
```
```
--- TLP 1.1 --------------------------------------------
+++ Temperatures
CPU temp = 36 [°C]
Fan speed = (not available)
```
#### 显示 USB 设备数据信息
```
$ sudo tlp-stat -u
$ sudo tlp-stat --usb
```
```
--- TLP 1.1 --------------------------------------------
+++ USB
Autosuspend = disabled
Device whitelist = (not configured)
Device blacklist = (not configured)
Bluetooth blacklist = disabled
Phone blacklist = disabled
WWAN blacklist = enabled
Bus 002 Device 001 ID 1d6b:0003 control = auto, autosuspend_delay_ms = 0 -- Linux Foundation 3.0 root hub (hub)
Bus 001 Device 003 ID 174f:14e8 control = auto, autosuspend_delay_ms = 2000 -- Syntek (uvcvideo)
......
```
#### 显示警告信息
```
$ sudo tlp-stat -w
$ sudo tlp-stat --warn
```
```
--- TLP 1.1 --------------------------------------------
No warnings detected.
```
#### 状态报告及配置和所有活动的设置
```
$ sudo tlp-stat
```
```
--- TLP 1.1 --------------------------------------------
+++ Configured Settings: /etc/default/tlp
TLP_ENABLE=1
TLP_DEFAULT_MODE=AC
TLP_PERSISTENT_DEFAULT=0
DISK_IDLE_SECS_ON_AC=0
DISK_IDLE_SECS_ON_BAT=2
MAX_LOST_WORK_SECS_ON_AC=15
MAX_LOST_WORK_SECS_ON_BAT=60
......
+++ System Info
System = LENOVO Lenovo ideapad Y700-15ISK 80NV
BIOS = CDCN35WW
Release = "Manjaro Linux"
Kernel = 4.19.6-1-MANJARO #1 SMP PREEMPT Sat Dec 1 12:21:26 UTC 2018 x86_64
/proc/cmdline = BOOT_IMAGE=/boot/vmlinuz-4.19-x86_64 root=UUID=69d9dd18-36be-4631-9ebb-78f05fe3217f rw quiet resume=UUID=a2092b92-af29-4760-8e68-7a201922573b
Init system = systemd
Boot mode = BIOS (CSM, Legacy)
+++ TLP Status
State = enabled
Last run = 11:04:00 IST, 684 sec(s) ago
Mode = battery
Power source = battery
+++ Processor
CPU model = Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz
/sys/devices/system/cpu/cpu0/cpufreq/scaling_driver = intel_pstate
/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor = powersave
/sys/devices/system/cpu/cpu0/cpufreq/scaling_available_governors = performance powersave
......
/sys/devices/system/cpu/intel_pstate/min_perf_pct = 22 [%]
/sys/devices/system/cpu/intel_pstate/max_perf_pct = 100 [%]
/sys/devices/system/cpu/intel_pstate/no_turbo = 0
/sys/devices/system/cpu/intel_pstate/turbo_pct = 33 [%]
/sys/devices/system/cpu/intel_pstate/num_pstates = 28
x86_energy_perf_policy: program not installed.
/sys/module/workqueue/parameters/power_efficient = Y
/proc/sys/kernel/nmi_watchdog = 0
+++ Undervolting
PHC kernel not available.
+++ Temperatures
CPU temp = 42 [°C]
Fan speed = (not available)
+++ File System
/proc/sys/vm/laptop_mode = 2
/proc/sys/vm/dirty_writeback_centisecs = 6000
/proc/sys/vm/dirty_expire_centisecs = 6000
/proc/sys/vm/dirty_ratio = 20
/proc/sys/vm/dirty_background_ratio = 10
+++ Storage Devices
/dev/sda:
Model = WDC WD10SPCX-24HWST1
Firmware = 02.01A02
APM Level = 128
Status = active/idle
Scheduler = mq-deadline
Runtime PM: control = on, autosuspend_delay = (not available)
SMART info:
4 Start_Stop_Count = 18787
5 Reallocated_Sector_Ct = 0
9 Power_On_Hours = 606 [h]
12 Power_Cycle_Count = 1792
193 Load_Cycle_Count = 25777
194 Temperature_Celsius = 31 [°C]
+++ AHCI Link Power Management (ALPM)
/sys/class/scsi_host/host0/link_power_management_policy = med_power_with_dipm
/sys/class/scsi_host/host1/link_power_management_policy = med_power_with_dipm
/sys/class/scsi_host/host2/link_power_management_policy = med_power_with_dipm
/sys/class/scsi_host/host3/link_power_management_policy = med_power_with_dipm
+++ AHCI Host Controller Runtime Power Management
/sys/bus/pci/devices/0000:00:17.0/ata1/power/control = on
/sys/bus/pci/devices/0000:00:17.0/ata2/power/control = on
/sys/bus/pci/devices/0000:00:17.0/ata3/power/control = on
/sys/bus/pci/devices/0000:00:17.0/ata4/power/control = on
+++ PCIe Active State Power Management
/sys/module/pcie_aspm/parameters/policy = powersave
+++ Intel Graphics
/sys/module/i915/parameters/enable_dc = -1 (use per-chip default)
/sys/module/i915/parameters/enable_fbc = 1 (enabled)
/sys/module/i915/parameters/enable_psr = 0 (disabled)
/sys/module/i915/parameters/modeset = -1 (use per-chip default)
+++ Wireless
bluetooth = on
wifi = on
wwan = none (no device)
hci0(btusb) : bluetooth, not connected
wlp8s0(iwlwifi) : wifi, connected, power management = on
+++ Audio
/sys/module/snd_hda_intel/parameters/power_save = 1
/sys/module/snd_hda_intel/parameters/power_save_controller = Y
+++ Runtime Power Management
Device blacklist = (not configured)
Driver blacklist = amdgpu nouveau nvidia radeon pcieport
/sys/bus/pci/devices/0000:00:00.0/power/control = auto (0x060000, Host bridge, skl_uncore)
/sys/bus/pci/devices/0000:00:01.0/power/control = auto (0x060400, PCI bridge, pcieport)
/sys/bus/pci/devices/0000:00:02.0/power/control = auto (0x030000, VGA compatible controller, i915)
......
+++ USB
Autosuspend = disabled
Device whitelist = (not configured)
Device blacklist = (not configured)
Bluetooth blacklist = disabled
Phone blacklist = disabled
WWAN blacklist = enabled
Bus 002 Device 001 ID 1d6b:0003 control = auto, autosuspend_delay_ms = 0 -- Linux Foundation 3.0 root hub (hub)
Bus 001 Device 003 ID 174f:14e8 control = auto, autosuspend_delay_ms = 2000 -- Syntek (uvcvideo)
Bus 001 Device 002 ID 17ef:6053 control = on, autosuspend_delay_ms = 2000 -- Lenovo (usbhid)
Bus 001 Device 004 ID 8087:0a2b control = auto, autosuspend_delay_ms = 2000 -- Intel Corp. (btusb)
Bus 001 Device 001 ID 1d6b:0002 control = auto, autosuspend_delay_ms = 0 -- Linux Foundation 2.0 root hub (hub)
+++ Battery Status
/sys/class/power_supply/BAT0/manufacturer = SMP
/sys/class/power_supply/BAT0/model_name = L14M4P23
/sys/class/power_supply/BAT0/cycle_count = (not supported)
/sys/class/power_supply/BAT0/energy_full_design = 60000 [mWh]
/sys/class/power_supply/BAT0/energy_full = 51690 [mWh]
/sys/class/power_supply/BAT0/energy_now = 50140 [mWh]
/sys/class/power_supply/BAT0/power_now = 12185 [mW]
/sys/class/power_supply/BAT0/status = Discharging
Charge = 97.0 [%]
Capacity = 86.2 [%]
```
--------------------------------------------------------------------------------
via: https://www.2daygeek.com/tlp-increase-optimize-linux-laptop-battery-life/
作者:[Magesh Maruthamuthu][a]
选题:[lujun9972][b]
译者:[wxy](https://github.com/wxy)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://www.2daygeek.com/author/magesh/
[b]: https://github.com/lujun9972
[1]: https://www.2daygeek.com/check-laptop-battery-status-and-charging-state-in-linux-terminal/
[2]: https://www.2daygeek.com/powertop-monitors-laptop-battery-usage-linux/
[3]: https://www.2daygeek.com/monitor-laptop-battery-charging-state-linux/
[4]: https://linrunner.de/en/tlp/docs/tlp-linux-advanced-power-management.html
[5]: https://www.2daygeek.com/category/package-management/
[6]: https://www.2daygeek.com/dnf-command-examples-manage-packages-fedora-system/
[7]: https://www.2daygeek.com/apt-get-apt-cache-command-examples-manage-packages-debian-ubuntu-systems/
[8]: https://www.2daygeek.com/apt-command-examples-manage-packages-debian-ubuntu-systems/
[9]: https://www.2daygeek.com/pacman-command-examples-manage-packages-arch-linux-system/
[10]: https://www.2daygeek.com/yum-command-examples-manage-packages-rhel-centos-systems/
[11]: https://www.2daygeek.com/zypper-command-examples-manage-packages-opensuse-system/

View File

@ -0,0 +1,354 @@
[#]: collector: (lujun9972)
[#]: translator: (cycoe)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10874-1.html)
[#]: subject: (Using Pygame to move your game character around)
[#]: via: (https://opensource.com/article/17/12/game-python-moving-player)
[#]: author: (Seth Kenlon https://opensource.com/users/seth)
用 Pygame 使你的游戏角色移动起来
======
> 在本系列的第四部分,学习如何编写移动游戏角色的控制代码。
![](https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/python4-game.png?itok=tXFHaLdt)
在这个系列的第一篇文章中,我解释了如何使用 Python 创建一个简单的[基于文本的骰子游戏][1]。在第二部分中,我向你们展示了如何从头开始构建游戏,即从 [创建游戏的环境][2] 开始。然后在第三部分,我们[创建了一个玩家妖精][3],并且使它在你的(而不是空的)游戏世界内生成。你可能已经注意到,如果你不能移动你的角色,那么游戏不是那么有趣。在本篇文章中,我们将使用 Pygame 来添加键盘控制,如此一来你就可以控制你的角色的移动。
在 Pygame 中有许多函数可以用来添加(除键盘外的)其他控制,但如果你正在敲击 Python 代码,那么你一定是有一个键盘的,这将成为我们接下来会使用的控制方式。一旦你理解了键盘控制,你可以自己去探索其他选项。
在本系列的第二篇文章中,你已经为退出游戏创建了一个按键,移动角色的(按键)原则也是相同的。但是,使你的角色移动起来要稍微复杂一点。
让我们从简单的部分入手:设置控制器按键。
### 为控制你的玩家妖精设置按键
在 IDLE、Ninja-IDE 或文本编辑器中打开你的 Python 游戏脚本。
因为游戏需要时刻“监听”键盘事件,所以你写的代码需要连续运行。你知道应该把需要在游戏周期中持续运行的代码放在哪里吗?
如果你回答“放在主循环中”,那么你是正确的!记住除非代码在循环中,否则(大多数情况下)它只会运行仅一次。如果它被写在一个从未被使用的类或函数中,它可能根本不会运行。
要使 Python 监听传入的按键,将如下代码添加到主循环。目前的代码还不能产生任何的效果,所以使用 `print` 语句来表示成功的信号。这是一种常见的调试技术。
```
while main == True:
    for event in pygame.event.get():
        if event.type == pygame.QUIT:
            pygame.quit(); sys.exit()
            main = False
        if event.type == pygame.KEYDOWN:
            if event.key == pygame.K_LEFT or event.key == ord('a'):
                print('left')
            if event.key == pygame.K_RIGHT or event.key == ord('d'):
                print('right')
            if event.key == pygame.K_UP or event.key == ord('w'):
            print('jump')
        if event.type == pygame.KEYUP:
            if event.key == pygame.K_LEFT or event.key == ord('a'):
                print('left stop')
            if event.key == pygame.K_RIGHT or event.key == ord('d'):
                print('right stop')
            if event.key == ord('q'):
                pygame.quit()
                sys.exit()
                main = False    
```
一些人偏好使用键盘字母 `W`、`A`、`S` 和 `D` 来控制玩家角色,而另一些偏好使用方向键。因此确保你包含了两种选项。
注意:当你在编程时,同时考虑所有用户是非常重要的。如果你写代码只是为了自己运行,那么很可能你会成为你写的程序的唯一用户。更重要的是,如果你想找一个通过写代码赚钱的工作,你写的代码就应该让所有人都能运行。给你的用户选择权,比如提供使用方向键或 WASD 的选项,是一个优秀程序员的标志。
使用 Python 启动你的游戏,并在你按下“上下左右”方向键或 `A`、`D` 和 `W` 键的时候查看控制台窗口的输出。
```
$ python ./your-name_game.py
  left
  left stop
  right
  right stop
  jump
```
这验证了 Pygame 可以正确地检测按键。现在是时候来完成使妖精移动的艰巨任务了。
### 编写玩家移动函数
为了使你的妖精移动起来,你必须为你的妖精创建一个属性代表移动。当你的妖精没有在移动时,这个变量被设为 `0`
如果你正在为你的妖精设置动画,或者你决定在将来为它设置动画,你还必须跟踪帧来使走路循环保持在轨迹上。
`Player` 类中创建如下变量。开头两行作为上下文对照(如果你一直跟着做,你的代码中就已经有这两行),因此只需要添加最后三行:
```
    def __init__(self):
        pygame.sprite.Sprite.__init__(self)
        self.movex = 0 # 沿 X 方向移动
        self.movey = 0 # 沿 Y 方向移动
        self.frame = 0 # 帧计数
```
设置好了这些变量,是时候去为妖精移动编写代码了。
玩家妖精不需要时刻响应控制,有时它并没有在移动。控制妖精的代码,仅仅只是玩家妖精所有能做的事情中的一小部分。在 Python 中当你想要使一个对象做某件事并独立于剩余其他代码时你可以将你的新代码放入一个函数。Python 的函数以关键词 `def` 开头,(该关键词)代表了定义函数。
在你的 `Player` 类中创建如下函数,来为你的妖精在屏幕上的位置增加几个像素。现在先不要担心你增加几个像素,这将在后续的代码中确定。
```
    def control(self,x,y):
        '''
        控制玩家移动
        '''
        self.movex += x
        self.movey += y
```
为了在 Pygame 中移动妖精,你需要告诉 Python 在新的位置重绘妖精,以及这个新位置在哪里。
因为玩家妖精并不总是在移动,所以更新只需要是 Player 类中的一个函数。将此函数添加前面创建的 `control` 函数之后。
要使妖精看起来像是在行走(或者飞行,或是你的妖精应该做的任何事),你需要在按下适当的键时改变它在屏幕上的位置。要让它在屏幕上移动,你需要将它的位置(由 `self.rect.x``self.rect.y` 属性指定)重新定义为当前位置加上已应用的任意 `movex``movey`。(移动的像素数量将在后续进行设置。)
```
    def update(self):
        '''
        更新妖精位置
        '''
        self.rect.x = self.rect.x + self.movex        
```
对 Y 方向做同样的处理:
```
        self.rect.y = self.rect.y + self.movey
```
对于动画,在妖精移动时推进动画帧,并使用相应的动画帧作为玩家的图像:
```
        # 向左移动
        if self.movex < 0:
            self.frame += 1
            if self.frame > 3*ani:
                self.frame = 0
            self.image = self.images[self.frame//ani]
        # 向右移动
        if self.movex > 0:
            self.frame += 1
            if self.frame > 3*ani:
                self.frame = 0
            self.image = self.images[(self.frame//ani)+4]
```
通过设置一个变量来告诉代码为你的妖精位置增加多少像素,然后在触发你的玩家妖精的函数时使用这个变量。
首先,在你的设置部分创建这个变量。在如下代码中,开头两行是上下文对照,因此只需要在你的脚本中增加第三行代码:
```
player_list = pygame.sprite.Group()
player_list.add(player)
steps = 10  # 移动多少个像素
```
现在你已经有了适当的函数和变量,使用你的按键来触发函数并将变量传递给你的妖精。
为此,将主循环中的 `print` 语句替换为玩家妖精的名字(`player`)、函数(`.control`)以及你希望玩家妖精在每个循环中沿 X 轴和 Y 轴移动的步数。
```
        if event.type == pygame.KEYDOWN:
            if event.key == pygame.K_LEFT or event.key == ord('a'):
                player.control(-steps,0)
            if event.key == pygame.K_RIGHT or event.key == ord('d'):
                player.control(steps,0)
            if event.key == pygame.K_UP or event.key == ord('w'):
                print('jump')
        if event.type == pygame.KEYUP:
            if event.key == pygame.K_LEFT or event.key == ord('a'):
                player.control(steps,0)
            if event.key == pygame.K_RIGHT or event.key == ord('d'):
                player.control(-steps,0)
            if event.key == ord('q'):
                pygame.quit()
                sys.exit()
                main = False
```
记住,`steps` 变量代表了当一个按键被按下时,你的妖精会移动多少个像素。如果当你按下 `D` 或右方向键时,你的妖精的位置增加了 10 个像素。那么当你停止按下这个键时,你必须(将 `step`)减 10`-steps`)来使你的妖精的动量回到 0。
现在尝试你的游戏。注意:它不会像你预想的那样运行。
为什么你的妖精仍无法移动?因为主循环还没有调用 `update` 函数。
将如下代码加入到你的主循环中来告诉 Python 更新你的玩家妖精的位置。增加带注释的那行:
```
    player.update()  # 更新玩家位置
    player_list.draw(world)
    pygame.display.flip()
    clock.tick(fps)
```
再次启动你的游戏来见证你的玩家妖精在你的命令下在屏幕上来回移动。现在还没有垂直方向的移动,因为这部分函数会被重力控制,不过这是另一篇文章中的课程了。
与此同时,如果你拥有一个摇杆,你可以尝试阅读 Pygame 中 [joystick][4] 模块相关的文档,看看你是否能通过这种方式让你的妖精移动起来。或者,看看你是否能通过[鼠标][5]与你的妖精互动。
最重要的是,玩的开心!
### 本教程中用到的所有代码
为了方便查阅,以下是目前本系列文章用到的所有代码。
```
#!/usr/bin/env python3
# 绘制世界
# 添加玩家和玩家控制
# 添加玩家移动控制
# GNU All-Permissive License
# Copying and distribution of this file, with or without modification,
# are permitted in any medium without royalty provided the copyright
# notice and this notice are preserved. This file is offered as-is,
# without any warranty.
import pygame
import sys
import os
'''
Objects
'''
class Player(pygame.sprite.Sprite):
'''
生成玩家
'''
def __init__(self):
pygame.sprite.Sprite.__init__(self)
self.movex = 0
self.movey = 0
self.frame = 0
self.images = []
for i in range(1,5):
img = pygame.image.load(os.path.join('images','hero' + str(i) + '.png')).convert()
img.convert_alpha()
img.set_colorkey(ALPHA)
self.images.append(img)
self.image = self.images[0]
self.rect = self.image.get_rect()
def control(self,x,y):
'''
控制玩家移动
'''
self.movex += x
self.movey += y
def update(self):
'''
更新妖精位置
'''
self.rect.x = self.rect.x + self.movex
self.rect.y = self.rect.y + self.movey
# 向左移动
if self.movex < 0:
self.frame += 1
if self.frame > 3*ani:
self.frame = 0
self.image = self.images[self.frame//ani]
# 向右移动
if self.movex > 0:
self.frame += 1
if self.frame > 3*ani:
self.frame = 0
self.image = self.images[(self.frame//ani)+4]
'''
设置
'''
worldx = 960
worldy = 720
fps = 40 # 帧刷新率
ani = 4 # 动画循环
clock = pygame.time.Clock()
pygame.init()
main = True
BLUE = (25,25,200)
BLACK = (23,23,23 )
WHITE = (254,254,254)
ALPHA = (0,255,0)
world = pygame.display.set_mode([worldx,worldy])
backdrop = pygame.image.load(os.path.join('images','stage.png')).convert()
backdropbox = world.get_rect()
player = Player() # 生成玩家
player.rect.x = 0
player.rect.y = 0
player_list = pygame.sprite.Group()
player_list.add(player)
steps = 10 # 移动速度
'''
主循环
'''
while main == True:
for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit(); sys.exit()
main = False
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_LEFT or event.key == ord('a'):
player.control(-steps,0)
if event.key == pygame.K_RIGHT or event.key == ord('d'):
player.control(steps,0)
if event.key == pygame.K_UP or event.key == ord('w'):
print('jump')
if event.type == pygame.KEYUP:
if event.key == pygame.K_LEFT or event.key == ord('a'):
player.control(steps,0)
if event.key == pygame.K_RIGHT or event.key == ord('d'):
player.control(-steps,0)
if event.key == ord('q'):
pygame.quit()
sys.exit()
main = False
# world.fill(BLACK)
world.blit(backdrop, backdropbox)
player.update()
player_list.draw(world) # 更新玩家位置
pygame.display.flip()
clock.tick(fps)
```
你已经学了很多,但还仍有许多可以做。在接下来的几篇文章中,你将实现添加敌方妖精、模拟重力等等。与此同时,练习 Python 吧!
--------------------------------------------------------------------------------
via: https://opensource.com/article/17/12/game-python-moving-player
作者:[Seth Kenlon][a]
选题:[lujun9972][b]
译者:[cycoe](https://github.com/cycoe)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://opensource.com/users/seth
[b]: https://github.com/lujun9972
[1]: https://linux.cn/article-9071-1.html
[2]: https://linux.cn/article-10850-1.html
[3]: https://linux.cn/article-10858-1.html
[4]: http://pygame.org/docs/ref/joystick.html
[5]: http://pygame.org/docs/ref/mouse.html#module-pygame.mouse

View File

@ -0,0 +1,172 @@
[#]: collector: (lujun9972)
[#]: translator: (wxy)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10918-1.html)
[#]: subject: (Aliases: To Protect and Serve)
[#]: via: (https://www.linux.com/blog/learn/2019/1/aliases-protect-and-serve)
[#]: author: (Paul Brown https://www.linux.com/users/bro66)
命令别名:保护和服务
======
> Linux shell 允许你将命令彼此链接在一起,一次触发执行复杂的操作,并且可以对此创建别名作为快捷方式。
![](https://www.linux.com/sites/lcom/files/styles/rendered_file/public/prairie-path_1920.jpg?itok=wRARsM7p)
让我们将继续我们的别名系列。到目前为止,你可能已经阅读了我们的[关于别名的第一篇文章][1],并且应该非常清楚它们是如何为你省去很多麻烦的最简单方法。例如,你已经看到它们帮助我们减少了输入,让我们看看别名派上用场的其他几个案例。
### 别名即快捷方式
Linux shell 最美妙的事情之一是可以使用数以万计的选项和把命令连接在一起执行真正复杂的操作。好吧,也许这种美丽是在旁观者的眼中的,但是我们觉得这个功能很实用。
不利的一面是,你经常需要记得难以记忆或难以打字出来的命令组合。比如说硬盘上的空间非常宝贵,而你想要做一些清洁工作。你的第一步可能是寻找隐藏在你的家目录里的东西。你可以用来判断的一个标准是查找不再使用的内容。`ls` 可以帮助你:
```
ls -lct
```
上面的命令显示了每个文件和目录的详细信息(`-l`),并显示了每一项上次访问的时间(`-c`),然后它按从最近访问到最少访问的顺序排序这个列表(`-t`)。
这难以记住吗?你可能不会每天都使用 `-c``-t` 选项,所以也许是吧。无论如何,定义一个别名,如:
```
alias lt='ls -lct'
```
会更容易一些。
然后,你也可能希望列表首先显示最旧的文件:
```
alias lo='lt -F | tac'
```
![aliases][3]
*图 1使用 lt 和 lo 别名。*
这里有一些有趣的事情。首先,我们使用别名(`lt`)来创建另一个别名 —— 这是完全可以的。其次,我们将一个新参数传递给 `lt`(后者又通过 `lt` 别名的定义传递给了 `ls`)。
`-F` 选项会将特殊符号附加到项目的名称后,以便更好地区分常规文件(没有符号)和可执行文件(附加了 `*`)、目录文件(以 `/` 结尾),以及所有链接文件、符号链接文件(以 `@` 符号结尾)等等。`-F` 选项是当你回归到单色终端的日子里,没有其他方法可以轻松看到列表项之间的差异时用的。在这里使用它是因为当你将输出从 `lt` 传递到 `tac` 时,你会丢失 `ls` 的颜色。
第三件我们需要注意的事情是我们使用了管道。管道用于你将一个命令的输出传递给另外一个命令时。第二个命令可以使用这些输出作为它的输入。在包括 Bash 在内的许多 shell 里,你可以使用管道符(`|` 来做传递。
在这里,你将来自 `lt -F` 的输出导给 `tac`。`tac` 这个命令有点玩笑的意思,你或许听说过 `cat` 命令它名义上用于将文件彼此连接con`cat`),而在实践中,它被用于将一个文件的内容打印到终端。`tac` 做的事情一样,但是它是以逆序将接收到的内容输出出来。明白了吗?`cat` 和 `tac`,技术人有时候也挺有趣的。
`cat``tac` 都能输出通过管道传递过来的内容,在这里,也就是一个按时间顺序排序的文件列表。
那么,在有些离题之后,最终我们得到的就是这个列表将当前目录中的文件和目录以新鲜度的逆序列出(即老的在前)。
最后你需要注意的是,当在当前目录或任何目录运行 `lt` 时:
```
# 这可以工作:
lt
# 这也可以:
lt /some/other/directory
```
……而 `lo` 只能在当前目录奏效:
```
# 这可工作:
lo
# 而这不行:
lo /some/other/directory
```
这是因为 Bash 会展开别名的组分。当你键入:
```
lt /some/other/directory
```
Bash 实际上运行的是:
```
ls -lct /some/other/directory
```
这是一个有效的 Bash 命令。
而当你键入:
```
lo /some/other/directory
```
Bash 试图运行:
```
ls -lct -F | tac /some/other/directory
```
这不是一个有效的命令,主要是因为 `/some/other/directory` 是个目录,而 `cat``tac` 不能用于目录。
### 更多的别名快捷方式
* `alias lll='ls -R'` 会打印出目录的内容,并深入到子目录里面打印子目录的内容,以及子目录的子目录,等等。这是一个查看一个目录下所有内容的方式。
* `mkdir='mkdir -pv'` 可以让你一次性创建目录下的目录。按照 `mkdir` 的基本形式,要创建一个包含子目录的目录,你必须这样:
```
mkdir newdir
mkdir newdir/subdir
```
或这样:
```
mkdir -p newdir/subdir
```
而用这个别名你将只需要这样就行:
```
mkdir newdir/subdir
```
你的新 `mkdir` 也会告诉你创建子目录时都做了什么。
### 别名也是一种保护
别名的另一个好处是它可以作为防止你意外地删除或覆写已有的文件的保护措施。你可能听说过这个 Linux 新用户的传言,当他们以 root 身份运行:
```
rm -rf /
```
整个系统就爆了。而决定输入如下命令的用户:
```
rm -rf /some/directory/ *
```
就很好地干掉了他们的家目录的全部内容。这里不小心键入的目录和 `*` 之间的那个空格有时候很容易就会被忽视掉。
这两种情况我们都可以通过 `alias rm='rm -i'` 别名来避免。`-i` 选项会使 `rm` 询问用户是否真的要做这个操作,在你对你的文件系统做出不可弥补的损失之前给你第二次机会。
对于 `cp` 也是一样,它能够覆盖一个文件而不会给你任何提示。创建一个类似 `alias cp='cp -i'` 来保持安全吧。
### 下一次
我们越来越深入到了脚本领域,下一次,我们将沿着这个方向,看看如何在命令行组合命令以给你真正的乐趣,并可靠地解决系统管理员每天面临的问题。
--------------------------------------------------------------------------------
via: https://www.linux.com/blog/learn/2019/1/aliases-protect-and-serve
作者:[Paul Brown][a]
选题:[lujun9972][b]
译者:[wxy](https://github.com/wxy)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://www.linux.com/users/bro66
[b]: https://github.com/lujun9972
[1]: https://linux.cn/article-10377-1.html
[2]: https://www.linux.com/files/images/fig01png-0
[3]: https://www.linux.com/sites/lcom/files/styles/rendered_file/public/fig01_0.png?itok=crqTm_va (aliases)
[4]: https://www.linux.com/licenses/category/used-permission

View File

@ -0,0 +1,212 @@
[#]: collector: (lujun9972)
[#]: translator: (bodhix)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10804-1.html)
[#]: subject: (How to Restart a Network in Ubuntu [Beginners Tip])
[#]: via: (https://itsfoss.com/restart-network-ubuntu)
[#]: author: (Sergiu https://itsfoss.com/author/sergiu/)
Linux 初学者:如何在 Ubuntu 中重启网络
======
你[是否正在使用基于 Ubuntu 的系统,然后发现无法连接网络][1]?你一定会很惊讶,很多的问题都可以简单地通过重启服务解决。
在这篇文章中,我会介绍在 Ubuntu 或者其他 Linux 发行版中重启网络的几种方法,你可以根据自身需要选择对应的方法。这些方法基本分为两类:
![Ubuntu Restart Network][2]
### 通过命令行方式重启网络
如果你使用的 Ubuntu 服务器版,那么你已经在使用命令行终端了。如果你使用的是桌面版,那么你可以通过快捷键 `Ctrl+Alt+T` [Ubuntu 键盘快捷键][3] 打开命令行终端。
在 Ubuntu 中,有多个命令可以重启网络。这些命令,一部分或者说大部分,也适用于在 Debian 或者其他的 Linux 发行版中重启网络。
#### 1、network manager 服务
这是通过命令行方式重启网络最简单的方法。它相当于是通过图形化界面重启网络(重启 Network-Manager 服务)。
```
sudo service network-manager restart
```
此时,网络图标会消失一会儿然后重新显示。
#### 2、systemd
`service` 命令仅仅是这个方式的一个封装(同样的也是 init.d 系列脚本和 Upstart 相关命令的封装)。`systemctl` 命令的功能远多于 `service` 命令。通常我更喜欢使用这个命令。
```
sudo systemctl restart NetworkManager.service
```
这时,网络图标又会消失一会儿。 如果你想了解 `systemctl` 的其他选项, 可以参考 man 帮助文档。
#### 3、nmcli
这是 Linux 上可以管理网络的另一个工具。这是一个功能强大而且实用的工具。很多系统管理员都喜欢使用该工具,因为它非常容易使用。
这种方法有两个操作步骤:关闭网络,再开启网络。
```
sudo nmcli networking off
```
这样就会关闭网络,网络图标会消失。接下来,再开启网络:
```
sudo nmcli networking on
```
你可以通过 man 帮助文档了解 nmcli 的更多用法。
#### 4、ifup & ifdown
这两个命令直接操作网口,切换网口是否可以收发包的状态。这是 [Linux 中最应该了解的网络命令][4] 之一。
使用 `ifdown` 关闭所有网口,再使用 `ifup` 重新启用网口。
通常推荐的做法是将这两个命令一起使用。
```
sudo ifdown -a && sudo ifup -a
```
注意:这种方法不会让网络图标从系统托盘中消失,另外,各种网络连接也会断。
#### 补充工具: nmtui
这是系统管理员们常用的另外一种方法。它是在命令行终端中管理网络的文本菜单工具。
```
nmtui
```
打开如下菜单:
![nmtui Menu][5]
注意:在 nmtui 中,可以通过 `up``down` 方向键选择选项。
选择 “Activate a connection”
![nmtui Menu Select "Activate a connection"][6]
按下回车键,打开 “connections” 菜单。
![nmtui Connections Menu][7]
接下来,选择前面带星号(*)的网络。在这个例子中,就是 MGEO72。
![Select your connection in the nmtui connections menu.][8]
按下回车键。 这就将“停用”你的网络连接。
![nmtui Connections Menu with no active connection][9]
选择你要连接的网络:
![Select the connection you want in the nmtui connections menu.][10]
按下回车键。这样就重新激活了所选择的网络连接。
![nmtui Connections Menu][11]
按下 `Tab` 键两次,选择 “Back”
![Select "Back" in the nmtui connections menu.][12]
按下回车键,回到 nmtui 的主菜单。
![nmtui Main Menu][13]
选择 “Quit”
![nmtui Quit Main Menu][14]
退出该界面,返回到命令行终端。
就这样,你已经成功重启网络了。
### 通过图形化界面重启网络
显然,这是 Ubuntu 桌面版用户重启网络最简单的方法。如果这个方法不生效,你可以尝试使用前文提到的命令行方式重启网络。
NM 小程序是 [NetworkManager][15] 的系统托盘程序标志。我们将使用它来重启网络。
首先,查看顶部状态栏。你会在系统托盘找到一个网络图标 (因为我使用 Wi-Fi所以这里是一个 Wi-Fi 图标)。
接下来,点击该图标(也可以点击音量图标或电池图标)。打开菜单。选择 “Turn Off” 关闭网络。
![Restart network in Ubuntu][16]
网络图标会在状态栏中消失,这表示你已经成功关闭网络了。
再次点击系统托盘重新打开菜单,选择 “Turn On”重新开启网络。
![Restarting network in Ubuntu][17]
恭喜!你现在已经重启你的网络了。
#### 其他提示:刷新可用网络列表
如果你已经连接上一个网络,但是你想连接到另外一个网络,你如何刷新 WiFi 列表,查找其他可用的网络呢?我来向你展示一下。
Ubuntu 没有可以直接 “刷新 WiFi 网络” 的选项,它有点隐蔽。
你需要再次打开配置菜单,然后点击 “Select Network” 。
![Refresh wifi network list in Ubuntu][18]
选择对应的网络修改你的 WiFi 连接。
你无法马上看到可用的无线网络列表。打开网络列表之后,大概需要 5 秒才会显示其它可用的无线网络。
![Select another wifi network in Ubuntu][19]
等待大概 5 秒钟,看到其他可用的网络。
现在,你就可以选择你想要连接的网络,点击连接。这样就完成了。
### 总结
重启网络连接是每个 Linux 用户在使用过程中必须经历的事情。
我们希望这些方法可以帮助你处理这样的问题!
你是如何重启或管理你的网络的?我们是否还有遗漏的?请在下方留言。
--------------------------------------------------------------------------------
via: https://itsfoss.com/restart-network-ubuntu
作者:[Sergiu][a]
选题:[lujun9972][b]
译者:[bodhix](https://github.com/bodhix)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://itsfoss.com/author/sergiu/
[b]: https://github.com/lujun9972
[1]: https://itsfoss.com/fix-no-wireless-network-ubuntu/
[2]: https://i1.wp.com/itsfoss.com/wp-content/uploads/2019/03/ubuntu-restart-network.png?resize=800%2C450&ssl=1
[3]: https://itsfoss.com/ubuntu-shortcuts/
[4]: https://itsfoss.com/basic-linux-networking-commands/
[5]: https://i1.wp.com/itsfoss.com/wp-content/uploads/2019/03/nmtui_menu.png?fit=800%2C602&ssl=1
[6]: https://i2.wp.com/itsfoss.com/wp-content/uploads/2019/03/nmtui_menu_select_option.png?fit=800%2C579&ssl=1
[7]: https://i1.wp.com/itsfoss.com/wp-content/uploads/2019/03/nmui_connection_menu_on.png?fit=800%2C585&ssl=1
[8]: https://i1.wp.com/itsfoss.com/wp-content/uploads/2019/03/nmui_select_connection_on.png?fit=800%2C576&ssl=1
[9]: https://i1.wp.com/itsfoss.com/wp-content/uploads/2019/03/nmui_connection_menu_off.png?fit=800%2C572&ssl=1
[10]: https://i0.wp.com/itsfoss.com/wp-content/uploads/2019/03/nmui_select_connection_off.png?fit=800%2C566&ssl=1
[11]: https://i1.wp.com/itsfoss.com/wp-content/uploads/2019/03/nmui_connection_menu_on-1.png?fit=800%2C585&ssl=1
[12]: https://i1.wp.com/itsfoss.com/wp-content/uploads/2019/03/nmui_connection_menu_back.png?fit=800%2C585&ssl=1
[13]: https://i1.wp.com/itsfoss.com/wp-content/uploads/2019/03/nmtui_menu_select_option-1.png?fit=800%2C579&ssl=1
[14]: https://i2.wp.com/itsfoss.com/wp-content/uploads/2019/03/nmui_menu_quit.png?fit=800%2C580&ssl=1
[15]: https://wiki.gnome.org/Projects/NetworkManager
[16]: https://i2.wp.com/itsfoss.com/wp-content/uploads/2019/03/restart-network-ubuntu-1.jpg?resize=800%2C400&ssl=1
[17]: https://i2.wp.com/itsfoss.com/wp-content/uploads/2019/03/restart-network-ubuntu-2.jpg?resize=800%2C400&ssl=1
[18]: https://i2.wp.com/itsfoss.com/wp-content/uploads/2019/03/select-wifi-network-ubuntu.jpg?resize=800%2C400&ssl=1
[19]: https://i1.wp.com/itsfoss.com/wp-content/uploads/2019/03/select-wifi-network-ubuntu-1.jpg?resize=800%2C400&ssl=1
[20]: https://i1.wp.com/itsfoss.com/wp-content/uploads/2019/03/ubuntu-restart-network.png?fit=800%2C450&ssl=1

View File

@ -0,0 +1,210 @@
[#]: collector: (lujun9972)
[#]: translator: (wxy)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10884-1.html)
[#]: subject: (Virtual filesystems in Linux: Why we need them and how they work)
[#]: via: (https://opensource.com/article/19/3/virtual-filesystems-linux)
[#]: author: (Alison Chariken )
详解 Linux 中的虚拟文件系统
======
> 虚拟文件系统是一种神奇的抽象,它使得 “一切皆文件” 哲学在 Linux 中成为了可能。
![](https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/documents_papers_file_storage_work.png?itok=YlXpAqAJ)
什么是文件系统?根据早期的 Linux 贡献者和作家 [Robert Love][1] 所说,“文件系统是一个遵循特定结构的数据的分层存储。” 不过,这种描述也同样适用于 VFAT<ruby>虚拟文件分配表<rt>Virtual File Allocation Table</rt></ruby>、Git 和[Cassandra][2](一种 [NoSQL 数据库][3])。那么如何区别文件系统呢?
### 文件系统基础概念
Linux 内核要求文件系统必须是实体,它还必须在持久对象上实现 `open()`、`read()` 和 `write()` 方法,并且这些实体需要有与之关联的名字。从 [面向对象编程][4] 的角度来看内核将通用文件系统视为一个抽象接口这三大函数是“虚拟”的没有默认定义。因此内核的默认文件系统实现被称为虚拟文件系统VFS
![][5]
*如果我们能够 `open()`、`read()` 和 `write()`,它就是一个文件,如这个主控台会话所示。*
VFS 是著名的类 Unix 系统中 “一切皆文件” 概念的基础。让我们看一下它有多奇怪,上面的小小演示体现了字符设备 `/dev/console` 实际的工作。该图显示了一个在虚拟电传打字控制台tty上的交互式 Bash 会话。将一个字符串发送到虚拟控制台设备会使其显示在虚拟屏幕上。而 VFS 甚至还有其它更奇怪的属性。例如,它[可以在其中寻址][6]。
我们熟悉的文件系统如 ext4、NFS 和 /proc 都在名为 [file_operations] [7] 的 C 语言数据结构中提供了三大函数的定义。此外,个别的文件系统会以熟悉的面向对象的方式扩展和覆盖了 VFS 功能。正如 Robert Love 指出的那样VFS 的抽象使 Linux 用户可以轻松地将文件复制到(或复制自)外部操作系统或抽象实体(如管道),而无需担心其内部数据格式。在用户空间这一侧,通过系统调用,进程可以使用文件系统方法之一 `read()` 从文件复制到内核的数据结构中,然后使用另一种文件系统的方法 `write()` 输出数据。
属于 VFS 基本类型的函数定义本身可以在内核源代码的 [fs/*.c 文件][8] 中找到,而 `fs/` 的子目录中包含了特定的文件系统。内核还包含了类似文件系统的实体,例如 cgroup、`/dev` 和 tmpfs在引导过程的早期需要它们因此定义在内核的 `init/` 子目录中。请注意cgroup、`/dev` 和 tmpfs 不会调用 `file_operations` 的三大函数,而是直接读取和写入内存。
下图大致说明了用户空间如何访问通常挂载在 Linux 系统上的各种类型文件系统。像管道、dmesg 和 POSIX 时钟这样的结构在此图中未显示,它们也实现了 `struct file_operations`,而且其访问也要通过 VFS 层。
![How userspace accesses various types of filesystems][9]
VFS 是个“垫片层”,位于系统调用和特定 `file_operations` 的实现(如 ext4 和 procfs之间。然后`file_operations` 函数可以与特定于设备的驱动程序或内存访问器进行通信。tmpfs、devtmpfs 和 cgroup 不使用 `file_operations` 而是直接访问内存。
VFS 的存在促进了代码重用,因为与文件系统相关的基本方法不需要由每种文件系统类型重新实现。代码重用是一种被广泛接受的软件工程最佳实践!唉,但是如果重用的代码[引入了严重的错误][10],那么继承常用方法的所有实现都会受到影响。
### /tmp一个小提示
找出系统中存在的 VFS 的简单方法是键入 `mount | grep -v sd | grep -v :/`,在大多数计算机上,它将列出所有未驻留在磁盘上,同时也不是 NFS 的已挂载文件系统。其中一个列出的 VFS 挂载肯定是 `/tmp`,对吧?
![Man with shocked expression][11]
*谁都知道把 /tmp 放在物理存储设备上简直是疯了!图片:<https://tinyurl.com/ybomxyfo>*
为什么把 `/tmp` 留在存储设备上是不可取的?因为 `/tmp` 中的文件是临时的(!),并且存储设备比内存慢,所以创建了 tmpfs 这种文件系统。此外,比起内存,物理设备频繁写入更容易磨损。最后,`/tmp` 中的文件可能包含敏感信息,因此在每次重新启动时让它们消失是一项功能。
不幸的是,默认情况下,某些 Linux 发行版的安装脚本仍会在存储设备上创建 /tmp。如果你的系统出现这种情况请不要绝望。按照一直优秀的 [Arch Wiki][12] 上的简单说明来解决问题就行,记住分配给 tmpfs 的内存就不能用于其他目的了。换句话说,包含了大文件的庞大的 tmpfs 可能会让系统耗尽内存并崩溃。
另一个提示:编辑 `/etc/fstab` 文件时,请务必以换行符结束,否则系统将无法启动。(猜猜我怎么知道。)
### /proc 和 /sys
除了 `/tmp` 之外,大多数 Linux 用户最熟悉的 VFS 是 `/proc``/sys`。(`/dev` 依赖于共享内存,而没有 `file_operations` 结构)。为什么有两种呢?让我们来看看更多细节。
procfs 为用户空间提供了内核及其控制的进程的瞬时状态的快照。在 `/proc` 中,内核发布有关其提供的设施的信息,如中断、虚拟内存和调度程序。此外,`/proc/sys` 是存放可以通过 [sysctl 命令][13]配置的设置的地方,可供用户空间访问。单个进程的状态和统计信息在 `/proc/<PID>` 目录中报告。
![Console][14]
*/proc/meminfo 是一个空文件,但仍包含有价值的信息。*
`/proc` 文件的行为说明了 VFS 可以与磁盘上的文件系统不同。一方面,`/proc/meminfo` 包含了可由命令 `free` 展现出来的信息。另一方面,它还是空的!怎么会这样?这种情况让人联想起康奈尔大学物理学家 N. David Mermin 在 1985 年写的一篇名为《[没有人看见月亮的情况吗?][15]现实和量子理论》。事实是当进程从 `/proc` 请求数据时内核再收集有关内存的统计信息,而且当没有人查看它时,`/proc` 中的文件实际上没有任何内容。正如 [Mermin 所说][16],“这是一个基本的量子学说,一般来说,测量不会揭示被测属性的预先存在的价值。”(关于月球的问题的答案留作练习。)
![Full moon][17]
*当没有进程访问它们时,/proc 中的文件为空。([来源][18]*
procfs 的空文件是有道理的因为那里可用的信息是动态的。sysfs 的情况则不同。让我们比较一下 `/proc``/sys` 中不为空的文件数量。
![](https://opensource.com/sites/default/files/uploads/virtualfilesystems_6-filesize.png)
procfs 只有一个不为空的文件,即导出的内核配置,这是一个例外,因为每次启动只需要生成一次。另一方面,`/sys` 有许多更大一些的文件其中大多数由一页内存组成。通常sysfs 文件只包含一个数字或字符串,与通过读取 `/proc/meminfo` 等文件生成的信息表格形成鲜明对比。
sysfs 的目的是将内核称为 “kobject” 的可读写属性公开给用户空间。kobject 的唯一目的是引用计数:当删除对 kobject 的最后一个引用时,系统将回收与之关联的资源。然而,`/sys` 构成了内核著名的“[到用户空间的稳定 ABI][19]”,它的大部分内容[在任何情况下都没有人能“破坏”][20]。但这并不意味着 sysfs 中的文件是静态,这与易失性对象的引用计数相反。
内核的稳定 ABI 限制了 `/sys` 中可能出现的内容,而不是任何给定时刻实际存在的内容。列出 sysfs 中文件的权限可以了解如何设置或读取设备、模块、文件系统等的可配置、可调参数。逻辑上强调 procfs 也是内核稳定 ABI 的一部分的结论,尽管内核的[文档][19]没有明确说明。
![Console][21]
*sysfs 中的文件确切地描述了实体的每个属性并且可以是可读的、可写的或两者兼而有之。文件中的“0”表示 SSD 不可移动的存储设备。*
### 用 eBPF 和 bcc 工具一窥 VFS 内部
了解内核如何管理 sysfs 文件的最简单方法是观察它的运行情况,在 ARM64 或 x86_64 上观看的最简单方法是使用 eBPF。eBPF<ruby>扩展的伯克利数据包过滤器<rt>extended Berkeley Packet Filter</rt></ruby>)由[在内核中运行的虚拟机][22]组成,特权用户可以从命令行进行查询。内核源代码告诉读者内核可以做什么;而在一个启动的系统上运行 eBPF 工具会显示内核实际上做了什么。
令人高兴的是,通过 [bcc][23] 工具入门使用 eBPF 非常容易,这些工具在[主要 Linux 发行版的软件包][24] 中都有,并且已经由 Brendan Gregg [给出了充分的文档说明][25]。bcc 工具是带有小段嵌入式 C 语言片段的 Python 脚本,这意味着任何对这两种语言熟悉的人都可以轻松修改它们。据当前统计,[bcc/tools 中有 80 个 Python 脚本][26],使得系统管理员或开发人员很有可能能够找到与她/他的需求相关的已有脚本。
要了解 VFS 在正在运行中的系统上的工作情况,请尝试使用简单的 [vfscount][27] 或 [vfsstat][28] 脚本,这可以看到每秒都会发生数十次对 `vfs_open()` 及其相关的调用。
![Console - vfsstat.py][29]
*vfsstat.py 是一个带有嵌入式 C 片段的 Python 脚本,它只是计数 VFS 函数调用。*
作为一个不太重要的例子,让我们看一下在运行的系统上插入 USB 记忆棒时 sysfs 中会发生什么。
![Console when USB is inserted][30]
*用 eBPF 观察插入 USB 记忆棒时 /sys 中会发生什么,简单的和复杂的例子。*
在上面的第一个简单示例中,只要 `sysfs_create_files()` 命令运行,[trace.py][31] bcc 工具脚本就会打印出一条消息。我们看到 `sysfs_create_files()` 由一个 kworker 线程启动,以响应 USB 棒的插入事件,但是它创建了什么文件?第二个例子说明了 eBPF 的强大能力。这里,`trace.py` 正在打印内核回溯(`-K` 选项)以及 `sysfs_create_files()` 创建的文件的名称。单引号内的代码段是一些 C 源代码,包括一个易于识别的格式字符串,所提供的 Python 脚本[引入 LLVM 即时编译器JIT][32] 来在内核虚拟机内编译和执行它。必须在第二个命令中重现完整的 `sysfs_create_files()` 函数签名,以便格式字符串可以引用其中一个参数。在此 C 片段中出错会导致可识别的 C 编译器错误。例如,如果省略 `-I` 参数,则结果为“无法编译 BPF 文本”。熟悉 C 或 Python 的开发人员会发现 bcc 工具易于扩展和修改。
插入 USB 记忆棒后,内核回溯显示 PID 7711 是一个 kworker 线程,它在 sysfs 中创建了一个名为 `events` 的文件。使用 `sysfs_remove_files()` 进行相应的调用表明,删除 USB 记忆棒会导致删除该 `events` 文件,这与引用计数的想法保持一致。在 USB 棒插入期间(未显示)在 eBPF 中观察 `sysfs_create_link()` 表明创建了不少于 48 个符号链接。
无论如何,`events` 文件的目的是什么?使用 [cscope][33] 查找函数 [`__device_add_disk()`][34] 显示它调用 `disk_add_events()`,并且可以将 “media_change” 或 “eject_request” 写入到该文件。这里,内核的块层通知用户空间该 “磁盘” 的出现和消失。考虑一下这种检查 USB 棒的插入的工作原理的方法与试图仅从源头中找出该过程的速度有多快。
### 只读根文件系统使得嵌入式设备成为可能
确实,没有人通过拔出电源插头来关闭服务器或桌面系统。为什么?因为物理存储设备上挂载的文件系统可能有挂起的(未完成的)写入,并且记录其状态的数据结构可能与写入存储器的内容不同步。当发生这种情况时,系统所有者将不得不在下次启动时等待 [fsck 文件系统恢复工具][35] 运行完成,在最坏的情况下,实际上会丢失数据。
然而,狂热爱好者会听说许多物联网和嵌入式设备,如路由器、恒温器和汽车现在都运行着 Linux。许多这些设备几乎完全没有用户界面并且没有办法干净地让它们“解除启动”。想一想启动电池耗尽的汽车其中[运行 Linux 的主机设备][36] 的电源会不断加电断电。当引擎最终开始运行时,系统如何在没有长时间 fsck 的情况下启动呢?答案是嵌入式设备依赖于[只读根文件系统][37](简称 ro-rootfs
![Photograph of a console][38]
*ro-rootfs 是嵌入式系统不经常需要 fsck 的原因。 来源:<https://tinyurl.com/yxoauoub>*
ro-rootfs 提供了许多优点,虽然这些优点不如耐用性那么显然。一个是,如果 Linux 进程不可以写入,那么恶意软件也无法写入 `/usr``/lib`。另一个是,基本上不可变的文件系统对于远程设备的现场支持至关重要,因为支持人员拥有理论上与现场相同的本地系统。也许最重要(但也是最微妙)的优势是 ro-rootfs 迫使开发人员在项目的设计阶段就决定好哪些系统对象是不可变的。处理 ro-rootfs 可能经常是不方便甚至是痛苦的,[编程语言中的常量变量][39]经常就是这样,但带来的好处很容易偿还这种额外的开销。
对于嵌入式开发人员,创建只读根文件系统确实需要做一些额外的工作,而这正是 VFS 的用武之地。Linux 需要 `/var` 中的文件可写,此外,嵌入式系统运行的许多流行应用程序会尝试在 `$HOME` 中创建配置的点文件。放在家目录中的配置文件的一种解决方案通常是预生成它们并将它们构建到 rootfs 中。对于 `/var`,一种方法是将其挂载在单独的可写分区上,而 `/` 本身以只读方式挂载。使用绑定或叠加挂载是另一种流行的替代方案。
### 绑定和叠加挂载以及在容器中的使用
运行 [man mount][40] 是了解<ruby>绑定挂载<rt>bind mount</rt></ruby><ruby>叠加挂载<rt>overlay mount</rt></ruby>的最好办法,这种方法使得嵌入式开发人员和系统管理员能够在一个路径位置创建文件系统,然后以另外一个路径将其提供给应用程序。对于嵌入式系统,这代表着可以将文件存储在 `/var` 中的不可写闪存设备上,但是在启动时将 tmpfs 中的路径叠加挂载或绑定挂载到 `/var` 路径上,这样应用程序就可以在那里随意写它们的内容了。下次加电时,`/var` 中的变化将会消失。叠加挂载为 tmpfs 和底层文件系统提供了联合,允许对 ro-rootfs 中的现有文件进行直接修改,而绑定挂载可以使新的空 tmpfs 目录在 ro-rootfs 路径中显示为可写。虽然叠加文件系统是一种适当的文件系统类型,而绑定挂载由 [VFS 命名空间工具][41] 实现的。
根据叠加挂载和绑定挂载的描述,没有人会对 [Linux 容器][42] 中大量使用它们感到惊讶。让我们通过运行 bcc 的 `mountsnoop` 工具监视当使用 [systemd-nspawn][43] 启动容器时会发生什么:
![Console - system-nspawn invocation][44]
*在 mountsnoop.py 运行的同时system-nspawn 调用启动容器。*
让我们看看发生了什么:
![Console - Running mountsnoop][45]
*在容器 “启动” 期间运行 `mountsnoop` 可以看到容器运行时很大程度上依赖于绑定挂载。(仅显示冗长输出的开头)*
这里,`systemd-nspawn` 将主机的 procfs 和 sysfs 中的选定文件按其 rootfs 中的路径提供给容器。除了设置绑定挂载时的 `MS_BIND` 标志之外,`mount` 系统调用的一些其它标志用于确定主机命名空间和容器中的更改之间的关系。例如,绑定挂载可以将 `/proc``/sys` 中的更改传播到容器,也可以隐藏它们,具体取决于调用。
### 总结
理解 Linux 内部结构看似是一项不可能完成的任务,因为除了 Linux 用户空间应用程序和 glibc 这样的 C 库中的系统调用接口,内核本身也包含大量代码。取得进展的一种方法是阅读一个内核子系统的源代码,重点是理解面向用户空间的系统调用和头文件以及主要的内核内部接口,这里以 `file_operations` 表为例。`file_operations` 使得“一切都是文件”得以可以实际工作,因此掌握它们收获特别大。顶级 `fs/` 目录中的内核 C 源文件构成了虚拟文件系统的实现,虚拟文件​​系统是支持流行的文件系统和存储设备的广泛且相对简单的互操作性的垫片层。通过 Linux 命名空间进行绑定挂载和覆盖挂载是 VFS 魔术它使容器和只读根文件系统成为可能。结合对源代码的研究eBPF 内核工具及其 bcc 接口使得探测内核比以往任何时候都更简单。
非常感谢 [Akkana Peck][46] 和 [Michael Eager][47] 的评论和指正。
Alison Chaiken 也于 3 月 7 日至 10 日在加利福尼亚州帕萨迪纳举行的第 17 届南加州 Linux 博览会([SCaLE 17x][49])上演讲了[本主题][48]。
--------------------------------------------------------------------------------
via: https://opensource.com/article/19/3/virtual-filesystems-linux
作者:[Alison Chariken][a]
选题:[lujun9972][b]
译者:[wxy](https://github.com/wxy)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://opensource.com/users/chaiken
[b]: https://github.com/lujun9972
[1]: https://www.pearson.com/us/higher-education/program/Love-Linux-Kernel-Development-3rd-Edition/PGM202532.html
[2]: http://cassandra.apache.org/
[3]: https://en.wikipedia.org/wiki/NoSQL
[4]: http://lwn.net/Articles/444910/
[5]: https://opensource.com/sites/default/files/uploads/virtualfilesystems_1-console.png (Console)
[6]: https://lwn.net/Articles/22355/
[7]: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/fs.h
[8]: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/fs
[9]: https://opensource.com/sites/default/files/uploads/virtualfilesystems_2-shim-layer.png (How userspace accesses various types of filesystems)
[10]: https://lwn.net/Articles/774114/
[11]: https://opensource.com/sites/default/files/uploads/virtualfilesystems_3-crazy.jpg (Man with shocked expression)
[12]: https://wiki.archlinux.org/index.php/Tmpfs
[13]: http://man7.org/linux/man-pages/man8/sysctl.8.html
[14]: https://opensource.com/sites/default/files/uploads/virtualfilesystems_4-proc-meminfo.png (Console)
[15]: http://www-f1.ijs.si/~ramsak/km1/mermin.moon.pdf
[16]: https://en.wikiquote.org/wiki/David_Mermin
[17]: https://opensource.com/sites/default/files/uploads/virtualfilesystems_5-moon.jpg (Full moon)
[18]: https://commons.wikimedia.org/wiki/Moon#/media/File:Full_Moon_Luc_Viatour.jpg
[19]: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/ABI/stable
[20]: https://lkml.org/lkml/2012/12/23/75
[21]: https://opensource.com/sites/default/files/uploads/virtualfilesystems_7-sysfs.png (Console)
[22]: https://events.linuxfoundation.org/sites/events/files/slides/bpf_collabsummit_2015feb20.pdf
[23]: https://github.com/iovisor/bcc
[24]: https://github.com/iovisor/bcc/blob/master/INSTALL.md
[25]: http://brendangregg.com/ebpf.html
[26]: https://github.com/iovisor/bcc/tree/master/tools
[27]: https://github.com/iovisor/bcc/blob/master/tools/vfscount_example.txt
[28]: https://github.com/iovisor/bcc/blob/master/tools/vfsstat.py
[29]: https://opensource.com/sites/default/files/uploads/virtualfilesystems_8-vfsstat.png (Console - vfsstat.py)
[30]: https://opensource.com/sites/default/files/uploads/virtualfilesystems_9-ebpf.png (Console when USB is inserted)
[31]: https://github.com/iovisor/bcc/blob/master/tools/trace_example.txt
[32]: https://events.static.linuxfound.org/sites/events/files/slides/bpf_collabsummit_2015feb20.pdf
[33]: http://northstar-www.dartmouth.edu/doc/solaris-forte/manuals/c/user_guide/cscope.html
[34]: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/block/genhd.c#n665
[35]: http://www.man7.org/linux/man-pages/man8/fsck.8.html
[36]: https://wiki.automotivelinux.org/_media/eg-rhsa/agl_referencehardwarespec_v0.1.0_20171018.pdf
[37]: https://elinux.org/images/1/1f/Read-only_rootfs.pdf
[38]: https://opensource.com/sites/default/files/uploads/virtualfilesystems_10-code.jpg (Photograph of a console)
[39]: https://www.meetup.com/ACCU-Bay-Area/events/drpmvfytlbqb/
[40]: http://man7.org/linux/man-pages/man8/mount.8.html
[41]: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/filesystems/sharedsubtree.txt
[42]: https://coreos.com/os/docs/latest/kernel-modules.html
[43]: https://www.freedesktop.org/software/systemd/man/systemd-nspawn.html
[44]: https://opensource.com/sites/default/files/uploads/virtualfilesystems_11-system-nspawn.png (Console - system-nspawn invocation)
[45]: https://opensource.com/sites/default/files/uploads/virtualfilesystems_12-mountsnoop.png (Console - Running mountsnoop)
[46]: http://shallowsky.com/
[47]: http://eagercon.com/
[48]: https://www.socallinuxexpo.org/scale/17x/presentations/virtual-filesystems-why-we-need-them-and-how-they-work
[49]: https://www.socallinuxexpo.org/

View File

@ -0,0 +1,56 @@
[#]: collector: (lujun9972)
[#]: translator: (wxy)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10914-1.html)
[#]: subject: (Blockchain 2.0: Blockchain In Real Estate [Part 4])
[#]: via: (https://www.ostechnix.com/blockchain-2-0-blockchain-in-real-estate/)
[#]: author: (ostechnix https://www.ostechnix.com/author/editor/)
区块链 2.0:房地产区块链(四)
======
![](https://www.ostechnix.com/wp-content/uploads/2019/03/Blockchain-In-Real-Estate-720x340.png)
### 区块链 2.0:“更”智能的房地产
在本系列的[上一篇文章][1]中我们探讨了区块链的特征,这些区块链将使机构能够将**传统银行**和**融资系统**转换和交织在一起。这部分将探讨**房地产区块链**。房地产业正在走向革命。它是人类已知的交易最活跃、最重要的资产类别之一。然而,由于充满了监管障碍和欺诈、欺骗的无数可能性,它也是最难参与交易的之一。利用适当的共识算法的区块链的分布式分类账本功能被吹捧为这个行业的前进方向,而这个行业传统上被认为其面对变革是保守的。
就其无数的业务而言房地产一直是一个非常保守的行业。这似乎也是理所当然的。2008 年金融危机或 20 世纪上半叶的大萧条等重大经济危机成功摧毁了该行业及其参与者。然而,与大多数具有经济价值的产品一样,房地产行业具有弹性,而这种弹性则源于其保守性。
全球房地产市场由价值 228 万亿 [^1] 美元的资产类别组成,出入不大。其他投资资产,如股票、债券和股票合计价值仅为 170 万亿美元。显然,在这样一个行业中实施的交易在很大程度上都是精心策划和执行的。很多时候,房地产也因许多欺诈事件而臭名昭著,并且随之而来的是毁灭性的损失。由于其运营非常保守,该行业也难以驾驭。它受到了法律的严格监管,创造了一个交织在一起的细微差别网络,这对于普通人来说太难以完全理解,使得大多数人无法进入和参与。如果你曾参与过这样的交易,那么你就会知道纸质文件的重要性和长期性。
从一个微不足道的开始,虽然是一个重要的例子,以显示当前的记录管理实践在房地产行业有多糟糕,考虑一下[产权保险业务][2] [^3]。产权保险用于对冲土地所有权和所有权记录不可接受且从而无法执行的可能性。诸如此类的保险产品也称为赔偿保险。在许多情况下,法律要求财产拥有产权保险,特别是在处理多年来多次易手的财产时。抵押贷款公司在支持房地产交易时也可能坚持同样的要求。事实上,这种产品自 19 世纪 50 年代就已存在,并且仅在美国每年至少有 1.5 万亿美元的商业价值这一事实证明了一开始的说法。在这种情况下,这些记录的维护方式必须进行改革,区块链提供了一个可持续解决方案。根据[美国土地产权协会][4],平均每个案例的欺诈平均约为 10 万美元,并且涉及交易的所有产权中有 25 的文件存在问题。区块链允许设置一个不可变的永久数据库,该数据库将跟踪资产本身,记录已经进入的每个交易或投资。这样的分类帐本系统将使包括一次性购房者在内的房地产行业的每个人的生活更加轻松,并使诸如产权保险等金融产品基本上无关紧要。将诸如房地产之类的实物资产转换为这样的数字资产是非常规的,并且目前仅在理论上存在。然而,这种变化迫在眉睫,而不是迟到 [^5]。
区块链在房地产中影响最大的领域如上所述,在维护透明和安全的产权管理系统方面。基于区块链的财产记录可以包含有关财产、其所在地、所有权历史以及相关的公共记录的[信息][6]。这将允许房地产交易快速完成,并且无需第三方监控和监督。房地产评估和税收计算等任务成为有形的、客观的参数问题,而不是主观测量和猜测,因为可靠的历史数据是可公开验证的。[UBITQUITY][7] 就是这样一个平台,为企业客户提供定制的基于区块链的解决方案。该平台允许客户跟踪所有房产细节、付款记录、抵押记录,甚至允许运行智能合约,自动处理税收和租赁。
这为我们带来了房地产区块链的第二大机遇和用例。由于该行业受到众多第三方的高度监管,除了参与交易的交易对手外,尽职调查和财务评估可能非常耗时。这些流程主要通过离线渠道进行,文书工作需要在最终评估报告出来之前进行数天。对于公司房地产交易尤其如此,这构成了顾问所收取的总计费时间的大部分。如果交易由抵押背书,则这些过程的重复是不可避免的。一旦与所涉及的人员和机构的数字身份相结合,就可以完全避免当前的低效率,并且可以在几秒钟内完成交易。租户、投资者、相关机构、顾问等可以单独验证数据并达成一致的共识,从而验证永久性的财产记录 [^8]。这提高了验证流程的准确性。房地产巨头 RE/MAX 最近宣布与服务提供商 XYO Network Partners 合作,[建立墨西哥房上市地产国家数据库][9]。他们希望有朝一日能够创建世界上最大的(截至目前)去中心化房地产登记中心之一。
然而,区块链可以带来的另一个重要且可以说是非常民主的变化是投资房地产。与其他投资资产类别不同,即使是小型家庭投资者也可能参与其中,房地产通常需要大量的手工付款才能参与。诸如 ATLANT 和 BitOfProperty 之类的公司将房产的账面价值代币化,并将其转换为加密货币的等价物。这些代币随后在交易所出售,类似于股票和股票的交易方式。[房地产后续产生的任何现金流都会根据其在财产中的“份额”记入贷方或借记给代币所有者][4]。
然而尽管如此区块链技术仍处于房地产领域的早期采用阶段目前的法规还没有明确定义它。诸如分布式应用程序、分布式匿名组织DAO、智能合约等概念在许多国家的法律领域是闻所未闻的。一旦所有利益相关者充分接受了区块链复杂性的良好教育就会彻底改革现有的法规和指导方针这是最务实的前进方式。 同样,这将是一个缓慢而渐进的变化,但是它是一个急需的变化。本系列的下一篇文章将介绍 “智能合约”,例如由 UBITQUITY 和 XYO 等公司实施的那些是如何在区块链中创建和执行的。
[^1]: HSBC, “Global Real Estate,” no. April, 2008
[^3]: D. B. Burke, Law of title insurance. Aspen Law & Business, 2000.
[^5]: M. Swan, OReilly Blockchain. Blueprint for a New Economy 2015.
[^8]: Deloite, “Blockchain in commercial real estate The future is here! Table of contents.”
--------------------------------------------------------------------------------
via: https://www.ostechnix.com/blockchain-2-0-blockchain-in-real-estate/
作者:[ostechnix][a]
选题:[lujun9972][b]
译者:[wxy](https://github.com/wxy)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://www.ostechnix.com/author/editor/
[b]: https://github.com/lujun9972
[1]: https://linux.cn/article-10689-1.html
[2]: https://www.forbes.com/sites/jordanlulich/2018/06/21/what-is-title-insurance-and-why-its-important/#1472022b12bb
[4]: https://www.cbinsights.com/research/blockchain-real-estate-disruption/#financing
[6]: https://www2.deloitte.com/us/en/pages/financial-services/articles/blockchain-in-commercial-real-estate.html
[7]: https://www.ubitquity.io/
[9]: https://www.businesswire.com/news/home/20181012005068/en/XYO-Network-Partners-REMAX-M%C3%A9xico-Bring-Blockchain

View File

@ -1,48 +1,47 @@
[#]: collector: "lujun9972"
[#]: translator: "zgj1024 "
[#]: reviewer: " "
[#]: publisher: " "
[#]: url: " "
[#]: translator: "zgj1024"
[#]: reviewer: "wxy"
[#]: publisher: "wxy"
[#]: url: "https://linux.cn/article-10834-1.html"
[#]: subject: "Why DevOps is the most important tech strategy today"
[#]: via: "https://opensource.com/article/19/3/devops-most-important-tech-strategy"
[#]: author: "Kelly AlbrechtWilly-Peter Schaub https://opensource.com/users/ksalbrecht/users/brentaaronreed/users/wpschaub/users/wpschaub/users/ksalbrecht"
[#]: author: "Kelly Albrecht https://opensource.com/users/ksalbrecht"
为何 DevOps 是如今最重要的技术策略
======
消除一些关于 DevOps 的疑惑
> 消除一些关于 DevOps 的疑惑。
![CICD with gears][1]
很多人初学 [DevOps][2] 时,看到它其中一个结果就问这个是如何得来的。其实理解这部分 Devops 的怎样实现并不重要,重要的是——理解(使用) DevOps 策略的原因——这是做一个行业的领导者还是追随者的差别。
你可能会听过些 Devops 的难以置信的成果,例如生产环境非常有弹性,“混世猴子”([Chaos Monkey][3])程序运行时,将周围的连接随机切断,每天仍可以处理数千个版本。这是令人印象深刻的,但就其本身而言,这是一个 DevOps 的无力案例,本质上会被一个[反例][4]困扰DevOps 环境有弹性是因为没有观察到严重的故障。。。还没有。
你可能会听过些 Devops 的难以置信的成果,例如生产环境非常有弹性,就算是有个“<ruby>[癫狂的猴子][3]<rt>Chaos Monkey</rt></ruby>)跳来跳去将不知道哪个插头随便拔下,每天仍可以处理数千个发布。这是令人印象深刻的,但就其本身而言,这是一个 DevOps 的证据不足的案例,其本质上会被一个[反例][4]困扰DevOps 环境有弹性是因为严重的故障还没有被观测到
有很多关于 DevOps 的疑惑,并且许多人还在尝试弄清楚它的意义。下面是来自我 LinkedIn Feed 中的某个人的一个案例:
> 最近我参加一些 #DevOps 的交流会,那里一些演讲人好像在倡导 #敏捷开发是 DevOps 的子集。不知为何,我的理解洽洽相反。
> 最近我参加一些 #DevOps 的交流会,那里一些演讲人好像在倡导 #敏捷开发是 DevOps 的子集。不知为何,我的理解恰恰相反。
>
> 能听一下你们的想法吗?你认为敏捷开发和 DevOps 之间是什么关系呢?
>
> 1. DevOps 是敏捷开发的子集
> 2. 敏捷开发 是 DevOps 的子集
> 2. 敏捷开发是 DevOps 的子集
> 3. DevOps 是敏捷开发的扩展,从敏捷开发结束的地方开始
> 4. DevOps 是敏捷开发的新版本
>
科技行业的专业人士在那篇 LinkedIn 的帖子上达标各样的答案,你会怎样回复呢?
科技行业的专业人士在那篇 LinkedIn 的帖子上表达了各种各样的答案,你会怎样回复呢?
### DevOps源于精益和敏捷
### DevOps 源于精益和敏捷
如果我们从亨利福特的战略和丰田生产系统对福特车型的改进(的历史)开始, DevOps 就更有意义了。精益制造就诞生在那段历史中人们对精益制作进行了良好的研究。James P. Womack 和 Daniel T. Jones 将精益思维([Lean Thinking][5])提炼为五个原则:
如果我们从亨利福特的战略和丰田生产系统对福特车型的改进(的历史)开始, DevOps 就更有意义了。精益制造就诞生在那段历史中人们对精益制作进行了良好的研究。James P. Womack 和 Daniel T. Jones 将精益思维( [Lean Thinking][5])提炼为五个原则:
1. 指明客户所需的价值
2. 确定提供该价值的每个产品的价值流,并对当前提供该价值所需的所有浪费步骤提起挑战
3. 使产品通过剩余的增值步骤持续流动
4. 在可以连续流动的所有步骤之间引入拉力
5. 管理要尽善尽美,以便为客户服务所需的步骤数量和时间以及信息量持续下降
Lean seeks to continuously remove waste and increase the flow of value to the customer. This is easily recognizable and understood through a core tenet of lean: single piece flow. We can do a number of activities to learn why moving single pieces at a time is magnitudes faster than batches of many pieces; the [Penny Game][6] and the [Airplane Game][7] are two of them. In the Penny Game, if a batch of 20 pennies takes two minutes to get to the customer, they get the whole batch after waiting two minutes. If you move one penny at a time, the customer gets the first penny in about five seconds and continues getting pennies until the 20th penny arrives approximately 25 seconds later.
精益致力于持续消除浪费并增加客户的价值流动。这很容易识别并明白精益的核心原则:单一流。我们可以做一些游戏去了解为何同一时间移动单个比批量移动要快得多。其中的两个游戏是[硬币游戏][6]和[飞机游戏][7]。在硬币游戏中,如果一批 20 个硬币到顾客手中要用 2 分钟,顾客等 2 分钟后能拿到整批硬币。如果一次只移动一个硬币,顾客会在 5 秒内得到第一枚硬币,并会持续获得硬币,直到在大约 25 秒后第 20 个硬币到达。(译者注:有相关的视频的)
精益致力于持续消除浪费并增加客户的价值流动。这很容易识别并明白精益的核心原则:单一流。我们可以做一些游戏去了解为何同一时间移动单个比批量移动要快得多。其中的两个游戏是[硬币游戏][6]和[飞机游戏][7]。在硬币游戏中,如果一批 20 个硬币到顾客手中要用 2 分钟,顾客等 2 分钟后能拿到整批硬币。如果一次只移动一个硬币,顾客会在 5 秒内得到第一枚硬币,并会持续获得硬币,直到在大约 25 秒后第 20 个硬币到达。LCTT 译注:有相关的视频的)
这是巨大的不同,但是不是生活中的所有事都像硬币游戏那样简单并可预测的。这就是敏捷的出现的原因。我们当然看到了高效绩敏捷团队的精益原则,但这些团队需要的不仅仅是精益去做他们要做的事。
@ -52,13 +51,13 @@ Lean seeks to continuously remove waste and increase the flow of value to the cu
### 最佳批量大小
要了解 DevOps 在软件开发中的强大功能这会帮助我们理解批处理大小的经济学。请考虑以下来自Donald Reinertsen 的[产品开发流程原则][8]的U曲线优化示例
要了解 DevOps 在软件开发中的强大功能这会帮助我们理解批处理大小的经济学。请考虑以下来自Donald Reinertsen 的[产品开发流程原则][8]的U曲线优化示例
![U-curve optimization illustration of optimal batch size][9]
这可以类比杂货店购物来解释。假设你需要买一些鸡蛋,而你住的地方离商店只有 30 分的路程。买一个鸡蛋(图种最左边)意味着每次要花 30 分钟的路程这就是你的_交易成本_。_持有成本_可能是鸡蛋变质和在你的冰箱中持续地占用空间。_总成本_是_交易成本_加上你的_持有成本_。这 U 型曲线解释了为什么对大部分来说一次买一打鸡蛋是他们的_最佳批量大小_。如果你就住在商店的旁边,步行到那里不会花费你任何的时候,你可能每次只会买一小盒鸡蛋,以此来节省冰箱的空间并享受新鲜的鸡蛋。
这可以类比杂货店购物来解释。假设你需要买一些鸡蛋,而你住的地方离商店只有 30 分钟的路程。买一个鸡蛋(图中最左边)意味着每次要花 30 分钟的路程,这就是你的*交易成本*。*持有成本*可能是鸡蛋变质和在你的冰箱中持续地占用空间。*总成本*是*交易成本*加上你的*持有成本*。这个 U 型曲线解释了为什么对大部分人来说,一次买一打鸡蛋是他们的*最佳批量大小*。如果你就住在商店的旁边,步行到那里不会花费你任何的时候,你可能每次只会买一小盒鸡蛋,以此来节省冰箱的空间并享受新鲜的鸡蛋。
这 U 型优化曲线可以说明为什么在成功敏捷转换中生产力会显著提高。考虑敏捷转换对组织决策的影响。在传统的分级组织中,决策权是集中的。这会导致较少的人做更大的决策。敏捷方法论会有效地降低组织决策中的交易成本,方法是将决策分散到最被人熟知的认识和信息的位置:跨越高度信任,自组织的敏捷团队。
这 U 型优化曲线可以说明为什么在成功敏捷转换中生产力会显著提高。考虑敏捷转换对组织决策的影响。在传统的分级组织中,决策权是集中的。这会导致较少的人做更大的决策。敏捷方法论会有效地降低组织决策中的交易成本,方法是将决策分散到最被人熟知的认识和信息的位置:跨越高度信任,自组织的敏捷团队。
下面的动画演示了降低事务成本后,最佳批量大小是如何向左移动。在更频繁地做出更快的决策方面,你不能低估组织的价值。
@ -66,22 +65,21 @@ Lean seeks to continuously remove waste and increase the flow of value to the cu
### DevOps 适合哪些地方
自动化是 DevOps 最知名的事情之一。前面的插图非常详细地展示了自动化的价值。通过自动化,我们将交易成本降低到接近零,实质上是免费进行测试和部署。这使我们可以利用越来越小的批量工作。较小批量的工作更容易理解、提交、测试、审查和知道何时能完成。这些较小的批量大小也包含较少的差异和风险,使其更易于部署,如果出现问题,可以进行故障排除和恢复。通过自动化与扎实的敏捷实践相结合,我们可以使我们的功能开发非常接近单件流程,从而快速持续地为客户提供价值。
自动化是 DevOps 最知名的事情之一。前面的插图非常详细地展示了自动化的价值。通过自动化,我们将交易成本降低到接近零,实质上是可以免费进行测试和部署。这使我们可以利用越来越小的批量工作。较小批量的工作更容易理解、提交、测试、审查和知道何时能完成。这些较小的批量大小也包含较少的差异和风险,使其更易于部署,如果出现问题,可以进行故障排除和恢复。通过自动化与扎实的敏捷实践相结合,我们可以使我们的功能开发非常接近单件流程,从而快速持续地为客户提供价值。
更传统地说DevOps 被理解为一种打破开发团队和运营团队之间混乱局面的方法。在这个模型中开发团队开发新的功能而运营团队则保持系统的稳定和平稳运行。摩擦的发生是因为开发过程中的新功能将更改引入到系统中从而增加了停机的风险运营团队并不认为要对此负责但无论如何都必须处理这一问题。DevOps 不仅仅尝试让人们一起工作,更重要的是尝试在复杂的环境中安全地进行更频繁的更改。
我们可以向 [Ron Westrum][11] 寻求有关在复杂组织中实现安全性的研究。在研究为什么有些组织比其他组织更安全时,他发现组织的文化可以预测其安全性。他确定了三种文化:病态,官僚主义的和生产式的。他发现病理的可以预测安全性较低,而生产式文化被预测为更安全(例如,在他的主要研究领域中,飞机坠毁或意外住院死亡的数量要少得多)。
我们可以看看 [Ron Westrum][11] 在有关复杂组织中实现安全性的研究。在研究为什么有些组织比其他组织更安全时,他发现组织的文化可以预测其安全性。他确定了三种文化:病态的、官僚主义的和生产式的。他发现病态的可以预测其安全性较低,而生产式文化被预测为更安全(例如,在他的主要研究领域中,飞机坠毁或意外住院死亡的数量要少得多)。
![Three types of culture identified by Ron Westrum][12]
高效的 DevOps 团队通过精益和敏捷的实践实现了一种生成性文化这表明速度和安全性是互补的或者说是同一个问题的两个方面。通过将决策和功能的最佳批量大小减少到非常小DevOps 实现了更快的信息流和价值,同时消除了浪费并降低了风险。
与 Westrum的研究一致在提高安全性和可靠性的同时变化也很容易发生。当一个敏捷的 DevOps 团队被信任做出自己的决定时,我们将获得 DevOps 目前最为人所知的工具和技术:自动化和持续交付。通过这种自动化,交易成本比以往任何时候都进一步降低,并且实现了近乎单一的精益流程,每天创造数千个决策和发布的潜力,正如我们在高效绩的 DevOps 组织中看到的那样
与 Westrum 的研究一致,在提高安全性和可靠性的同时,变化也很容易发生。当一个敏捷的 DevOps 团队被信任做出自己的决定时,我们将获得 DevOps 目前最为人所知的工具和技术:自动化和持续交付。通过这种自动化,交易成本比以往任何时候都进一步降低,并且实现了近乎单一的精益流程,每天创造数千个决策和发布的潜力,正如我们在高效绩的 DevOps 组织中看到的那样
### 流动、反馈、学习
DevOps 并不止于此。我们主要讨论了 DevOps 实现了革命性的流程,但通过类似的努力可以进一步放大精益和敏捷实践,从而实现更快的反馈循环和更快的学习。在[_DevOps手册_][13] 中,作者除了详细解释快速流程外, DevOps 如何在整个价值流中实现遥测,从而获得快速且持续的反馈。此外,利用[精益求精的突破][14]和scrum 的[回顾][15],高效的 DevOps 团队将不断推动学习和持续改进深入到他们的组织的基础,实现软件产品开发行业的精益制造革命。
DevOps 并不止于此。我们主要讨论了 DevOps 实现了革命性的流程,但通过类似的努力可以进一步放大精益和敏捷实践,从而实现更快的反馈循环和更快的学习。在[DevOps手册][13] 中,作者除了详细解释快速流程外, DevOps 如何在整个价值流中实现遥测,从而获得快速且持续的反馈。此外,利用[精益求精的突破][14]和 scrum 的[回顾][15],高效的 DevOps 团队将不断推动学习和持续改进深入到他们的组织的基础,实现软件产品开发行业的精益制造革命。
### 从 DevOps 评估开始
@ -91,18 +89,14 @@ DevOps 并不止于此。我们主要讨论了 DevOps 实现了革命性的流
在本文的[第二部分][16]中,我们将查看 Drupal 社区中 DevOps 调查的结果,并了解最有可能找到快速获胜的位置。
* * *
_Rob_ _Bayliss and Kelly Albrecht will present[DevOps: Why, How, and What][17] and host a follow-up [Birds of a][18]_ [_Feather_][18] _[discussion][18] at [DrupalCon 2019][19] in Seattle, April 8-12._
--------------------------------------------------------------------------------
via: https://opensource.com/article/19/3/devops-most-important-tech-strategy
作者:[Kelly AlbrechtWilly-Peter Schaub][a]
作者:[Kelly Albrecht][a]
选题:[lujun9972][b]
译者:[译者ID](https://github.com/zgj1024)
校对:[校对者ID](https://github.com/校对者ID)
译者:[zgj1024](https://github.com/zgj1024)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出

View File

@ -0,0 +1,173 @@
[#]: collector: (lujun9972)
[#]: translator: (robsean)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10916-1.html)
[#]: subject: (How to manage your Linux environment)
[#]: via: (https://www.networkworld.com/article/3385516/how-to-manage-your-linux-environment.html)
[#]: author: (Sandra Henry-Stocker https://www.networkworld.com/author/Sandra-Henry_Stocker/)
如何管理你的 Linux 环境变量
======
> Linux 用户环境变量可以帮助你找到你需要的命令,无须了解系统如何配置的细节而完成大量工作。而这些设置来自哪里和如何被修改它们是另一个话题。
![IIP Photo Archive \(CC BY 2.0\)][1]
在 Linux 系统上的用户账户配置以多种方法简化了系统的使用。你可以运行命令,而不需要知道它们的位置。你可以重新使用先前运行的命令,而不用发愁系统是如何追踪到它们的。你可以查看你的电子邮件,查看手册页,并容易地回到你的家目录,而不用管你在文件系统中身在何方。并且,当需要的时候,你可以调整你的账户设置,以便其更符合你喜欢的方式。
Linux 环境设置来自一系列的文件:一些是系统范围(意味着它们影响所有用户账户),一些是处于你的家目录中的配置文件里。系统范围的设置在你登录时生效,而本地设置在其后生效,所以,你在你账户中作出的更改将覆盖系统范围设置。对于 bash 用户,这些文件包含这些系统文件:
```
/etc/environment
/etc/bash.bashrc
/etc/profile
```
以及一些本地文件:
```
~/.bashrc
~/.profile # 如果有 ~/.bash_profile 或 ~/.bash_login 就不会读此文件
~/.bash_profile
~/.bash_login
```
你可以修改本地存在的四个文件的任何一个,因为它们处于你的家目录,并且它们是属于你的。
### 查看你的 Linux 环境设置
为查看你的环境设置,使用 `env` 命令。你的输出将可能与这相似:
```
$ env
LS_COLORS=rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;
01:or=40;31;01:mi=00:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:
*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:
*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:
*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;
31:*.zst=01;31:*.tzst=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:
*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:
*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:
*.wim=01;31:*.swm=01;31:*.dwm=01;31:*.esd=01;31:*.jpg=01;35:*.jpeg=01;35:*.mjpg=01;35:
*.mjpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:
*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:
*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:
*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:
*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:
*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:
*.cgm=01;35:*.emf=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=00;36:*.au=00;36:*.flac=00;36:
*.m4a=00;36:*.mid=00;36:*.midi=00;36:*.mka=00;36:*.mp3=00;36:*.mpc=00;36:*.ogg=00;36:
*.ra=00;36:*.wav=00;36:*.oga=00;36:*.opus=00;36:*.spx=00;36:*.spf=00;36:
SSH_CONNECTION=192.168.0.21 34975 192.168.0.11 22
LESSCLOSE=/usr/bin/lesspipe %s %s
LANG=en_US.UTF-8
OLDPWD=/home/shs
XDG_SESSION_ID=2253
USER=shs
PWD=/home/shs
HOME=/home/shs
SSH_CLIENT=192.168.0.21 34975 22
XDG_DATA_DIRS=/usr/local/share:/usr/share:/var/lib/snapd/desktop
SSH_TTY=/dev/pts/0
MAIL=/var/mail/shs
TERM=xterm
SHELL=/bin/bash
SHLVL=1
LOGNAME=shs
DBUS_SESSION_BUS_ADDRESS=unix:path=/run/user/1000/bus
XDG_RUNTIME_DIR=/run/user/1000
PATH=/home/shs/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
LESSOPEN=| /usr/bin/lesspipe %s
_=/usr/bin/env
```
虽然你可能会看到大量的输出,上面显示的第一大部分用于在命令行上使用颜色标识各种文件类型。当你看到类似 `*.tar=01;31:` 这样的东西,这告诉你 `tar` 文件将以红色显示在文件列表中,然而 `*.jpg=01;35:` 告诉你 jpg 文件将以紫色显现出来。这些颜色旨在使它易于从一个文件列表中分辨出某些文件。你可以在《[在 Linux 命令行中自定义你的颜色][3]》处学习更多关于这些颜色的定义,和如何自定义它们。
当你更喜欢一种不加装饰的显示时,一种关闭颜色显示的简单方法是使用如下命令:
```
$ ls -l --color=never
```
这个命令可以简单地转换到一个别名:
```
$ alias ll2='ls -l --color=never'
```
你也可以使用 `echo` 命令来单独地显现某个设置。在这个命令中,我们显示在历史缓存区中将被记忆命令的数量:
```
$ echo $HISTSIZE
1000
```
如果你已经移动到某个位置,你在文件系统中的最后位置会被记在这里:
```
PWD=/home/shs
OLDPWD=/tmp
```
### 作出更改
你可以使用一个像这样的命令更改环境设置,但是,如果你希望保持这个设置,在你的 `~/.bashrc` 文件中添加一行代码,例如 `HISTSIZE=1234`
```
$ export HISTSIZE=1234
```
### “export” 一个变量的本意是什么
导出一个环境变量可使设置用于你的 shell 和可能的子 shell。默认情况下用户定义的变量是本地的并不被导出到新的进程例如子 shell 和脚本。`export` 命令使得环境变量可用在子进程中发挥功用。
### 添加和移除变量
你可以很容易地在命令行和子 shell 上创建新的变量,并使它们可用。然而,当你登出并再次回来时这些变量将消失,除非你也将它们添加到 `~/.bashrc` 或一个类似的文件中。
```
$ export MSG="Hello, World!"
```
如果你需要,你可以使用 `unset` 命令来消除一个变量:
```
$ unset MSG
```
如果变量是局部定义的,你可以通过加载你的启动文件来简单地将其设置回来。例如:
```
$ echo $MSG
Hello, World!
$ unset $MSG
$ echo $MSG
$ . ~/.bashrc
$ echo $MSG
Hello, World!
```
### 小结
用户账户是用一组恰当的启动文件设立的,创建了一个有用的用户环境,而个人用户和系统管理员都可以通过编辑他们的个人设置文件(对于用户)或很多来自设置起源的文件(对于系统管理员)来更改默认设置。
--------------------------------------------------------------------------------
via: https://www.networkworld.com/article/3385516/how-to-manage-your-linux-environment.html
作者:[Sandra Henry-Stocker][a]
选题:[lujun9972][b]
译者:[robsean](https://github.com/robsean)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://www.networkworld.com/author/Sandra-Henry_Stocker/
[b]: https://github.com/lujun9972
[1]: https://images.idgesg.net/images/article/2019/03/environment-rocks-leaves-100792229-large.jpg
[2]: https://www.youtube.com/playlist?list=PL7D2RMSmRO9J8OTpjFECi8DJiTQdd4hua
[3]: https://www.networkworld.com/article/3269587/customizing-your-text-colors-on-the-linux-command-line.html
[4]: https://www.facebook.com/NetworkWorld/
[5]: https://www.linkedin.com/company/network-world

View File

@ -0,0 +1,94 @@
[#]: collector: (lujun9972)
[#]: translator: (jdh8383)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10772-1.html)
[#]: subject: (The shell scripting trap)
[#]: via: (https://arp242.net/weblog/shell-scripting-trap.html)
[#]: author: (Martin Tournoij https://arp242.net/)
Shell 脚本编程陷阱
======
Shell 脚本很棒,你可以非常轻松地写出有用的东西来。甚至像是下面这个傻瓜式的命令:
```
# 用含有 Go 的词汇起名字:
$ grep -i ^go /usr/share/dict/* | cut -d: -f2 | sort -R | head -n1
goldfish
```
如果用其他编程语言,就需要花费更多的脑力,用多行代码实现,比如用 Ruby 的话:
```
puts(Dir['/usr/share/dict/*-english'].map do |f|
File.open(f)
.readlines
.select { |l| l[0..1].downcase == 'go' }
end.flatten.sample.chomp)
```
Ruby 版本的代码虽然不是那么长,也并不复杂。但是 shell 版是如此简单,我甚至不用实际测试就可以确保它是正确的。而 Ruby 版的我就没法确定它不会出错了,必须得测试一下。而且它要长一倍,看起来也更复杂。
这就是人们使用 Shell 脚本的原因,它简单却实用。下面是另一个例子:
```
curl https://nl.wikipedia.org/wiki/Lijst_van_Nederlandse_gemeenten |
grep '^<li><a href=' |
sed -r 's|<li><a href="/wiki/.+" title=".+">(.+)</a>.*</li>|\1|' |
grep -Ev '(^Tabel van|^Lijst van|Nederland)'
```
这个脚本可以从维基百科上获取荷兰基层政权的列表。几年前我写了这个临时的脚本,用来快速生成一个数据库,到现在它仍然可以正常运行,当时写它并没有花费我多少精力。但要用 Ruby 完成同样的功能则会麻烦得多。
---
现在来说说 shell 的缺点吧。随着代码量的增加,你的脚本会变得越来越难以维护,但你也不会想用别的语言重写一遍,因为你已经在这个 shell 版上花费了很多时间。
我把这种情况称为“Shell 脚本编程陷阱”,这是[沉没成本谬论][1]的一种特例LCTT 译注:“沉没成本谬论”是一个经济学概念,可以简单理解为,对已经投入的成本可能被浪费而念念不忘)。
实际上许多脚本会增长到超出预期的大小,你经常会花费过多的时间来“修复某个 bug”或者“添加一个小功能”。如此循环往复让人头大。
如果你从一开始就使用 Python、Ruby 或是其他类似的语言来写这个程序你可能会在写第一版的时候多花些时间但以后维护起来就容易很多bug 也肯定会少很多。
以我的 [packman.vim][2] 脚本为例。它起初只包含一个简单的用来遍历所有目录的 `for` 循环,外加一个 `git pull`,但在这之后就刹不住车了,它现在有 200 行左右的代码,这肯定不能算是最复杂的脚本,但假如我一上来就按计划用 Go 来编写它的话,那么增加一些像“打印状态”或者“从配置文件里克隆新的 git 库”这样的功能就会轻松很多;添加“并行克隆”的支持也几乎不算个事儿了,而在 shell 脚本里却很难实现(尽管不是不可能)。事后看来,我本可以节省时间,并且获得更好的结果。
出于类似的原因,我很后悔写出了许多这样的 shell 脚本,而我在 2018 年的新年誓言就是不要再犯类似的错误了。
### 附录:问题汇总
需要指出的是shell 编程的确存在一些实际的限制。下面是一些例子:
* 在处理一些包含“空格”或者其他“特殊”字符的文件名时,需要特别注意细节。绝大多数脚本都会犯错,即使是那些经验丰富的作者(比如我)编写的脚本,因为太容易写错了,[只添加引号是不够的][3]。
* 有许多所谓“正确”和“错误”的做法。你应该用 `which` 还是 `command`?该用 `$@` 还是 `$*`,是不是得加引号?你是该用 `cmd $arg` 还是 `cmd "$arg"`?等等等等。
* 你没法在变量里存储空字节0x00shell 脚本处理二进制数据很麻烦。
* 虽然你可以非常快速地写出有用的东西,但实现更复杂的算法则要痛苦许多,即使用 ksh/zsh/bash 扩展也是如此。我上面那个解析 HTML 的脚本临时用用是可以的,但你真的不会想在生产环境中使用这种脚本。
* 很难写出跨平台的通用型 shell 脚本。`/bin/sh` 可能是 `dash` 或者 `bash`,不同的 shell 有不同的运行方式。外部工具如 `grep`、`sed` 等,不一定能支持同样的参数。你能确定你的脚本可以适用于 Linux、macOS 和 Windows 的所有版本吗(无论是过去、现在还是将来)?
* 调试 shell 脚本会很难,特别是你眼中的语法可能会很快变得记不清了,并不是所有人都熟悉 shell 编程的语境。
* 处理错误会很棘手(检查 `$?` 或是 `set -e`),排查一些超过“出了个小错”级别的复杂错误几乎是不可能的。
* 除非你使用了 `set -u`,变量未定义将不会报错,而这会导致一些“搞笑事件”,比如 `rm -r ~/$undefined` 会删除用户的整个家目录([瞅瞅 Github 上的这个悲剧][4])。
* 所有东西都是字符串。一些 shell 引入了数组,能用,但是语法非常丑陋和费解。带分数的数字运算仍然难以应付,并且依赖像 `bc``dc` 这样的外部工具(`$(( .. ))` 这种方式只能对付一下整数)。
**反馈**
你可以发邮件到 [martin@arp242.net][5],或者[在 GitHub 上创建 issue][6] 来向我反馈,提问等。
--------------------------------------------------------------------------------
via: https://arp242.net/weblog/shell-scripting-trap.html
作者:[Martin Tournoij][a]
选题:[lujun9972][b]
译者:[jdh8383](https://github.com/jdh8383)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://arp242.net/
[b]: https://github.com/lujun9972
[1]: https://youarenotsosmart.com/2011/03/25/the-sunk-cost-fallacy/
[2]: https://github.com/Carpetsmoker/packman.vim
[3]: https://dwheeler.com/essays/filenames-in-shell.html
[4]: https://github.com/ValveSoftware/steam-for-linux/issues/3671
[5]: mailto:martin@arp242.net
[6]: https://github.com/Carpetsmoker/arp242.net/issues/new

View File

@ -0,0 +1,78 @@
[#]: collector: (lujun9972)
[#]: translator: (lujun9972)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10792-1.html)
[#]: subject: (3 Emacs modes for taking notes)
[#]: via: (https://opensource.com/article/18/7/emacs-modes-note-taking)
[#]: author: (Scott Nesbitt https://opensource.com/users/scottnesbitt)
用来记笔记的三个 Emacs 模式
======
> 借助这些 Emacs 模式轻松记录信息。
![](https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/notebook-writing-pen.jpg?itok=uA3dCfu_)
不管你从事哪种工作,你都无可避免地需要记笔记。而且可能还不是一点点。现在这年头,大家都开始以数字的形式来记笔记了。
开源软件爱好者有多种途径来以电子的方式记下他们的创意、想法和研究过程。你可以使用 [网页工具][1],可以使用 [桌面应用][2],或者你也可以 [使用命令行工具][3]。
如果你使用 [Emacs][4](伪装成文本编辑器的强力操作系统),有多个<ruby>模式<rt>mode</rt></ruby>可以帮你有效地记录笔记。我们这里列举三个例子。
### Deft
![](https://opensource.com/sites/default/files/uploads/deft.png)
在少数情况下,我只能使用 Mac时有一个工具是我不能缺少的[nvALT][5] 笔记应用。[Deft 模式][6] 为 Emacs 带来了 nvALT 式的体验。
Deft 将你的笔记以文本文件的形式存储在电脑中的某个文件夹中。当你进入 Deft 模式,你会看到一系列的笔记及其摘要。这些摘要其实就是文本文件的第一行。若第一行是 Markdown、LaTeX甚至 Emacs Org 模式的格式的话Deft 会忽略掉这些格式而只显示文本内容。
要打开笔记,只需要向下滚动到该笔记的位置然后按下回车即可。然而 Deft 不仅仅只是这样。根据 Deft 开发者 Jason Blevins 的说法,它的*主要操作是搜索和过滤*。Deft 的实现方式简单而有效。输入关键字然后 Deft 会只显示标题中包含关键字的笔记。这在你要从大量笔记中找到某条笔记时非常有用。
### Org 模式
![](https://opensource.com/sites/default/files/uploads/orgmode.png)
如果本文没有包含 [Org 模式][7] 的话,那么我可能会被人所诟病。为什么?它可以说是 Emacs 中最灵活、使用最广泛的记录笔记的方式了。以正确的方式使用它Org 模式可以极大地增强记笔记的能力。
Org 模式的主要优势在于它组织笔记的方式。在 Org 模式中,一个笔记文件会被组织成一个巨大的大纲。每个章节就是大纲里的一个节点,你可以对它进行展开和折叠。这些章节又可以有子章节,这些子章节也可以展开和折叠。这不仅使你一次只关注于某个章节,而且可以让你浏览整个大纲。
你可以在多个章节之间 [进行互联][8],无需通过剪切和复制就能快速移动章节,以及 [附加文件][9] 到笔记中。Org 模式支持带格式的字符和表格。如果你需要转换笔记到其他格式Org 模式也有大量的[导出选项][10]。
### Howm
![](https://opensource.com/sites/default/files/uploads/howm.png)
当我使用 Emacs 已经成为一种习惯时,[howm][11] 马上就成为我严重依赖的模式之一了。虽然我特别喜欢使用 Org 模式,但 howm 依然占有一席之地。
Howm 就好像是一个小型维基。你可以创建笔记和任务列表,还能在它们之间创建链接。通过输入或点击某个链接,你可以在笔记之间跳转。如果你需要,还可以使用关键字为笔记添加标签。不仅如此,你可以对笔记进行搜索、排序和合并。
Howm 不是最漂亮的 Emacs 模式,它的用户体验也不是最佳。它需要你花一点时间来适应它,而一旦你适应了它,记录和查找笔记就是轻而易举的事情了。
--------------------------------------------------------------------------------
via: https://opensource.com/article/18/7/emacs-modes-note-taking
作者:[Scott Nesbitt][a]
选题:[lujun9972][b]
译者:[lujun9972](https://github.com/lujun9972)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://opensource.com/users/scottnesbitt
[b]: https://github.com/lujun9972
[1]: https://opensource.com/alternatives/evernote
[2]: https://opensource.com/life/16/9/4-desktop-note-taking-applications
[3]: https://opensource.com/article/18/3/command-line-note-taking-applications
[4]: https://www.gnu.org/software/emacs/
[5]: http://brettterpstra.com/projects/nvalt/
[6]: https://jblevins.org/projects/deft/
[7]: https://orgmode.org/
[8]: https://orgmode.org/org.html#Hyperlinks
[9]: https://orgmode.org/org.html#Attachments
[10]: https://orgmode.org/org.html#Exporting
[11]: https://howm.osdn.jp/

View File

@ -1,55 +1,56 @@
Sensu 监控入门
======
> 这个开源解决方案可以简单而有效地监控你的云基础设施。
![](https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/rh_003601_05_mech_osyearbook2016_cloud_cc.png?itok=XSV7yR9e)
Sensu 是一个开源基础设施和应用程序监控解决方案它监控服务器、相关服务和应用程序健康状况并通过第三方集成发送警报和通知。Sensu 用 Ruby 编写,可以使用 [RabbitMQ][1] 或 [Redis][2] 来处理消息,它使用 Redis 来存储数据。
Sensu 是一个开源基础设施和应用程序监控解决方案,它可以监控服务器、相关服务和应用程序健康状况并通过第三方集成发送警报和通知。Sensu 用 Ruby 编写,可以使用 [RabbitMQ][1] 或 [Redis][2] 来处理消息,它使用 Redis 来存储数据。
如果你想以一种简单而有效的方式监控云基础设施Sensu 是一个不错的选择。它可以与你组织已经使用的许多现代 DevOps 堆栈集成,比如 [Slack][3]、[HipChat][4 ] 或 [IRC][5],它甚至可以用 [PagerDuty][6] 发送移动或寻呼机警报。
如果你想以一种简单而有效的方式监控云基础设施Sensu 是一个不错的选择。它可以与你的组织已经使用的许多现代 DevOps 组件集成,比如 [Slack][3]、[HipChat][4] 或 [IRC][5],它甚至可以用 [PagerDuty][6] 发送移动或寻呼机警报。
Sensu 的[模块化架构][7]意味着每个组件都可以安装在同一台服务器上或者在完全独立的机器上。
### 结构
Sensu 的主要通信机制是 `Transport`。每个 Sensu 组件必须连接到 `Transport` 才能相互发送消息。`Transport` 可以使用 RabbitMQ在生产中推荐使用或 Redis。
Sensu 的主要通信机制是 Transport。每个 Sensu 组件必须连接到 Transport 才能相互发送消息。Transport 可以使用 RabbitMQ在生产环境中推荐使用)或 Redis。
Sensu 服务器处理事件数据并采取行动。它注册客户端并使用过滤器、增变器和处理程序检查结果和监视事件。服务器向客户端发布检查说明Sensu API 提供 RESTful API提供对监控数据和核心功能的访问。
[Sensu 客户端][8]执行 Sensu 服务器安排的检查或本地检查定义。Sensu 使用数据存储Redis来保存所有的持久数据。最后[Uchiwa][9] 是与 Sensu API 进行通信的 Web 界面。
![sensu_system.png][11]
![][11]
### 安装 Sensu
#### 条件
* 一个 Linux 系统作为服务器节点(本文使用了 CentOS 7
* 要监控的一台或多台 Linux 机器(客户机)
* 一个 Linux 系统作为服务器节点(本文使用了 CentOS 7
* 要监控的一台或多台 Linux 机器(客户机)
#### 服务器侧
Sensu 需要安装 Redis。要安装 Redis启用 EPEL 仓库:
```
$ sudo yum install epel-release -y
```
然后安装 Redis
```
$ sudo yum install redis -y
```
修改 `/etc/redis.conf` 来禁用保护模式,监听每个地址并设置密码:
```
$ sudo sed -i 's/^protected-mode yes/protected-mode no/g' /etc/redis.conf
$ sudo sed -i 's/^bind 127.0.0.1/bind 0.0.0.0/g' /etc/redis.conf
$ sudo sed -i 's/^# requirepass foobared/requirepass password123/g' /etc/redis.conf
```
启用并启动 Redis 服务:
```
$ sudo systemctl enable redis
$ sudo systemctl start redis
@ -60,6 +61,7 @@ Redis 现在已经安装并准备好被 Sensu 使用。
现在让我们来安装 Sensu。
首先,配置 Sensu 仓库并安装软件包:
```
$ sudo tee /etc/yum.repos.d/sensu.repo << EOF
[sensu]
@ -73,6 +75,7 @@ $ sudo yum install sensu uchiwa -y
```
让我们为 Sensu 创建最简单的配置文件:
```
$ sudo tee /etc/sensu/conf.d/api.json << EOF
{
@ -85,6 +88,7 @@ EOF
```
然后,配置 `sensu-api` 在本地主机上使用端口 4567 监听:
```
$ sudo tee /etc/sensu/conf.d/redis.json << EOF
{
@ -107,6 +111,7 @@ EOF
```
在这两个文件中,我们将 Sensu 配置为使用 Redis 作为传输机制,还有 Reids 监听的地址。客户端需要直接连接到传输机制。每台客户机都需要这两个文件。
```
$ sudo tee /etc/sensu/uchiwa.json << EOF
{
@ -125,14 +130,16 @@ $ sudo tee /etc/sensu/uchiwa.json << EOF
EOF
```
在这个文件中,我们配置 `Uchiwa` 监听端口 3000 上的每个地址0.0.0.0)。我们还配置 `Uchiwa` 使用 `sensu-api`(已配置好)。
在这个文件中,我们配置 Uchiwa 监听每个地址0.0.0.0的端口 3000。我们还配置 Uchiwa 使用 `sensu-api`(已配置好)。
出于安全原因,更改刚刚创建的配置文件的所有者:
```
$ sudo chown -R sensu:sensu /etc/sensu
```
启用并启动 Sensu 服务:
```
$ sudo systemctl enable sensu-server sensu-api sensu-client
$ sudo systemctl start sensu-server sensu-api sensu-client
@ -140,15 +147,16 @@ $ sudo systemctl enable uchiwa
$ sudo systemctl start uchiwa
```
尝试访问 `Uchiwa` 网站http://<服务器的 IP 地址>:3000
尝试访问 Uchiwa 网站:`http://<服务器的 IP 地址>:3000`
对于生产环境,建议运行 RabbitMQ 集群作为 Transport 而不是 Redis虽然 Redis 集群也可以用于生产),运行多个 Sensu 服务器实例和 API 实例,以实现负载均衡和高可用性。
对于生产环境,建议运行 RabbitMQ 集群作为 Transport 而不是 Redis虽然 Redis 集群也可以用于生产环境),运行多个 Sensu 服务器实例和 API 实例,以实现负载均衡和高可用性。
Sensu 现在安装完成,让我们来配置客户端。
#### 客户端侧
要添加一个新客户端,你需要通过创建 `/etc/yum.repos.d/sensu.repo` 文件在客户机上启用 Sensu 仓库。
```
$ sudo tee /etc/yum.repos.d/sensu.repo << EOF
[sensu]
@ -160,11 +168,13 @@ EOF
```
启用仓库后,安装 Sensu
```
$ sudo yum install sensu -y
```
要配置 `sensu-client`,创建在服务器中相同的 `redis.json``transport.json`,还有 `client.json` 配置文件:
```
$ sudo tee /etc/sensu/conf.d/client.json << EOF
{
@ -179,9 +189,10 @@ $ sudo tee /etc/sensu/conf.d/client.json << EOF
EOF
```
`name` 字段中,指定一个名称来标识此客户机(通常是主机名)。`environment` 字段可以帮助你过滤,订阅定义客户机将执行哪些监视检查。
`name` 字段中,指定一个名称来标识此客户机(通常是主机名)。`environment` 字段可以帮助你过滤,而 `subscriptions` 定义了客户机将执行哪些监视检查。
最后,启用并启动服务并签入 Uchiwa因为客户机会自动注册
最后,启用并启动服务并检查 `Uchiwa`,因为客户机会自动注册:
```
$ sudo systemctl enable sensu-client
$ sudo systemctl start sensu-client
@ -191,21 +202,23 @@ $ sudo systemctl start sensu-client
Sensu 检查有两个组件:一个插件和一个定义。
Sensu 与 [Nagios 检查插件规范][12]兼容,因此无需修改即可使用针对 Nagios 的任何检查。检查是可执行文件,由 Sensu 客户机运行。
Sensu 与 [Nagios 检查插件规范][12]兼容,因此无需修改即可使用用于 Nagios 的任何检查。检查是可执行文件,由 Sensu 客户机运行。
检查定义让 Sensu 知道如何、在哪以及何时运行插件。
检查定义可以让 Sensu 知道如何、在哪以及何时运行插件。
#### 客户端侧
让我们在客户机上安装一个检查插件。请记住,此插件将在客户机上执行。
启用 EPEL 并安装 `nagios-plugins-http` :
启用 EPEL 并安装 `nagios-plugins-http`
```
$ sudo yum install -y epel-release
$ sudo yum install -y nagios-plugins-http
```
现在让我们通过手动执行它来研究这个插件。尝试检查客户机上运行的 Web 服务器的状态。它应该会失败,因为我们并没有运行 Web 服务器:
现在让我们通过手动执行它来了解这个插件。尝试检查客户机上运行的 Web 服务器的状态。它应该会失败,因为我们并没有运行 Web 服务器:
```
$ /usr/lib64/nagios/plugins/check_http -I 127.0.0.1
connect to address 127.0.0.1 and port 80: Connection refused
@ -213,26 +226,27 @@ HTTP CRITICAL - Unable to open TCP socket
```
不出所料,它失败了。检查执行的返回值:
```
$ echo $?
2
```
Nagios 检查插件规范定义了插件执行的四个返回值:
| **Plugin return code** | **State** |
|------------------------|-----------|
| 0 | OK |
| 1 | WARNING |
| 2 | CRITICAL |
| 3 | UNKNOWN |
| 插件返回码 | 状态 |
|----------|-----------|
| 0 | OK |
| 1 | WARNING |
| 2 | CRITICAL |
| 3 | UNKNOWN |
有了这些信息,我们现在可以在服务器上创建检查定义。
#### 服务器侧
在服务器机器上,创建 `/etc/sensu/conf.d/check_http.json` 文件:
```
{
  "checks": {
@ -247,9 +261,9 @@ Nagios 检查插件规范定义了插件执行的四个返回值:
}
```
`command ` 字段中,使用我们之前测试过的命令。`Interval` 会告诉 Sensu 这个检查的频率,以秒为单位。最后,`subscribers` 将定义执行检查的客户机。
`command` 字段中,使用我们之前测试过的命令。`interval` 会告诉 Sensu 这个检查的频率,以秒为单位。最后,`subscribers` 将定义执行检查的客户机。
重新启动 sensu-api 和 sensu-server 并确认新检查在 Uchiwa 中可用。
重新启动 `sensu-api``sensu-server` 并确认新检查在 Uchiwa 中可用。
```
$ sudo systemctl restart sensu-api sensu-server
@ -265,8 +279,8 @@ via: https://opensource.com/article/18/8/getting-started-sensu-monitoring-soluti
作者:[Michael Zamot][a]
选题:[lujun9972](https://github.com/lujun9972)
译者:[译者ID](https://github.com/译者ID)
校对:[校对者ID](https://github.com/校对者ID)
译者:[MjSeven](https://github.com/MjSeven)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出

View File

@ -0,0 +1,201 @@
Linux 初学者:移动文件
=====================
![](https://www.linux.com/sites/lcom/files/styles/rendered_file/public/filesystem-linux.jpg?itok=NQCoYl1f)
在之前的该系列的部分中,[你学习了有关目录][1]和[访问目录][2][的权限][7]是如何工作的。你在这些文章中学习的大多数内容都可应用于文件,除了如何让一个文件变成可执行文件。
因此让我们在开始之前先解决这个问题。
### 不需要 .exe 扩展名
在其他操作系统中,一个文件的性质通常由它的后缀决定。如果一个文件有一个 .jpg 扩展,操作系统会认为它是一幅图像;如果它以 .wav 结尾,它是一个音频文件;如果它在文件名末尾以 .exe 结尾,它就是一个你可以执行的程序。
这导致了严重的问题,比如说木马可以伪装成文档文件。幸运的是,在 Linux 下事物不是这样运行的。可以确定的是,你可能会看到有些可执行文件是以 .sh 结尾暗示它们是可执行的脚本,但是这大部分是为了便于人眼找到文件,就像你使用 `ls --color` 将可执行文件的名字以亮绿色显示的方式相同。
事实上大多数应用根本没有扩展名。决定一个文件是否是一个真正程序的是 `x` (指*可执行的*)位。你可以通过运行以下命令使任何文件变得可执行,
```
chmod a+x some_program
```
而不管它的扩展名是什么或者是否存在。在上面命令中的 `x` 设置了 `x` 位,`a` 说明你为*所有*用户设置它。你同样可以为一组用户设置成拥有这个文件(`g+x`),或者只为一个用户——拥有者——设置 `u+x`)。
尽管我们会在该系列之后的部分包含从命令行创建和运行脚本的内容,并学习通过输入它的路径并在结尾加上程序名的方式运行一个程序:
```
path/to/directory/some_program
```
或者,如果你当前在相同目录,你可以使用:
```
./some_program
```
还有其他方式可以使你的程序在目录树的任意位置运行 (提示:查询 `$PATH` 环境变量),但是当我们讨论 shell 脚本的时候你会读到这些。
### 复制、移动、链接
明显地,从命令行修改和处理文件有很多的方式,而不仅仅是处理它们的权限。当你试图打开一个不存在的文件是,大多数应用会创建一个新文件。如果 `test.txt` 当前并不存在,下列命令:
```
nano test.txt
```
```
vim test.txt
```
[nano][3] 和 [vim][4] 是流行的命令行文本编辑器)都将为你创建一个空的 `test.txt` 文件来编辑。
你可以通过 “触摸” `touch`)来创建一个空的文件,
```
touch test.txt
```
会创建一个文件,但是不会在任何应用中打开它。
你可以使用 `cp` 来拷贝一个文件到另一个位置,或者使用一个不同的名字:
```
cp test.txt copy_of_test.txt
```
你也可以拷贝一堆文件:
```
cp *.png /home/images
```
上面的命令拷贝当前目录下的所有 PNG 文件到相对你的主目录下的 `images/` 目录。在你尝试之前 `images/` 目录必须存在, 不然 `cp` 将显示一个错误。同样的,警惕,当你复制一个文件到一个已经包含相同名字的文件的目录时,`cp` 会静默地用新文件覆盖老的文件。
你可以使用:
```
cp -i *.png /home/images
```
如果你想要 `cp` 命令在有任何危险时警告你 `-i` 选项代表*交互式的*)。
你同样可以复制整个目录,但是为了做到这样,你需要 `-r` 选项:
```
cp -rv directory_a/ directory_b
```
`-r` 选项代表*递归*,意味着 `cp` 会向下探索目录 `directory_a`,复制所有的文件和子目录下内部包含的。我个人喜欢包含 `-v` 选项,因为它使 `cp` 冗长而啰嗦,意味着它会显示你当前它正在做什么而不是仅仅静默的复制然后存在。
`mv` 命令移动东西。也就是说,它移动文件从一个位置到另一个位置。最简单的形式,`mv` 表现的更像 `cp`
```
mv test.txt new_test.txt
```
上面的命令使 `new_test.txt` 出现,`test.txt` 消失。
```
mv *.png /home/images
```
移动当前目录下所有的 PNG 文件到相对于你的主目录的 `images/` 目录。同样的你必须小心你没有意外的覆盖已存在的文件。使用
```
mv -i *.png /home/images
```
如果你想站在安全的角度,你可以使用与 `cp` 相同的方式。
除了移动与拷贝的不同外,另一个 `mv``cp` 之间的不同是当你移动目录时:
```
mv directory_a/ directory_b
```
不需要添加递归的标志。这是因为你实际做的是重命名一个目录,与第一个例子相同,你做的是重命名文件。实际上,即使你从一个目录到另一个目录 “移动” 一个文件,只要两个目录在相同的存储设备和分区,你就是在重命名文件。
你可以做一个实验来证明。 `time` 是一个工具来让你测量一个命令花费多久来执行。找一个非常大的文件,可以是几百 MB 甚至 几 GB (例如一个长视频),像下方这样尝试拷贝到另一个目录:
```
$ time cp hefty_file.mkv another_directory/
real 0m3,868s
user 0m0,016s
sys 0m0,887s
```
下面是 `time` 的输出。需要关注的是第一行, real 时间。它花费了几乎 4 秒来拷贝 355 MB 的 `hefty_file.mkv``another_directory/` 目录。
现在让我们尝试移动它:
```
$ time mv hefty_file.mkv another_directory/
real 0m0,004s
user 0m0,000s
sys 0m0,003s
```
移动几乎是瞬时的!这是违反直觉的,因为看起来 `mv` 必须复制这个文件然后删除原来的。这是 `mv` 对比 `cp` 命令必须做的两件事。但是,实际上,`mv` 快了 1000 倍。
这是因为文件系统结构中,它的所有目录树,只为了让用户便利而存在。在每个分区的开始,有一个称作*分区表*的东西告诉操作系统在实际的物理磁盘上去哪找每个文件。在磁盘上,数据没有分为目录甚至是文件。[作为替代的是轨道、扇区和簇][5]。当你在相同分区 “移动” 一个文件时,操作系统实际做的仅仅是在分区表中改变了那个文件的入口,但它仍然指向磁盘上相同的簇信息。
是的!移动是一个谎言!至少在相同分区下是。如果你试图移动一个文件到一个不同的分区或者不同的设备, `mv` 仍然很快,但可以察觉到它比在相同分区下移动文件慢了。这是因为实际上发生了复制和清除数据。
### 重命名
有几个不同的命令行 `rename` 工具。没有一个像 `cp``mv` 那样固定,并且它们工作的方式都有一点不同,相同的一点是它们都被用来改变文件名的部分。
在 Debian 和 Ubuntu 中, 默认的 `rename` 工具使用 [正则表达式][6](字符组成的字符串模式)来大量的改变目录中的文件。命令:
```
rename 's/\.JPEG$/.jpg/' *
```
将改变所有扩展名为 `JPEG` 的文件为 `jpg`。文件 `IMG001.JPEG` 变成 `IMG001.jpg``my_pic.JPEG` 变成 `my_pic.jpg`,等等。
另一个 `rename` 版本默认在 Manjaro 上可获得,这是一个 Arch 的衍生版,更简单,但是可能没有那么强大:
```
rename .JPEG .jpg *
```
这和你之前看到的上面做相同的重命名操作。在这个版本,`.JPEG` 是你想改变的字符组成的字符串,`.jpg` 是你想要改变成为的,`*` 表示当前目录下的所有文件。
基本原则是如果你所做的仅仅是重命名一个文件或者目录,你最好用 `mv`,这是因为 `mv` 在所有分发版上都是可靠一致的。
### 了解更多
查看 `mv``cp` 的 man 页面了解更多。运行
```
man cp
```
或者
```
man mv
```
来阅读这些命令自带的所有选项,这些使他们使用起来更强大和安全。
----------------------------------------------------------------------------
via: https://www.linux.com/blog/2018/8/linux-beginners-moving-things-around
作者:[Paul Brown][a]
选题:[lujun9972](https://github.com/lujun9972)
译者:[warmfrog](https://github.com/warmfrog)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://www.linux.com/users/bro66
[1]: https://linux.cn/article-10066-1.html
[2]: https://linux.cn/article-10399-1.html
[3]: https://www.nano-editor.org/
[4]: https://www.vim.org/
[5]: https://en.wikipedia.org/wiki/Disk_sector
[6]: https://en.wikipedia.org/wiki/Regular_expression
[7]: https://linux.cn/article-10370-1.html

View File

@ -1,53 +1,48 @@
[#]: collector: (lujun9972)
[#]: translator: (geekpi)
[#]: reviewer: ( )
[#]: publisher: ( )
[#]: url: ( )
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10774-1.html)
[#]: subject: (Enjoy Netflix? You Should Thank FreeBSD)
[#]: via: (https://itsfoss.com/netflix-freebsd-cdn/)
[#]: author: (Abhishek Prakash https://itsfoss.com/author/abhishek/)
享受 Netflix 么?你应该感谢 FreeBSD
喜欢 Netflix 么?你应该感谢 FreeBSD
======
Netflix 是世界上最受欢迎的流媒体服务之一。
![][7]
但你已经知道了。不是吗?
Netflix 是世界上最受欢迎的流媒体服务之一。对,你已经知道了。但你可能不知道的是 Netflix 使用 [FreeBSD][1] 向你提供内容。
你可能不知道的是 Netflix 使用 [FreeBSD][1] 向你提供内容。
是的。Netflix 依靠 FreeBSD 来构建其内部内容交付网络 CDN
是的。Netflix 依靠 FreeBSD 来构建其内部内容交付网络CDN
[CDN][2] 是一组位于世界各地的服务器。它主要用于向终端用户分发像图像和视频这样的“大文件”。
Netflix 没有选择商业 CDN 服务,而是建立了自己的内部 CDN名为 [Open Connect][3]。
Open Connect 使用[自定义硬件][4]Open Connect Appliance。你可以在下面的图片中看到它。它可以处理 40Gb/s 的数据,存储容量为 248 TB。
Open Connect 使用[自定义硬件][4]Open Connect Appliance。你可以在下面的图片中看到它。它可以每秒处理 40Gb 的数据,存储容量为 248 TB。
![Netflixs Open Connect Appliance runs FreeBSD][5]
Netflix 免费为合格的互联网服务提供商 ISP 提供 Open Connect Appliance。通过这种方式大量的 Netflix 流量得到了本地化ISP 可以更高效地提供 Netflix 内容。
Netflix 免费为合格的互联网服务提供商ISP 提供 Open Connect Appliance。通过这种方式大量的 Netflix 流量得到了本地化ISP 可以更高效地提供 Netflix 内容。
Open Connect Appliance 运行在 FreeBSD 操作系统上,并且[几乎完全运行开源软件][6]。
### Open Connect 使用 FreeBSD “头”
![][7]
你或许会期望 Netflix 在这样一个关键基础设施上使用 FreeBSD 的稳定版本,但 Netflix 会跟踪 [FreeBSD 头/当前版本][8]。Netflix 表示,跟踪“头”让他们“保持前瞻性,专注于创新”。
以下是 Netflix 跟踪 FreeBSD 的好处:
* 更快的功能迭代
  * 更快地使用 FreeBSD 的新功能
  * 更快的 bug 修复
  * 实现协作
  * 尽量减少合并冲突
  * 摊销合并“成本”
### Open Connect 使用最新版 FreeBSD
你或许会觉得 Netflix 会在这样一个关键基础设施上使用 FreeBSD 的稳定版本,但 Netflix 会跟踪 [FreeBSD 最新/当前版本][8]。Netflix 表示,跟踪“最新版”可以让他们“保持前瞻性,专注于创新”。
> 运行 FreeBSD “head” 可以让我们非常高效地向用户分发大量数据,同时保持高速的功能开发。
以下是 Netflix 跟踪最新版 FreeBSD 的好处:
* 更快的功能迭代
* 更快地使用 FreeBSD 的新功能
* 更快的 bug 修复
* 实现协作
* 尽量减少合并冲突
* 摊销合并“成本”
> 运行 FreeBSD “最新版” 可以让我们非常高效地向用户分发大量数据,同时保持高速的功能开发。
>
> Netflix
@ -57,7 +52,7 @@ Open Connect Appliance 运行在 FreeBSD 操作系统上,并且[几乎完全
那么 Netflix 用 FreeBSD 实现了什么?以下是一些统计数据:
> 使用 FreeBSD 和商业硬件,我们在 16 核 2.6GHz CPU 上使用约 55 的 CPU实现了 90 Gb/s 的 TLS 加密连接
> 使用 FreeBSD 和商业硬件,我们在 16 核 2.6 GHz CPU 上使用约 55 的 CPU实现了 90 Gb/s 的 TLS 加密连接。
>
> Netflix
@ -72,7 +67,7 @@ via: https://itsfoss.com/netflix-freebsd-cdn/
作者:[Abhishek Prakash][a]
选题:[lujun9972][b]
译者:[geekpi](https://github.com/geekpi)
校对:[校对者ID](https://github.com/校对者ID)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出

View File

@ -0,0 +1,48 @@
[#]: collector: (lujun9972)
[#]: translator: (MjSeven)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10769-1.html)
[#]: subject: (Which programming languages should you learn?)
[#]: via: (https://opensource.com/article/19/2/which-programming-languages-should-you-learn)
[#]: author: (Marty Kalin https://opensource.com/users/mkalindepauledu)
你应该学习哪种编程语言?
======
> 学习一门新的编程语言是在你的职业生涯中继续前进的好方法,但是应该学习哪一门呢?
![](https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/search_find_code_issue_bug_programming.png?itok=XPrh7fa0)
如果你想要开始你的编程生涯或继续前进,那么学习一门新语言是一个聪明的主意。但是,大量活跃使用的语言引发了一个问题:哪种编程语言是最好的?要回答这个问题,让我们从一个简单的问题开始:你想做什么样的程序?
如果你想在客户端进行网络编程,那么特定语言 HTML、CSS 和 JavaScript看似无穷无尽的方言之一是必须要学习的。
如果你想在服务器端进行 Web 编程那么选择包括常见的通用语言C++、Golang、Java、C#、 Node.js、Perl、Python、Ruby 等等。当然,服务器程序与数据存储(例如关系数据库和其他数据库)打交道,这意味着 SQL 等查询语言可能会发挥作用。
如果你正在为移动设备编写原生应用程序,那么了解目标平台非常重要。对于 Apple 设备Swift 已经取代 Objective C 成为首选语言。对于 Android 设备Java带有专用库和工具集仍然是主要语言。有一些特殊语言如与 C# 一起使用的 Xamarin可以为 Apple、Android 和 Windows 设备生成特定于平台的代码。
那么通用语言呢?通常有各种各样的选择。在*动态*或*脚本*语言(如 Perl、Python 和 Ruby有一些新东西如 Node.js。而 Java 和 C# 的相似之处比它们的粉丝愿意承认的还要多,仍然是针对虚拟机(分别是 JVM 和 CLR的主要*静态编译*语言。在可以编译为*原生可执行文件*的语言中C++ 仍在使用,还有后来出现的 Golang 和 Rust 等。通用的*函数式*语言比比皆是(如 Clojure、Haskell、Erlang、F#、Lisp 和 Scala它们通常都有热情投入的社区。值得注意的是面向对象语言如 Java 和 C#)已经添加了函数式构造(特别是 lambdas而动态语言从一开始就有函数式构造。
让我以 C 语言结尾,它是一种小巧、优雅、可扩展的语言,不要与 C++ 混淆。现代操作系统主要用 C 语言编写,其余部分用汇编语言编写。任何平台上的标准库大多数都是用 C 语言编写的。例如,任何打印 `Hello, world!` 这种问候都是通过调用名为 `write` 的 C 库函数来实现的。
C 作为一种可移植的汇编语言,公开了其他高级语言有意隐藏的底层系统的详细信息。因此,理解 C 可以更好地掌握程序如何竞争执行所需的共享系统资源(如处理器、内存和 I/O 设备。C 语言既高级又接近硬件因此在性能方面无与伦比当然汇编语言除外。最后C 是编程语言中的通用语言,几乎所有通用语言都支持某种形式的 C 调用。
有关现代 C 语言的介绍,参考我的书籍 《[C 语言编程:可移植的汇编器介绍][1]》。无论你怎么做,学习 C 语言,你会学到比另一种编程语言多得多的东西。
你认为学习哪些编程语言很重要?你是否同意这些建议?在评论告知我们!
--------------------------------------------------------------------------------
via: https://opensource.com/article/19/2/which-programming-languages-should-you-learn
作者:[Marty Kalin][a]
选题:[lujun9972][b]
译者:[MjSeven](https://github.com/MjSeven)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://opensource.com/users/mkalindepauledu
[b]: https://github.com/lujun9972
[1]: https://www.amazon.com/dp/1977056954?ref_=pe_870760_150889320

View File

@ -1,33 +1,27 @@
[#]: collector: "lujun9972"
[#]: translator: "zero-MK"
[#]: reviewer: " "
[#]: publisher: " "
[#]: url: " "
[#]: reviewer: "wxy"
[#]: publisher: "wxy"
[#]: url: "https://linux.cn/article-10766-1.html"
[#]: subject: "How To Check If A Port Is Open On Multiple Remote Linux System Using Shell Script With nc Command?"
[#]: via: "https://www.2daygeek.com/check-a-open-port-on-multiple-remote-linux-server-using-nc-command/"
[#]: author: "Magesh Maruthamuthu https://www.2daygeek.com/author/magesh/"
如何检查多个远程 Linux 系统是否打开了指定端口?
======
# 如何使用带有 nc 命令的 Shell 脚本来检查多个远程 Linux 系统是否打开了指定端口?
我们最近写了一篇文章关于如何检查远程 Linux 服务器是否打开指定端口。它能帮助你检查单个服务器。
我们最近写了一篇文章关于如何检查远程 Linux 服务器是否打开指定端口。它能帮助您检查单个服务器。
如果要检查五个服务器有没有问题,可以使用以下任何一个命令,如 `nc`netcat、`nmap` 和 `telnet`。但是如果想检查 50 多台服务器,那么你的解决方案是什么?
如果要检查五个服务器有没有问题,可以使用以下任何一个命令,如 ncnetcatnmap 和 telnet
要检查所有服务器并不容易,如果你一个一个这样做,完全没有必要,因为这样你将会浪费大量的时间。为了解决这种情况,我使用 `nc` 命令编写了一个 shell 小脚本,它将允许我们扫描任意数量服务器给定的端口
但是如果想检查 50 多台服务器,那么你的解决方案是什么?
如果你要查找单个服务器扫描,你有多个选择,你只需阅读 [检查远程 Linux 系统上的端口是否打开?][1] 了解更多信息。
要检查所有服务器并不容易,如果你一个一个这样做,完全没有必要,因为这样你将会浪费大量的时间
本教程中提供了两个脚本,这两个脚本都很有用。这两个脚本都用于不同的目的,你可以通过阅读标题轻松理解其用途
为了解决这种情况,我使用 nc 命令编写了一个 shell 小脚本,它将允许我们扫描任意数量服务器给定的端口。
如果您要查找单个服务器扫描,您有多个选择,你只需导航到到 **[检查远程 Linux 系统上的端口是否打开?][1]** 了解更多信息。
本教程中提供了两个脚本,这两个脚本都很有用。
这两个脚本都用于不同的目的,您可以通过阅读标题轻松理解其用途。
在你阅读这篇文章之前,我会问你几个问题,如果你知道答案或者你可以通过阅读这篇文章来获得答案。
在你阅读这篇文章之前,我会问你几个问题,如果你不知道答案你可以通过阅读这篇文章来获得答案。
如何检查一个远程 Linux 服务器上指定的端口是否打开?
@ -35,17 +29,17 @@
如何检查多个远程 Linux 服务器上是否打开了多个指定的端口?
### 什么是ncnetcat命令
### 什么是 ncnetcat命令
nc 即 netcat 。Netcat 是一个简单实用的 Unix 程序,它使用 TCP 或 UDP 协议进行跨网络连接进行数据读取和写入。
`nc` 即 netcat。它是一个简单实用的 Unix 程序,它使用 TCP 或 UDP 协议进行跨网络连接进行数据读取和写入。
它被设计成一个可靠的 “后端” (back-end) 工具,我们可以直接使用或由其他程序和脚本轻松驱动它。
它被设计成一个可靠的 “后端” 工具,我们可以直接使用或由其他程序和脚本轻松驱动它。
同时,它也是一个功能丰富的网络调试和探索工具,因为它可以创建需要的几乎任何类型的连接,并具有几个有趣的内置功能。
同时,它也是一个功能丰富的网络调试和探索工具,因为它可以创建需要的几乎任何类型的连接,并具有几个有趣的内置功能。
Netcat 有三个主要的模式。分别是连接模式,监听模式和隧道模式。
netcat 有三个主要的模式。分别是连接模式,监听模式和隧道模式。
**ncnetcat的通用语法**
`nc`netcat的通用语法
```
$ nc [-options] [HostName or IP] [PortNumber]
@ -55,9 +49,9 @@ $ nc [-options] [HostName or IP] [PortNumber]
如果要检查多个远程 Linux 服务器上给定端口是否打开,请使用以下 shell 脚本。
在我的例子中,我们将检查端口 22 是否在以下远程服务器中打开,确保您已经更新文件中的服务器列表而不是还是使用我的服务器列表。
在我的例子中,我们将检查端口 22 是否在以下远程服务器中打开,确保你已经更新文件中的服务器列表而不是使用我的服务器列表。
您必须确保已经更新服务器列表 `server-list.txt file` 。每个服务器IP应该在单独的行中。
你必须确保已经更新服务器列表 `server-list.txt` 。每个服务器IP应该在单独的行中。
```
# cat server-list.txt
@ -77,12 +71,12 @@ $ nc [-options] [HostName or IP] [PortNumber]
#!/bin/sh
for server in `more server-list.txt`
do
#echo $i
nc -zvw3 $server 22
#echo $i
nc -zvw3 $server 22
done
```
设置 `port_scan.sh` 文件的可执行权限。
设置 `port_scan.sh` 文件的可执行权限。
```
$ chmod +x port_scan.sh
@ -105,9 +99,9 @@ Connection to 192.168.1.7 22 port [tcp/ssh] succeeded!
如果要检查多个服务器中的多个端口,请使用下面的脚本。
在我的例子中,我们将检查给定服务器的 22 和 80 端口是否打开。确保必须替换所需的端口和服务器名称而不使用是我的。
在我的例子中,我们将检查给定服务器的 22 和 80 端口是否打开。确保必须替换所需的端口和服务器名称而不使用是我的。
必须确保已经将要检查的端口写入 `port-list.txt` 文件中。每个端口应该在一个单独的行中。
必须确保已经将要检查的端口写入 `port-list.txt` 文件中。每个端口应该在一个单独的行中。
```
# cat port-list.txt
@ -115,7 +109,7 @@ Connection to 192.168.1.7 22 port [tcp/ssh] succeeded!
80
```
您必须确保已经将要检查的服务器( IP 地址 )写入 `server-list.txt` 到文件中。每个服务器( IP 应该在单独的行中。
你必须确保已经将要检查的服务器IP 地址)写入 `server-list.txt` 到文件中。每个服务器IP 应该在单独的行中。
```
# cat server-list.txt
@ -135,12 +129,12 @@ Connection to 192.168.1.7 22 port [tcp/ssh] succeeded!
#!/bin/sh
for server in `more server-list.txt`
do
for port in `more port-list.txt`
do
#echo $server
nc -zvw3 $server $port
echo ""
done
for port in `more port-list.txt`
do
#echo $server
nc -zvw3 $server $port
echo ""
done
done
```
@ -180,10 +174,10 @@ via: https://www.2daygeek.com/check-a-open-port-on-multiple-remote-linux-server-
作者:[Magesh Maruthamuthu][a]
选题:[lujun9972][b]
译者:[zero-MK](https://github.com/zero-mk)
校对:[校对者ID](https://github.com/校对者ID)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://www.2daygeek.com/author/magesh/
[b]: https://github.com/lujun9972
[1]: https://www.2daygeek.com/how-to-check-whether-a-port-is-open-on-the-remote-linux-system-server/
[1]: https://linux.cn/article-10675-1.html

View File

@ -0,0 +1,104 @@
[#]: collector: (lujun9972)
[#]: translator: (arrowfeng)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10762-1.html)
[#]: subject: (How to run PostgreSQL on Kubernetes)
[#]: via: (https://opensource.com/article/19/3/how-run-postgresql-kubernetes)
[#]: author: (Jonathan S. Katz https://opensource.com/users/jkatz05)
怎样在 Kubernetes 上运行 PostgreSQL
======
> 创建统一管理的具备灵活性的云原生生产部署来部署一个个性化的数据库即服务DBaaS
![cubes coming together to create a larger cube][1]
通过在 [Kubernetes][2] 上运行 [PostgreSQL][3] 数据库,你能创建统一管理的,具备灵活性的云原生生产部署应用来部署一个个性化的数据库即服务为你的特定需求进行量身定制。
对于 Kubernetes使用 Operator 允许你提供额外的上下文去[管理有状态应用][4]。当使用像PostgreSQL 这样开源的数据库去执行包括配置、扩展、高可用和用户管理时Operator 也很有帮助。
让我们来探索如何在 Kubernetes 上启动并运行 PostgreSQL。
### 安装 PostgreSQL Operator
将 PostgreSQL 和 Kubernetes 结合使用的第一步是安装一个 Operator。在针对 Linux 系统的Crunchy 的[快速启动脚本][6]的帮助下,你可以在任意基于 Kubernetes 的环境下启动和运行开源的[Crunchy PostgreSQL Operator][5]。
快速启动脚本有一些必要前提:
* [Wget][7] 工具已安装。
* [kubectl][8] 工具已安装。
* 在你的 Kubernetes 中已经定义了一个 [StorageClass][9]。
* 拥有集群权限的可访问 Kubernetes 的用户账号,以安装 Operator 的 [RBAC][10] 规则。
* 一个 PostgreSQL Operator 的 [命名空间][11]。
执行这个脚本将提供给你一个默认的 PostgreSQL Operator 部署,其默认假设你采用 [动态存储][12]和一个名为 `standard` 的 StorageClass。这个脚本允许用户采用自定义的值去覆盖这些默认值。
通过下列命令,你能下载这个快速启动脚本并把它的权限设置为可执行:
```
wget <https://raw.githubusercontent.com/CrunchyData/postgres-operator/master/examples/quickstart.sh>
chmod +x ./quickstart.sh
```
然后你运行快速启动脚本:
```
./examples/quickstart.sh
```
在脚本提示你相关的 Kubernetes 集群基本信息后,它将执行下列操作:
* 下载 Operator 配置文件
* 将 `$HOME/.pgouser` 这个文件设置为默认设置
* 以 Kubernetes [Deployment][13] 部署 Operator
* 设置你的 `.bashrc` 文件包含 Operator 环境变量
* 设置你的 `$HOME/.bash_completion` 文件为 `pgo bash_completion` 文件
在快速启动脚本的执行期间,你将会被提示在你的 Kubernetes 集群设置 RBAC 规则。在另一个终端,执行快速启动命令所提示你的命令。
一旦这个脚本执行完成,你将会得到提示设置一个端口以转发到 PostgreSQL Operator pod。在另一个终端执行这个端口转发操作这将允许你开始对 PostgreSQL Operator 执行命令!尝试输入下列命令创建集群:
```
pgo create cluster mynewcluster
```
你能输入下列命令测试你的集群运行状况:
```
pgo test mynewcluster
```
现在,你能在 Kubernetes 环境下管理你的 PostgreSQL 数据库了!你可以在[官方文档][14]找到非常全面的命令,包括扩容,高可用,备份等等。
这篇文章部分参考了该作者为 Crunchy 博客而写的[在 Kubernetes 上开始运行 PostgreSQL][15]。
--------------------------------------------------------------------------------
via: https://opensource.com/article/19/3/how-run-postgresql-kubernetes
作者:[Jonathan S. Katz][a]
选题:[lujun9972][b]
译者:[arrowfeng](https://github.com/arrowfeng)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://opensource.com/users/jkatz05
[b]: https://github.com/lujun9972
[1]: https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/cube_innovation_process_block_container.png?itok=vkPYmSRQ (cubes coming together to create a larger cube)
[2]: https://www.postgresql.org/
[3]: https://kubernetes.io/
[4]: https://opensource.com/article/19/2/scaling-postgresql-kubernetes-operators
[5]: https://github.com/CrunchyData/postgres-operator
[6]: https://crunchydata.github.io/postgres-operator/stable/installation/#quickstart-script
[7]: https://www.gnu.org/software/wget/
[8]: https://kubernetes.io/docs/tasks/tools/install-kubectl/
[9]: https://kubernetes.io/docs/concepts/storage/storage-classes/
[10]: https://kubernetes.io/docs/reference/access-authn-authz/rbac/
[11]: https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
[12]: https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/
[13]: https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
[14]: https://crunchydata.github.io/postgres-operator/stable/#documentation
[15]: https://info.crunchydata.com/blog/get-started-runnning-postgresql-on-kubernetes

View File

@ -1,8 +1,8 @@
[#]: collector: (lujun9972)
[#]: translator: (HankChow)
[#]: reviewer: ( )
[#]: publisher: ( )
[#]: url: ( )
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10761-1.html)
[#]: subject: (Using Square Brackets in Bash: Part 2)
[#]: via: (https://www.linux.com/blog/learn/2019/4/using-square-brackets-bash-part-2)
[#]: author: (Paul Brown https://www.linux.com/users/bro66)
@ -14,8 +14,6 @@
> 我们继续来看方括号的用法,它们甚至还可以在 Bash 当中作为一个命令使用。
[Creative Commons Zero][2]
欢迎回到我们的方括号专题。在[前一篇文章][3]当中,我们介绍了方括号在命令行中可以用于通配操作,如果你已经读过前一篇文章,就可以从这里继续了。
方括号还可以以一个命令的形式使用,就像这样:
@ -26,7 +24,7 @@
上面这种 `[ ... ]` 的形式就可以看成是一个可执行的命令。要注意,方括号内部的内容 `"a" = "a"` 和方括号 `[`、`]` 之间是有空格隔开的。因为这里的方括号被视作一个命令,因此要用空格将命令和它的参数隔开。
上面这个命令的含义是“判断字符串 `"a"` 和字符串 `"a"` 是否相同”,如果判断结果为真,那么 `[ ... ]` 就会以<ruby>状态码<rt>status code</rt></ruby> 0 退出,否则以状态码 1 退出。在之前的文章中,我们也有介绍过状态码的概念,可以通过 `$?` 变量获取到最近一个命令的状态码。
上面这个命令的含义是“判断字符串 `"a"` 和字符串 `"a"` 是否相同”,如果判断结果为真,那么 `[ ... ]` 就会以<ruby>状态码<rt>status code</rt></ruby> 0 退出,否则以状态码 1 退出。在[之前的文章][4]中,我们也有介绍过状态码的概念,可以通过 `$?` 变量获取到最近一个命令的状态码。
分别执行
@ -42,22 +40,22 @@ echo $?
echo $?
```
这两段命令中,前者会输出 0判断结果为真后者则会输出 1判断结果为假。在 Bash 当中,如果一个命令的状态码是 0表示这个命令正常执行完成并退出而且其中没有出现错误对应布尔值 `true`;如果在命令执行过程中出现错误,就会返回一个非零的状态码,对应布尔值 `false`。而 `[ ... ]`也同样遵循这样的规则。
这两段命令中,前者会输出 0判断结果为真后者则会输出 1判断结果为假。在 Bash 当中,如果一个命令的状态码是 0表示这个命令正常执行完成并退出而且其中没有出现错误对应布尔值 `true`;如果在命令执行过程中出现错误,就会返回一个非零的状态码,对应布尔值 `false`。而 `[ ... ]` 也同样遵循这样的规则。
因此,`[ ... ]` 很适合在 `if ... then`、`while` 或 `until` 这种在代码块结束前需要判断是否达到某个条件结构中使用。
对应使用的逻辑判断运算符也相当直观:
```
[ STRING1 = STRING2 ] => checks to see if the strings are equal
[ STRING1 != STRING2 ] => checks to see if the strings are not equal
[ INTEGER1 -eq INTEGER2 ] => checks to see if INTEGER1 is equal to INTEGER2
[ INTEGER1 -ge INTEGER2 ] => checks to see if INTEGER1 is greater than or equal to INTEGER2
[ INTEGER1 -gt INTEGER2 ] => checks to see if INTEGER1 is greater than INTEGER2
[ INTEGER1 -le INTEGER2 ] => checks to see if INTEGER1 is less than or equal to INTEGER2
[ INTEGER1 -lt INTEGER2 ] => checks to see if INTEGER1 is less than INTEGER2
[ INTEGER1 -ne INTEGER2 ] => checks to see if INTEGER1 is not equal to INTEGER2
etc...
[ STRING1 = STRING2 ] => 检查字符串是否相等
[ STRING1 != STRING2 ] => 检查字符串是否不相等
[ INTEGER1 -eq INTEGER2 ] => 检查整数 INTEGER1 是否等于 INTEGER2
[ INTEGER1 -ge INTEGER2 ] => 检查整数 INTEGER1 是否大于等于 INTEGER2
[ INTEGER1 -gt INTEGER2 ] => 检查整数 INTEGER1 是否大于 INTEGER2
[ INTEGER1 -le INTEGER2 ] => 检查整数 INTEGER1 是否小于等于 INTEGER2
[ INTEGER1 -lt INTEGER2 ] => 检查整数 INTEGER1 是否小于 INTEGER2
[ INTEGER1 -ne INTEGER2 ] => 检查整数 INTEGER1 是否不等于 INTEGER2
等等……
```
方括号的这种用法也可以很有 shell 风格,例如通过带上 `-f` 参数可以判断某个文件是否存在:
@ -129,7 +127,16 @@ done
在下一篇文章中,我们会开始介绍圆括号 `()` 在 Linux 命令行中的用法,敬请关注!
### 更多
- [Linux 工具:点的含义][6]
- [理解 Bash 中的尖括号][7]
- [Bash 中尖括号的更多用法][8]
- [Linux 中的 &][9]
- [Bash 中的 符号和文件描述符][10]
- [Bash 中的逻辑和(&][4]
- [浅析 Bash 中的 {花括号}][11]
- [在 Bash 中使用[方括号] (一)][3]
--------------------------------------------------------------------------------
@ -138,7 +145,7 @@ via: https://www.linux.com/blog/learn/2019/4/using-square-brackets-bash-part-2
作者:[Paul Brown][a]
选题:[lujun9972][b]
译者:[HankChow](https://github.com/HankChow)
校对:[校对者ID](https://github.com/校对者ID)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
@ -146,13 +153,13 @@ via: https://www.linux.com/blog/learn/2019/4/using-square-brackets-bash-part-2
[b]: https://github.com/lujun9972
[1]: https://www.linux.com/sites/lcom/files/styles/rendered_file/public/square-brackets-3734552_1920.jpg?itok=hv9D6TBy "square brackets"
[2]: /LICENSES/CATEGORY/CREATIVE-COMMONS-ZERO
[3]: https://www.linux.com/blog/2019/3/using-square-brackets-bash-part-1
[4]: https://www.linux.com/blog/learn/2019/2/logical-ampersand-bash
[3]: https://linux.cn/article-10717-1.html
[4]: https://linux.cn/article-10596-1.html
[5]: https://www.gnu.org/software/bash/manual/bashref.html#Bash-Conditional-Expressions
[6]: https://www.linux.com/blog/learn/2019/1/linux-tools-meaning-dot
[7]: https://www.linux.com/blog/learn/2019/1/understanding-angle-brackets-bash
[8]: https://www.linux.com/blog/learn/2019/1/more-about-angle-brackets-bash
[9]: https://www.linux.com/blog/learn/2019/2/and-ampersand-and-linux
[10]: https://www.linux.com/blog/learn/2019/2/ampersands-and-file-descriptors-bash
[11]: https://www.linux.com/blog/learn/2019/2/all-about-curly-braces-bash
[6]: https://linux.cn/article-10465-1.html
[7]: https://linux.cn/article-10502-1.html
[8]: https://linux.cn/article-10529-1.html
[9]: https://linux.cn/article-10587-1.html
[10]: https://linux.cn/article-10591-1.html
[11]: https://linux.cn/article-10624-1.html

View File

@ -1,64 +1,64 @@
[#]: collector: (lujun9972)
[#]: translator: (MjSeven)
[#]: reviewer: ( )
[#]: publisher: ( )
[#]: url: ( )
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10757-1.html)
[#]: subject: (5 useful open source log analysis tools)
[#]: via: (https://opensource.com/article/19/4/log-analysis-tools)
[#]: author: (Sam Bocetta https://opensource.com/users/sambocetta)
5 个有用的开源日志分析工具
======
监控网络活动既重要又繁琐,以下这些工具可以使它更容易。
> 监控网络活动既重要又繁琐,以下这些工具可以使它更容易。
![People work on a computer server][1]
监控网络活动是一项繁琐的工作,但有充分的理由这样做。例如,它允许你查找和调查工作站、连接到网络的设备和服务器上的可疑登录,同时确定管理员滥用了什么。你还可以跟踪软件安装和数据传输,以实时识别潜在问题,而不是在损坏发生后才进行跟踪。
监控网络活动是一项繁琐的工作,但有充分的理由这样做。例如,它允许你查找和调查工作站和连接到网络的设备及服务器上的可疑登录,同时确定管理员滥用了什么。你还可以跟踪软件安装和数据传输,以实时识别潜在问题,而不是在损坏发生后才进行跟踪。
这些日志还有助于使你的公司遵守适用于在欧盟范围内运营的任何实体的[通用数据保护条例][2]GFPR。如果你的网站在欧盟可以浏览那么你就有资格。
这些日志还有助于使你的公司遵守适用于在欧盟范围内运营的任何实体的[通用数据保护条例][2]GDPR。如果你的网站在欧盟可以浏览那么你就有遵守的该条例的资格。
日志记录,包括跟踪和分析,应该是任何监控基础设置中的一个基本过程。要从灾难中恢复 SQL Server 数据库需要事务日志文件。此外通过跟踪日志文件DevOps 团队和数据库管理员DBA可以保持最佳的数据库性能或者在网络攻击的情况下找到未经授权活动的证据。因此定期监视和分析系统日志非常重要。这是一种可靠的方式来重新创建导致出现任何问题的事件链。
日志记录,包括跟踪和分析,应该是任何监控基础设置中的一个基本过程。要从灾难中恢复 SQL Server 数据库需要事务日志文件。此外通过跟踪日志文件DevOps 团队和数据库管理员DBA可以保持最佳的数据库性能或者,在网络攻击的情况下找到未经授权活动的证据。因此,定期监视和分析系统日志非常重要。这是一种重新创建导致出现任何问题的事件链的可靠方式
现在有很多开源日志跟踪器和分析工具可供使用,这使得为活动日志选择合适的资源比你想象的更容易。免费和开源软件社区提供的日志设计适用于各种站点和操作系统。以下是五个我用过的最好的,它们并没有特别的顺序。
现在有很多开源日志跟踪器和分析工具可供使用,这使得为活动日志选择合适的资源比你想象的更容易。自由和开源软件社区提供的日志设计适用于各种站点和操作系统。以下是五个我用过的最好的工具,它们并没有特别的顺序。
### Graylog
[Graylog][3] 于 2011 年在德国启动,现在作为开源工具或商业解决方案提供。它被设计成一个集中式日志管理系统,接受来自不同服务器或端点的数据流,并允许你快速浏览或分析该信息。
[Graylog][3] 于 2011 年在德国创立,现在作为开源工具或商业解决方案提供。它被设计成一个集中式日志管理系统,接受来自不同服务器或端点的数据流,并允许你快速浏览或分析该信息。
![Graylog screenshot][4]
Graylog 在系统管理员中建立了良好的声誉,因为它易于扩展。大多数 Web 项目都是从小规模开始的但它们可能指数级增长。Graylog 可以平衡后端服务网络中的负载,每天可以处理几 TB 的日志数据。
Graylog 在系统管理员中有着良好的声誉,因为它易于扩展。大多数 Web 项目都是从小规模开始的但它们可能指数级增长。Graylog 可以均衡后端服务网络中的负载,每天可以处理几 TB 的日志数据。
IT 管理员会发现 Graylog 的前端界面易于使用而且功能强大。Graylog 是围绕仪表板的概念构建的,它允许你选择你认为最有价值的指标或数据源,并快速查看一段时间内的趋势。
当发生安全或性能事件时IT 管理员希望能够尽可能地症状追根溯源。Graylog 的搜索功能使这变得容易。它有内置的容错功能,可运行多线程搜索,因此你可以同时分析多个潜在的威胁。
当发生安全或性能事件时IT 管理员希望能够尽可能地根据症状追根溯源。Graylog 的搜索功能使这变得容易。它有内置的容错功能,可运行多线程搜索,因此你可以同时分析多个潜在的威胁。
### Nagios
[Nagios][5] 于 1999 年开始由一个开发人员开发,现在已经发展成为管理日志数据最可靠的开源工具之一。当前版本的 Nagios 可以与运行 Microsoft Windows, Linux 或 Unix 的服务器集成。
[Nagios][5] 始于 1999 年,最初是由一个开发人员开发的,现在已经发展成为管理日志数据最可靠的开源工具之一。当前版本的 Nagios 可以与运行 Microsoft WindowsLinux 或 Unix 的服务器集成。
![Nagios Core][6]
它的主要产品是日志服务器旨在简化数据收集并使系统管理员更容易访问信息。Nagios 日志服务器引擎将实时捕获数据并将其提供给一个强大的搜索工具。通过内置的设置向导,可以轻松地与新端点或应用程序集成。
它的主要产品是日志服务器旨在简化数据收集并使系统管理员更容易访问信息。Nagios 日志服务器引擎将实时捕获数据并将其提供给一个强大的搜索工具。通过内置的设置向导,可以轻松地与新端点或应用程序集成。
Nagios 最常用于需要监控其本地网络安全性的组织。它可以审核一系列与网络相关的事件,并帮助自动分发警报。如果满足特定条件,甚至可以将 Nagios 配置为运行预定义的脚本,从而允许你在人员介入之前解决问题。
作为网络审的一部分Nagios 将根据日志数据来源的地理位置过滤日志数据。这意味着你可以使用映射技术构建全面的仪表板,以了解 Web 流量是如何流动的。
作为网络审的一部分Nagios 将根据日志数据来源的地理位置过滤日志数据。这意味着你可以使用地图技术构建全面的仪表板,以了解 Web 流量是如何流动的。
### Elastic Stack ("ELK Stack")
### Elastic Stack (ELK Stack)
[Elastic Stack][7],通常称为 ELK Stack是需要筛选大量数据并理解其日志系统的组织中最受欢迎的开源工具之一这也是我个人的最爱
![ELK Stack][8]
它的主要产品由三个独立的产品组成Elasticsearch, Kibana 和 Logstash:
它的主要产品由三个独立的产品组成Elasticsearch、Kibana 和 Logstash
* 顾名思义, _**Elasticsearch**_ 旨在帮助用户使用多种查询语言和类型在数据集中找到匹配项。速度是它最大的优势。它可以扩展成由数百个服务器节点组成的集群,轻松处理 PB 级的数据。
* 顾名思义, Elasticsearch 旨在帮助用户使用多种查询语言和类型在数据集之中找到匹配项。速度是它最大的优势。它可以扩展成由数百个服务器节点组成的集群,轻松处理 PB 级的数据。
* Kibana 是一个可视化工具,与 Elasticsearch 一起工作,允许用户分析他们的数据并构建强大的报告。当你第一次在服务器集群上安装 Kibana 引擎时,你会看到一个显示着统计数据、图表甚至是动画的界面。
* ELK Stack 的最后一部分是 Logstash它作为一个纯粹的服务端管道进入 Elasticsearch 数据库。你可以将 Logstash 与各种编程语言和 API 集成,这样你的网站和移动应用程序中的信息就可以直接提供给强大的 Elastic Stalk 搜索引擎中。
* _**Kibana**_ 是一个可视化工具,与 Elasticsearch 一起工作,允许用户分析他们的数据并构建强大的报告。当你第一次在服务器集群上安装 Kibana 引擎时,你将访问一个显示统计数据、图表甚至是动画的界面。
* ELK Stack 的最后一部分是 _**Logstash**_ ,它作为一个纯粹的服务端管道进入 Elasticsearch 数据库。你可以将 Logstash 与各种编程语言和 API 集成,这样你的网站和移动应用程序中的信息就可以直接提供给强大的 Elastic Stalk 搜索引擎中。
ELK Stack 的一个独特功能是,它允许你监视构建在 WordPress 开源安装上的应用程序。与[跟踪管理员和 PHP 日志][9]的大多数开箱即用的安全审计日志工具相比ELK Stack 可以筛选 Web 服务器和数据库日志。
ELK Stack 的一个独特功能是,它允许你监视构建在 WordPress 开源网站上的应用程序。与[跟踪管理日志和 PHP 日志][9]的大多数开箱即用的安全审计日志工具相比ELK Stack 可以筛选 Web 服务器和数据库日志。
糟糕的日志跟踪和数据库管理是导致网站性能不佳的最常见原因之一。没有定期检查、优化和清空数据库日志不仅会降低站点的运行速度还可能导致其完全崩溃。因此ELK Stack 对于每个 WordPress 开发人员的工具包来说都是一个优秀的工具。
@ -97,7 +97,7 @@ via: https://opensource.com/article/19/4/log-analysis-tools
作者:[Sam Bocetta][a]
选题:[lujun9972][b]
译者:[MjSeven](https://github.com/MjSeven)
校对:[校对者ID](https://github.com/校对者ID)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出

View File

@ -0,0 +1,186 @@
[#]: collector: (lujun9972)
[#]: translator: (Raverstern)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10756-1.html)
[#]: subject: (Fixing Ubuntu Freezing at Boot Time)
[#]: via: (https://itsfoss.com/fix-ubuntu-freezing/)
[#]: author: (Abhishek Prakash https://itsfoss.com/author/abhishek/)
解决 Ubuntu 在启动时冻结的问题
======
> 本文将向你一步步展示如何通过安装 NVIDIA 专有驱动来处理 Ubuntu 在启动过程中冻结的问题。本教程仅在一个新安装的 Ubuntu 系统上操作验证过,不过在其它情况下也理应可用。
不久前我买了台[宏碁掠夺者][1]笔记本电脑来测试各种 Linux 发行版。这台庞大且笨重的机器与我喜欢的,类似[戴尔 XPS][3]那般小巧轻便的笔记本电脑大相径庭。
我即便不打游戏也选择这台电竞笔记本电脑的原因,就是为了 [NVIDIA 的显卡][4]。宏碁掠夺者 Helios 300 上搭载了一块 [NVIDIA Geforce][5] GTX 1050Ti 显卡。
NVIDIA 那糟糕的 Linux 兼容性为人们所熟知。过去很多 Its FOSS 的读者都向我求助过关于 NVIDIA 笔记本电脑的问题,而我当时无能为力,因为我手头上没有使用 NVIDIA 显卡的系统。
所以当我决定搞一台专门的设备来测试 Linux 发行版时,我选择了带有 NVIDIA 显卡的笔记本电脑。
这台笔记本原装的 Windows 10 系统安装在 120 GB 的固态硬盘上,并另外配有 1 TB 的机械硬盘来存储数据。在此之上我配置好了 [Windows 10 和 Ubuntu 18.04 双系统][6]。整个的安装过程舒适、方便、快捷。
随后我启动了 [Ubuntu][7]。那熟悉的紫色界面展现了出来,然后我就发现它卡在那儿了。鼠标一动不动,我也输入不了任何东西,然后除了长按电源键强制关机以外我啥事儿都做不了。
然后再次尝试启动,结果一模一样。整个系统就一直卡在那个紫色界面,随后的登录界面也出不来。
这听起来很耳熟吧?下面就让我来告诉你如何解决这个 Ubuntu 在启动过程中冻结的问题。
> 如果你用的不是 Ubuntu
> 请注意,尽管是在 Ubuntu 18.04 上操作的,本教程应该也能用于其他基于 Ubuntu 的发行版,例如 Linux Mint、elementary OS 等等。关于这点我已经在 Zorin OS 上确认过。
### 解决 Ubuntu 启动中由 NVIDIA 驱动引起的冻结问题
![][8]
我介绍的解决方案适用于配有 NVIDIA 显卡的系统,因为你所面临的系统冻结问题是由开源的 [NVIDIA Nouveau 驱动][9]所导致的。
事不宜迟,让我们马上来看看如何解决这个问题。
#### 步骤 1编辑 Grub
在启动系统的过程中,请你在如下图所示的 Grub 界面上停下。如果你没看到这个界面,在启动电脑时请按住 `Shift` 键。
在这个界面上,按 `E` 键进入编辑模式。
![按“E”按键][10]
你应该看到一些如下图所示的代码。此刻你应关注于以 “linux” 开头的那一行。
![前往 Linux 开头的那一行][11]
#### 步骤 2在 Grub 中临时修改 Linux 内核参数
回忆一下,我们的问题出在 NVIDIA 显卡驱动上,是开源版 NVIDIA 驱动的不适配导致了我们的问题。所以此处我们能做的就是禁用这些驱动。
此刻,你有多种方式可以禁用这些驱动。我最喜欢的方式是通过 `nomodeset` 来禁用所有显卡的驱动。
请把下列文本添加到以 “linux” 开头的那一行的末尾。此处你应该可以正常输入。请确保你把这段文本加到了行末。
```
nomodeset
```
现在你屏幕上的显示应如下图所示:
![通过向内核添加 nomodeset 来禁用显卡驱动][12]
`Ctrl+X``F10` 保存并退出。下次你就将以修改后的内核参数来启动。
> 对以上操作的解释
> 所以我们究竟做了些啥?那个 `nomodeset` 又是个什么玩意儿?让我来向你简单地解释一下。
> 通常来说,显卡是在 X 或者是其他显示服务器开始执行后才被启用的,也就是在你登录系统并看到图形界面以后。
> 但近来,视频模式的设置被移进了内核。这么做的众多优点之一就是能你看到一个漂亮且高清的启动画面。
> 若你往内核中加入 `nomodeset` 参数,它就会指示内核在显示服务启动后才加载显卡驱动。
> 换句话说,你在此时禁止视频驱动的加载,由此产生的冲突也会随之消失。你在登录进系统以后,还是能看到一切如旧,那是因为显卡驱动在随后的过程中被加载了。
#### 步骤 3更新你的系统并安装 NVIDIA 专有驱动
别因为现在可以登录系统了就过早地高兴起来。你之前所做的只是临时措施,在下次启动的时候,你的系统依旧会尝试加载 Nouveau 驱动而因此冻结。
这是否意味着你将不得不在 Grub 界面上不断地编辑内核?可喜可贺,答案是否定的。
你可以在 Ubuntu 上为 NVIDIA 显卡[安装额外的驱动][13]。在使用专有驱动后Ubuntu 将不会在启动过程中冻结。
我假设这是你第一次登录到一个新安装的系统。这意味着在做其他事情之前你必须先[更新 Ubuntu][14]。通过 Ubuntu 的 `Ctrl+Alt+T` [系统快捷键][15]打开一个终端,并输入以下命令:
```
sudo apt update && sudo apt upgrade -y
```
在上述命令执行完以后,你可以尝试安装额外的驱动。不过根据我的经验,在安装新驱动之前你需要先重启一下你的系统。在你重启时,你还是需要按我们之前做的那样修改内核参数。
当你的系统已经更新和重启完毕,按下 `Windows` 键打开一个菜单栏,并搜索“<ruby>软件与更新<rt>Software & Updates</rt></ruby>”。
![点击“软件与更新”Software & Updates][16]
然后切换到“<ruby>额外驱动<rt>Additional Drivers</rt></ruby>”标签页,并等待数秒。然后你就能看到可供系统使用的专有驱动了。在这个列表上你应该可以找到 NVIDIA。
选择专有驱动并点击“<ruby>应用更改<rt>Apply Changes</rt></ruby>”。
![NVIDIA 驱动安装中][17]
新驱动的安装会费点时间。若你的系统启用了 UEFI 安全启动,你将被要求设置一个密码。*你可以将其设置为任何容易记住的密码*。它的用处我将在步骤 4 中说明。
![你可能需要设置一个安全启动密码][18]
安装完成后,你会被要求重启系统以令之前的更改生效。
![在新驱动安装好后重启你的系统][19]
#### 步骤 4处理 MOK仅针对启用了 UEFI 安全启动的设备)
如果你之前被要求设置安全启动密码,此刻你会看到一个蓝色界面,上面写着 “MOK management”。这是个复杂的概念我试着长话短说。
对 MOK[设备所有者密码][20]的要求是因为安全启动的功能要求所有内核模块都必须被签名。Ubuntu 中所有随 ISO 镜像发行的内核模块都已经签了名。由于你安装了一个新模块(也就是那个额外的驱动),或者你对内核模块做了修改,你的安全系统可能视之为一个未经验证的外部修改,从而拒绝启动。
因此,你可以自己对系统模块进行签名(以告诉 UEFI 系统莫要大惊小怪,这些修改是你做的),或者你也可以简单粗暴地[禁用安全启动][21]。
现在你对[安全启动和 MOK][22] 有了一定了解,那咱们就来看看在遇到这个蓝色界面后该做些什么。
如果你选择“继续启动”,你的系统将有很大概率如往常一样启动,并且你啥事儿也不用做。不过在这种情况下,新驱动的有些功能有可能工作不正常。
这就是为什么,你应该“选择注册 MOK”。
![][23]
它会在下一个页面让你点击“继续”,然后要你输入一串密码。请输入在上一步中,在安装额外驱动时设置的密码。
> 别担心!
> 如果你错过了这个关于 MOK 的蓝色界面,或不小心点了“继续启动”而不是“注册 MOK”不必惊慌。你的主要目的是能够成功启动系统而通过禁用 Nouveau 显卡驱动,你已经成功地实现了这一点。
> 最坏的情况也不过就是你的系统切换到 Intel 集成显卡而不再使用 NVIDIA 显卡。你可以之后的任何时间安装 NVIDIA 显卡驱动。你的首要任务是启动系统。
#### 步骤 5享受安装了专有 NVIDIA 驱动的 Linux 系统
当新驱动被安装好后,你需要再次重启系统。别担心!目前的情况应该已经好起来了,并且你不必再去修改内核参数,而是能够直接启动 Ubuntu 系统了。
我希望本教程帮助你解决了 Ubuntu 系统在启动中冻结的问题,并让你能够成功启动 Ubuntu 系统。
如果你有任何问题或建议,请在下方评论区给我留言。
--------------------------------------------------------------------------------
via: https://itsfoss.com/fix-ubuntu-freezing/
作者:[Abhishek Prakash][a]
选题:[lujun9972][b]
译者:[Raverstern](https://github.com/Raverstern)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://itsfoss.com/author/abhishek/
[b]: https://github.com/lujun9972
[1]: https://amzn.to/2YVV6rt
[2]: https://itsfoss.com/affiliate-policy/
[3]: https://itsfoss.com/dell-xps-13-ubuntu-review/
[4]: https://www.nvidia.com/en-us/
[5]: https://www.nvidia.com/en-us/geforce/
[6]: https://itsfoss.com/install-ubuntu-1404-dual-boot-mode-windows-8-81-uefi/
[7]: https://www.ubuntu.com/
[8]: https://i1.wp.com/itsfoss.com/wp-content/uploads/2019/04/fixing-frozen-ubuntu.png?resize=800%2C450&ssl=1
[9]: https://nouveau.freedesktop.org/wiki/
[10]: https://i1.wp.com/itsfoss.com/wp-content/uploads/2019/04/edit-grub-menu.jpg?resize=800%2C393&ssl=1
[11]: https://i2.wp.com/itsfoss.com/wp-content/uploads/2019/04/editing-grub-to-fix-nvidia-issue.jpg?resize=800%2C343&ssl=1
[12]: https://i1.wp.com/itsfoss.com/wp-content/uploads/2019/04/editing-grub-to-fix-nvidia-issue-2.jpg?resize=800%2C320&ssl=1
[13]: https://itsfoss.com/install-additional-drivers-ubuntu/
[14]: https://itsfoss.com/update-ubuntu/
[15]: https://itsfoss.com/ubuntu-shortcuts/
[16]: https://i1.wp.com/itsfoss.com/wp-content/uploads/2019/02/activities_software_updates_search-e1551416201782-800x228.png?resize=800%2C228&ssl=1
[17]: https://i1.wp.com/itsfoss.com/wp-content/uploads/2019/04/install-nvidia-driver-ubuntu.jpg?resize=800%2C520&ssl=1
[18]: https://i0.wp.com/itsfoss.com/wp-content/uploads/2019/04/secure-boot-nvidia.jpg?ssl=1
[19]: https://i2.wp.com/itsfoss.com/wp-content/uploads/2019/04/nvidia-drivers-installed-Ubuntu.jpg?resize=800%2C510&ssl=1
[20]: https://firmware.intel.com/blog/using-mok-and-uefi-secure-boot-suse-linux
[21]: https://itsfoss.com/disable-secure-boot-in-acer/
[22]: https://wiki.ubuntu.com/UEFI/SecureBoot/DKMS
[23]: https://i2.wp.com/itsfoss.com/wp-content/uploads/2019/04/MOK-Secure-boot.jpg?resize=800%2C350&ssl=1

View File

@ -0,0 +1,67 @@
[#]: collector: (lujun9972)
[#]: translator: (hopefully2333)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10773-1.html)
[#]: subject: (Enhanced security at the edge)
[#]: via: (https://www.networkworld.com/article/3388130/enhanced-security-at-the-edge.html#tk.rss_all)
[#]: author: (Anne Taylor https://www.networkworld.com/author/Anne-Taylor/)
增强边缘计算的安全性
======
> 边缘计算环境带来的安全风险迫使公司必须特别关注它的安全措施。
![](https://images.idgesg.net/images/article/2019/04/istock-1091707448-100793312-large.jpg)
说数据安全是高管们和董事会最关注的问题已经是陈词滥调了。但问题是:数据安全问题不会自己消失。
骇客和攻击者一直在寻找利用缺陷的新方法。就像公司开始使用人工智能和机器学习等新兴技术来自动化地保护他们的组织一样,那些不良分子们也在使用这些技术来达成他们的目的。
简而言之,安全问题是一定不能忽视的。现在,随着越来越多的公司开始使用边缘计算,如何保护这些边缘计算环境,需要有新的安全考量。
### 边缘计算的风险更高
正如 Network World 的一篇文章所说,边缘计算的安全架构应该将重点放在物理安全上。这并不是说要忽视保护传输过程中的数据。而是说,实际的物理环境和物理设备更加值得关注。
例如,边缘计算的硬件设备通常位于较大的公司或者广阔空间中,有时候是在很容易进入的共享办公室和公共区域里。从表面上看,这节省了成本,能更快地访问到相关的数据,而不必在后端的数据中心和前端的设备之间往返。
但是,如果没有任何级别的访问控制,这台设备就会暴露在恶意操作和简单人为错误的双重风险之下。想象一下办公室的清洁工意外地关掉了设备,以及随之而来的停机所造成的后果。
另一个风险是 “影子边缘 IT”。有时候非 IT 人员会部署一个边缘设备来快速启动项目,却没有及时通知 IT 部门这个设备正在连接到网络。例如,零售商店可能会主动安装他们自己的数字标牌,或者,销售团队会将物联网传感器应用到电视中,并在销售演示中实时地部署它们。
在这种情况下IT 部门很少甚至完全看不到这些边缘设备,这就使得网络可能暴露在外。
### 保护边缘计算环境
部署微型数据中心MDC是规避上述风险的一个简单方法。
> “在历史上,大多数这些[边缘]环境都是不受控制的,”施耐德电气安全能源部门的首席技术官和创新高级副总裁 Kevin Brown 说。“它们可能是第 1 级,但很可能是第 0 级类型的设计 —— 它们就像开放的配线柜。它们现在需要像微型数据中心一样的对待。你管理它需要像管理关键任务数据中心一样”
单说听起来的感觉,这个解决方案是一个安全、独立的机箱,它包括在室内和室外运行程序所需的所有存储空间、处理性能和网络资源。它同样包含必要的电源、冷却、安全和管理工具。
而它最重要的是高级别的安全性。这个装置是封闭的有上锁的门可以防止非法入侵。通过合适的供应商DMC 可以进行定制,包括用于远程数字化管理的监控摄像头、传感器和监控技术。
随着越来越多的公司开始利用边缘计算的优势,他们必须利用安全解决方案的优势来保护他们的数据和边缘环境。
在 APC.com 上了解保护你的边缘计算环境的最佳方案。
--------------------------------------------------------------------------------
via: https://www.networkworld.com/article/3388130/enhanced-security-at-the-edge.html
作者:[Anne Taylor][a]
选题:[lujun9972][b]
译者:[hopefully2333](https://github.com/hopefully2333)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://www.networkworld.com/author/Anne-Taylor/
[b]: https://github.com/lujun9972
[1]: https://images.idgesg.net/images/article/2019/04/istock-1091707448-100793312-large.jpg
[2]: https://www.csoonline.com/article/3250144/6-ways-hackers-will-use-machine-learning-to-launch-attacks.html
[3]: https://www.marketwatch.com/press-release/edge-computing-market-2018-global-analysis-opportunities-and-forecast-to-2023-2018-08-20
[4]: https://www.networkworld.com/article/3224893/what-is-edge-computing-and-how-it-s-changing-the-network.html
[5]: https://www.youtube.com/watch?v=1NLk1cXEukQ
[6]: https://www.apc.com/us/en/solutions/business-solutions/edge-computing.jsp

View File

@ -1,46 +1,38 @@
[#]: collector: (lujun9972)
[#]: translator: ( NeverKnowsTomorrow )
[#]: reviewer: ( )
[#]: publisher: ( )
[#]: url: ( )
[#]: translator: (NeverKnowsTomorrow)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10768-1.html)
[#]: subject: (Four Methods To Add A User To Group In Linux)
[#]: via: (https://www.2daygeek.com/linux-add-user-to-group-primary-secondary-group-usermod-gpasswd/)
[#]: author: (Magesh Maruthamuthu https://www.2daygeek.com/author/magesh/)
在 Linux 中添加用户到组的四个方法
在 Linux 中把用户添加到组的四个方法
======
Linux 组是用于管理 Linux 中用户帐户的组织单位。
Linux 组是用于管理 Linux 中用户帐户的组织单位。对于 Linux 系统中的每一个用户和组,它都有惟一的数字标识号。它被称为 用户 IDUID和组 IDGID。组的主要目的是为组的成员定义一组特权。它们都可以执行特定的操作但不能执行其他操作。
对于 Linux 系统中的每一个用户和组,它都有惟一的数字标识号
Linux 中有两种类型的默认组。每个用户应该只有一个 <ruby>主要组<rt>primary group</rt></ruby> 和任意数量的 <ruby>次要组<rt>secondary group</rt></ruby>
它被称为 userid (UID) 和 groupid (GID)。组的主要目的是为组的成员定义一组特权。
它们都可以执行特定的操作,但不能执行其他操作。
Linux 中有两种类型的默认组可用。每个用户应该只有一个 <ruby>主要组<rt>primary group</rt></ruby> 和任意数量的 <ruby>次要组<rt>secondary group</rt></ruby>
* **主要组:** 创建用户帐户时,已将主组添加到用户。它通常是用户的名称。在执行诸如创建新文件(或目录)、修改文件或执行命令等任何操作时,主组将应用于用户。用户主要组信息存储在 `/etc/passwd` 文件中。
* **次要组:** 它被称为次要组。它允许用户组在同一组成员文件中执行特定操作。
例如,如果你希望允许少数用户运行 apachehttpd服务命令那么它将非常适合。
* **主要组:** 创建用户帐户时,已将主要组添加到用户。它通常是用户的名称。在执行诸如创建新文件(或目录)、修改文件或执行命令等任何操作时,主要组将应用于用户。用户的主要组信息存储在 `/etc/passwd` 文件中。
* **次要组:** 它被称为次要组。它允许用户组在同一组成员文件中执行特定操作。例如,如果你希望允许少数用户运行 Apachehttpd服务命令那么它将非常适合。
你可能对以下与用户管理相关的文章感兴趣。
* 在 Linux 中创建用户帐户的三种方法?
* 如何在 Linux 中创建批量用户?
* 如何在 Linux 中使用不同的方法更新/更改用户密码?
* [在 Linux 中创建用户帐户的三种方法?][1]
* [如何在 Linux 中创建批量用户?][2]
* [如何在 Linux 中使用不同的方法更新/更改用户密码?][3]
可以使用以下四种方法实现。
* **`usermod:`** usermod 命令修改系统帐户文件,以反映在命令行中指定的更改。
* **`gpasswd:`** gpasswd 命令用于管理 /etc/group 和 /etc/gshadow。每个组都可以有管理员、成员和密码。
* **`Shell Script:`** shell 脚本允许管理员自动执行所需的任务。
* **`Manual Method:`** 我们可以通过编辑 `/etc/group` 文件手动将用户添加到任何组中。
* `usermod`修改系统帐户文件,以反映在命令行中指定的更改。
* `gpasswd`:用于管理 `/etc/group``/etc/gshadow`。每个组都可以有管理员、成员和密码。
* Shell 脚本:可以让管理员自动执行所需的任务。
* 手动方式:我们可以通过编辑 `/etc/group` 文件手动将用户添加到任何组中。
我假设你已经拥有此活动所需的组和用户。在本例中,我们将使用以下用户和组:`user1`、`user2`、`user3`group `mygroup``mygroup1`
我假设你已经拥有此操作所需的组和用户。在本例中,我们将使用以下用户和组:`user1`、`user2`、`user3`另外的组`mygroup``mygroup1`
在进行更改之前,我想检查用户和组信息。详见下文。
在进行更改之前,我希望检查一下用户和组信息。详见下文。
我可以看到下面的用户与他们自己的组关联,而不是与其他组关联。
@ -65,15 +57,15 @@ mygroup:x:1012:
mygroup1:x:1013:
```
### 方法 1什么是 usermod 命令?
### 方法 1使用 usermod 命令
usermod 命令修改系统帐户文件,以反映命令行上指定的更改。
`usermod` 命令修改系统帐户文件,以反映命令行上指定的更改。
### 如何使用 usermod 命令将现有的用户添加到次要组或附加组?
#### 如何使用 usermod 命令将现有的用户添加到次要组或附加组?
要将现有用户添加到辅助组,请使用带有 `-g` 选项和组名称的 usermod 命令。
要将现有用户添加到辅助组,请使用带有 `-G` 选项和组名称的 `usermod` 命令。
语法
语法
```
# usermod [-G] [GroupName] [UserName]
@ -85,18 +77,18 @@ usermod 命令修改系统帐户文件,以反映命令行上指定的更改。
# usermod -a -G mygroup user1
```
让我使用 id 命令查看输出。是的,添加成功。
让我使用 `id` 命令查看输出。是的,添加成功。
```
# id user1
uid=1008(user1) gid=1008(user1) groups=1008(user1),1012(mygroup)
```
### 如何使用 usermod 命令将现有的用户添加到多个次要组或附加组?
#### 如何使用 usermod 命令将现有的用户添加到多个次要组或附加组?
要将现有用户添加到多个次要组中,请使用带有 `-G` 选项的 usermod 命令和带有逗号分隔的组名称。
要将现有用户添加到多个次要组中,请使用带有 `-G` 选项的 `usermod` 命令和带有逗号分隔的组名称。
语法
语法
```
# usermod [-G] [GroupName1,GroupName2] [UserName]
@ -115,11 +107,11 @@ uid=1008(user1) gid=1008(user1) groups=1008(user1),1012(mygroup)
uid=1009(user2) gid=1009(user2) groups=1009(user2),1012(mygroup),1013(mygroup1)
```
### 如何改变用户的主要组?
#### 如何改变用户的主要组?
要更改用户的主要组,请使用带有 `-g` 选项和组名称的 usermod 命令。
要更改用户的主要组,请使用带有 `-g` 选项和组名称的 `usermod` 命令。
语法
语法
```
# usermod [-g] [GroupName] [UserName]
@ -131,22 +123,22 @@ uid=1009(user2) gid=1009(user2) groups=1009(user2),1012(mygroup),1013(mygroup1)
# usermod -g mygroup user3
```
让我们看看输出。是的,已成功更改。现在,它将 mygroup 显示为 user3 主要组而不是 user3
让我们看看输出。是的,已成功更改。现在,显示`user3` 主要组是 `mygroup` 而不是 `user3`
```
# id user3
uid=1010(user3) gid=1012(mygroup) groups=1012(mygroup)
```
### 方法 2什么是 gpasswd 命令?
### 方法 2使用 gpasswd 命令
`gpasswd` 命令用于管理 `/etc/group``/etc/gshadow`。每个组都可以有管理员、成员和密码。
### 如何使用 gpasswd 命令将现有用户添加到次要组或者附加组?
#### 如何使用 gpasswd 命令将现有用户添加到次要组或者附加组?
要将现有用户添加到次要组,请使用带有 `-M` 选项和组名称的 gpasswd 命令。
要将现有用户添加到次要组,请使用带有 `-M` 选项和组名称的 `gpasswd` 命令。
语法
语法
```
# gpasswd [-M] [UserName] [GroupName]
@ -158,18 +150,18 @@ uid=1010(user3) gid=1012(mygroup) groups=1012(mygroup)
# gpasswd -M user1 mygroup
```
让我使用 id 命令查看输出。是的,`user1` 已成功添加到 `mygroup` 中。
让我使用 `id` 命令查看输出。是的,`user1` 已成功添加到 `mygroup` 中。
```
# id user1
uid=1008(user1) gid=1008(user1) groups=1008(user1),1012(mygroup)
```
### 如何使用 gpasswd 命令添加多个用户到次要组或附加组中?
#### 如何使用 gpasswd 命令添加多个用户到次要组或附加组中?
要将多个用户添加到辅助组中,请使用带有 `-M` 选项和组名称的 gpasswd 命令。
要将多个用户添加到辅助组中,请使用带有 `-M` 选项和组名称的 `gpasswd` 命令。
语法
语法
```
# gpasswd [-M] [UserName1,UserName2] [GroupName]
@ -181,18 +173,18 @@ uid=1008(user1) gid=1008(user1) groups=1008(user1),1012(mygroup)
# gpasswd -M user2,user3 mygroup1
```
让我使用 getent 命令查看输出。是的,`user2` 和 `user3` 已成功添加到 `myGroup1` 中。
让我使用 `getent` 命令查看输出。是的,`user2` 和 `user3` 已成功添加到 `myGroup1` 中。
```
# getent group mygroup1
mygroup1:x:1013:user2,user3
```
### 如何使用 gpasswd 命令从组中删除一个用户?
#### 如何使用 gpasswd 命令从组中删除一个用户?
要从组中删除用户,请使用带有 `-d` 选项的 gpasswd 命令以及用户和组的名称。
要从组中删除用户,请使用带有 `-d` 选项的 `gpasswd` 命令以及用户和组的名称。
语法
语法
```
# gpasswd [-d] [UserName] [GroupName]
@ -205,11 +197,9 @@ mygroup1:x:1013:user2,user3
Removing user user1 from group mygroup
```
### 方法 3使用 Shell 脚本
### 方法 3使用 Shell 脚本
基于上面的例子,我知道 `usermod` 命令没有能力将多个用户添加到组中,但是可以通过 `gpasswd` 命令完成。
但是,它将覆盖当前与组关联的现有用户。
基于上面的例子,我知道 `usermod` 命令没有能力将多个用户添加到组中,可以通过 `gpasswd` 命令完成。但是,它将覆盖当前与组关联的现有用户。
例如,`user1` 已经与 `mygroup` 关联。如果要使用 `gpasswd` 命令将 `user2``user3` 添加到 `mygroup` 中,它将不会按预期生效,而是对组进行修改。
@ -219,9 +209,9 @@ Removing user user1 from group mygroup
因此,我们需要编写一个小的 shell 脚本来实现这一点。
### 如何使用 gpasswd 命令将多个用户添加到次要组或附加组?
#### 如何使用 gpasswd 命令将多个用户添加到次要组或附加组?
如果要使用 gpasswd 命令将多个用户添加到次要组或附加组,请创建以下小的 shell 脚本。
如果要使用 `gpasswd` 命令将多个用户添加到次要组或附加组,请创建以下 shell 脚本。
创建用户列表。每个用户应该在单独的行中。
@ -256,16 +246,16 @@ done
# sh group-update.sh
```
让我看看使用 getent 命令的输出。 是的,`user1``user2` 和 `user3` 已成功添加到 `mygroup` 中。
让我看看使用 `getent` 命令的输出。 是的,`user1`、`user2` 和 `user3` 已成功添加到 `mygroup` 中。
```
# getent group mygroup
mygroup:x:1012:user1,user2,user3
```
### 如何使用 gpasswd 命令将多个用户添加到多个次要组或附加组?
#### 如何使用 gpasswd 命令将多个用户添加到多个次要组或附加组?
如果要使用 gpasswd 命令将多个用户添加到多个次要组或附加组中,请创建以下小的 shell 脚本。
如果要使用 `gpasswd` 命令将多个用户添加到多个次要组或附加组中,请创建以下 shell 脚本。
创建用户列表。每个用户应该在单独的行中。
@ -308,21 +298,21 @@ done
# sh group-update-1.sh
```
让我看看使用 getent 命令的输出。 是的,`user1``user2` 和 `user3` 已成功添加到 `mygroup` 中。
让我看看使用 `getent` 命令的输出。 是的,`user1`、`user2` 和 `user3` 已成功添加到 `mygroup` 中。
```
# getent group mygroup
mygroup:x:1012:user1,user2,user3
```
此外,`user1``user2` 和 `user3` 已成功添加到 `mygroup1` 中。
此外,`user1``user2` 和 `user3` 已成功添加到 `mygroup1` 中。
```
# getent group mygroup1
mygroup1:x:1013:user1,user2,user3
```
### 方法 4在 Linux 中将用户添加到组中的手动方法
### 方法 4在 Linux 中将用户添加到组中的手动方法
我们可以通过编辑 `/etc/group` 文件手动将用户添加到任何组中。
@ -339,7 +329,7 @@ via: https://www.2daygeek.com/linux-add-user-to-group-primary-secondary-group-us
作者:[Magesh Maruthamuthu][a]
选题:[lujun9972][b]
译者:[NeverKnowsTomorrow](https://github.com/NeverKnowsTomorrow)
校对:[校对者 ID](https://github.com/校对者 ID)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux 中国](https://linux.cn/) 荣誉推出

View File

@ -0,0 +1,117 @@
[#]: collector: (lujun9972)
[#]: translator: (geekpi)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10771-1.html)
[#]: subject: (Managing Partitions with sgdisk)
[#]: via: (https://fedoramagazine.org/managing-partitions-with-sgdisk/)
[#]: author: (Gregory Bartholomew https://fedoramagazine.org/author/glb/)
使用 sgdisk 管理分区
======
![][1]
[Roderick W. Smith][2] 的 `sgdisk` 命令可在命令行中管理硬盘的分区。下面将介绍使用它所需的基础知识。
使用 sgdisk 的大多数基本功能只需要了解以下六个参数:
1、`-p` *打印* 分区表:
```
# sgdisk -p /dev/sda
```
2、 `-d x` *删除* 分区 x
```
# sgdisk -d 1 /dev/sda
```
3、 `-n x:y:z` 创建一个编号 x 的*新*分区,从 y 开始,从 z 结束:
```
# sgdisk -n 1:1MiB:2MiB /dev/sda
```
4、`-c x:y` *更改*分区 x 的名称为 y
```
# sgdisk -c 1:grub /dev/sda
```
5、`-t x:y` 将分区 x 的*类型*更改为 y
```
# sgdisk -t 1:ef02 /dev/sda
```
6、`list-types` 列出分区类型代码:
```
# sgdisk --list-types
```
![The SGDisk Command][3]
如你在上面的例子中所见,大多数命令都要求将要操作的硬盘的[设备文件名][4]指定为最后一个参数。
可以组合上面的参数,这样你可以一次定义所有分区:
```
# sgdisk -n 1:1MiB:2MiB -t 1:ef02 -c 1:grub /dev/sda
```
在值的前面加上 `+``` 符号,可以为某些字段指定相对值。如果你使用相对值,`sgdisk` 会为你做数学运算。例如,上面的例子可以写成:
```
# sgdisk -n 1:1MiB:+1MiB -t 1:ef02 -c 1:grub /dev/sda
```
`0` 值对于以下几个字段有特殊意义:
* 对于*分区号*字段0 表示应使用下一个可用编号(编号从 1 开始)。
* 对于*起始地址*字段0 表示使用最大可用空闲块的头。硬盘开头的一些空间始终保留给分区表本身。
* 对于*结束地址*字段0 表示使用最大可用空闲块的末尾。
通过在适当的字段中使用 `0` 和相对值,你可以创建一系列分区,而无需预先计算任何绝对值。例如,如果在一块空白硬盘中,以下 `sgdisk` 命令序列将创建典型 Linux 安装所需的所有基本分区:
```
# sgdisk -n 0:0:+1MiB -t 0:ef02 -c 0:grub /dev/sda
# sgdisk -n 0:0:+1GiB -t 0:ea00 -c 0:boot /dev/sda
# sgdisk -n 0:0:+4GiB -t 0:8200 -c 0:swap /dev/sda
# sgdisk -n 0:0:0 -t 0:8300 -c 0:root /dev/sda
```
上面的例子展示了如何为基于 BIOS 的计算机分区硬盘。基于 UEFI 的计算机上不需要 [grub 分区][5]。由于 `sgdisk` 在上面的示例中为你计算了所有绝对值,因此你可以在基于 UEFI 的计算机上跳过第一个命令,并且可以无需修改即可运行其余命令。同样,你可以跳过创建交换分区,并且不需要修改其余命令。
还有使用一个命令删除硬盘上所有分区的快捷方式:
```
# sgdisk --zap-all /dev/sda
```
关于最新和详细信息,请查看手册页:
```
$ man sgdisk
```
--------------------------------------------------------------------------------
via: https://fedoramagazine.org/managing-partitions-with-sgdisk/
作者:[Gregory Bartholomew][a]
选题:[lujun9972][b]
译者:[geekpi](https://github.com/geekpi)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://fedoramagazine.org/author/glb/
[b]: https://github.com/lujun9972
[1]: https://fedoramagazine.org/wp-content/uploads/2019/04/managing-partitions-816x345.png
[2]: https://www.rodsbooks.com/
[3]: https://fedoramagazine.org/wp-content/uploads/2019/04/sgdisk.jpg
[4]: https://en.wikipedia.org/wiki/Device_file
[5]: https://en.wikipedia.org/wiki/BIOS_boot_partition

View File

@ -1,16 +1,16 @@
[#]: collector: (lujun9972)
[#]: translator: (geekpi)
[#]: reviewer: ( )
[#]: publisher: ( )
[#]: url: ( )
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10778-1.html)
[#]: subject: (How to Zip Files and Folders in Linux [Beginner Tip])
[#]: via: (https://itsfoss.com/linux-zip-folder/)
[#]: author: (Abhishek Prakash https://itsfoss.com/author/abhishek/)
如何在 Linux 中 zip 压缩文件和文件夹(初学者提示)
初级:如何在 Linux 中 zip 压缩文件和文件夹
======
_ **简介:本文向你展示了如何在 Ubuntu 和其他 Linux 发行版中创建一个 zip 文件夹。终端和 GUI 方法都有。** _
> 本文向你展示了如何在 Ubuntu 和其他 Linux 发行版中创建一个 zip 文件夹。终端和 GUI 方法都有。
zip 是最流行的归档文件格式之一。使用 zip你可以将多个文件压缩到一个文件中。这不仅节省了磁盘空间还节省了网络带宽。这就是为什么你几乎一直会看到 zip 文件的原因。
@ -18,7 +18,7 @@ zip 是最流行的归档文件格式之一。使用 zip你可以将多个文
**先决条件:验证是否安装了 zip**
通常 [zip][1] 已经安装,但验证下也没坏处。你可以运行以下命令来安装 zip 和 unzip。如果它尚未安装它将立即安装。
通常 [zip][1] 已经安装,但验证下也没坏处。你可以运行以下命令来安装 `zip``unzip`。如果它尚未安装,它将立即安装。
```
sudo apt install zip unzip
@ -30,7 +30,7 @@ sudo apt install zip unzip
### 在 Linux 命令行中压缩文件夹
zip 命令的语法非常简单。
`zip` 命令的语法非常简单。
```
zip [option] output_file_name input1 input2
@ -42,7 +42,7 @@ zip [option] output_file_name input1 input2
zip -r output_file.zip file1 folder1
```
-r 选项将递归目录并压缩其内容。输出文件中的 .zip 扩展名是可选的,因为默认情况下会添加 .zip。
`-r` 选项将递归目录并压缩其内容。输出文件中的 .zip 扩展名是可选的,因为默认情况下会添加 .zip。
你应该会在 zip 操作期间看到要添加到压缩文件夹中的文件。
@ -55,13 +55,13 @@ zip -r myzip abhi-1.txt abhi-2.txt sample_directory
adding: sample_directory/agatha.txt (deflated 41%)
```
你可以使用 -e 选项[在 Linux 中创建密码保护的 zip 文件夹][3]。
你可以使用 `-e` 选项[在 Linux 中创建密码保护的 zip 文件夹][3]。
你并不是只能通过终端创建 zip 归档文件。你也可以用图形方式做到这一点。下面是如何做的!
### 在 Ubuntu Linux 中使用 GUI 压缩文件夹
_虽然我在这里使用 Ubuntu但在使用 GNOME 或其他桌面环境的其他发行版中,方法应该基本相同。_
*虽然我在这里使用 Ubuntu但在使用 GNOME 或其他桌面环境的其他发行版中,方法应该基本相同。*
如果要在 Linux 桌面中压缩文件或文件夹,只需点击几下即可。
@ -73,7 +73,7 @@ _虽然我在这里使用 Ubuntu但在使用 GNOME 或其他桌面环境的
现在,你可以使用 zip、tar xz 或 7z 格式创建压缩归档文件。如果你好奇,这三个都是各种压缩算法,你可以使用它们来压缩文件。
输入一个你想要的名字,并点击“创建”
输入一个你想要的名字,并点击“创建”
![Create archive file][5]
@ -92,7 +92,7 @@ via: https://itsfoss.com/linux-zip-folder/
作者:[Abhishek Prakash][a]
选题:[lujun9972][b]
译者:[geekpi](https://github.com/geekpi)
校对:[校对者ID](https://github.com/校对者ID)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出

View File

@ -1,32 +1,31 @@
[#]: collector: (lujun9972)
[#]: translator: (geekpi)
[#]: reviewer: ( )
[#]: publisher: ( )
[#]: url: ( )
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10780-1.html)
[#]: subject: (Getting started with Mercurial for version control)
[#]: via: (https://opensource.com/article/19/4/getting-started-mercurial)
[#]: author: (Moshe Zadka (Community Moderator) https://opensource.com/users/moshez)
[#]: author: (Moshe Zadka https://opensource.com/users/moshez)
Getting started with Mercurial for version control
Mercurial 版本控制入门
======
Learn the basics of Mercurial, a distributed version control system
written in Python.
> 了解 Mercurial 的基础知识,它是一个用 Python 写的分布式版本控制系统。
![][1]
[Mercurial][2] is a distributed version control system written in Python. Because it's written in a high-level language, you can write a Mercurial extension with a few Python functions.
[Mercurial][2] 是一个用 Python 编写的分布式版本控制系统。因为它是用高级语言编写的,所以你可以用 Python 函数编写一个 Mercurial 扩展。
There are several ways to install Mercurial, which are explained in the [official documentation][3]. My favorite one is not there: using **pip**. This is the most amenable way to develop local extensions!
For now, Mercurial only supports Python 2.7, so you will need to create a Python 2.7 virtual environment:
在[官方文档中][3]说明了几种安装 Mercurial 的方法。我最喜欢的一种方法不在里面:使用 `pip`。这是开发本地扩展的最合适方式!
目前Mercurial 仅支持 Python 2.7,因此你需要创建一个 Python 2.7 虚拟环境:
```
python2 -m virtualenv mercurial-env
./mercurial-env/bin/pip install mercurial
```
To have a short command, and to satisfy everyone's insatiable need for chemistry-based humor, the command is called **hg**.
为了让命令简短一些,以及满足人们对化学幽默的渴望,该命令称之为 `hg`
```
$ source mercurial-env/bin/activate
@ -37,8 +36,7 @@ $ source mercurial-env/bin/activate
(mercurial-env)$
```
The status is empty since you do not have any files. Add a couple of files:
由于还没有任何文件,因此状态为空。添加几个文件:
```
(mercurial-env)$ echo 1 > one
@ -58,12 +56,11 @@ date: Fri Mar 29 12:42:43 2019 -0700
summary: Adding stuff
```
The **addremove** command is useful: it adds any new files that are not ignored to the list of managed files and removes any files that have been removed.
`addremove` 命令很有用:它将任何未被忽略的新文件添加到托管文件列表中,并移除任何已删除的文件。
As I mentioned, Mercurial extensions are written in Python—they are just regular Python modules.
This is an example of a short Mercurial extension:
如我所说Mercurial 扩展用 Python 写成,它们只是常规的 Python 模块。
这是一个简短的 Mercurial 扩展示例:
```
from mercurial import registrar
@ -74,19 +71,17 @@ command = registrar.command(cmdtable)
@command('say-hello',
[('w', 'whom', '', _('Whom to greet'))])
def say_hello(ui, repo, **opts):
def say_hello(ui, repo, `opts):
ui.write("hello ", opts['whom'], "\n")
```
A simple way to test it is to put it in a file in the virtual environment manually:
简单的测试方法是将它手动加入虚拟环境中的文件中:
```
`$ vi ../mercurial-env/lib/python2.7/site-packages/hello_ext.py`
```
Then you need to _enable_ the extension. You can start by enabling it only in the current repository:
然后你需要*启用*扩展。你可以仅在当前仓库中启用它:
```
$ cat >> .hg/hgrc
@ -94,26 +89,25 @@ $ cat >> .hg/hgrc
hello_ext =
```
Now, a greeting is possible:
现在,问候有了:
```
(mercurial-env)$ hg say-hello --whom world
hello world
```
Most extensions will do more useful stuff—possibly even things to do with Mercurial. The **repo** object is a **mercurial.hg.repository** object.
大多数扩展会做更多有用的东西,甚至可能与 Mercurial 有关。 `repo` 对象是 `mercurial.hg.repository` 的对象。
Refer to the [official documentation][5] for more about Mercurial's API. And visit the [official repo][6] for more examples and inspiration.
有关 Mercurial API 的更多信息,请参阅[官方文档][5]。并访问[官方仓库][6]获取更多示例和灵感。
--------------------------------------------------------------------------------
via: https://opensource.com/article/19/4/getting-started-mercurial
作者:[Moshe Zadka (Community Moderator)][a]
作者:[Moshe Zadka][a]
选题:[lujun9972][b]
译者:[译者ID](https://github.com/译者ID)
校对:[校对者ID](https://github.com/校对者ID)
译者:[geekpi](https://github.com/geekpi)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出

View File

@ -1,20 +1,22 @@
[#]: collector: (lujun9972)
[#]: translator: (MjSeven)
[#]: reviewer: ( )
[#]: publisher: ( )
[#]: url: ( )
[#]: subject: (How to identify duplicate files on Linux)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10777-1.html)
[#]: subject: (How to identify duplicate files on Linux)
[#]: via: (https://www.networkworld.com/article/3387961/how-to-identify-duplicate-files-on-linux.html#tk.rss_all)
[#]: author: (Sandra Henry-Stocker https://www.networkworld.com/author/Sandra-Henry_Stocker/)
如何识别 Linux 上的重复文件
如何识别 Linux 上的文件分身
======
Linux 系统上的一些文件可能出现在多个位置。按照本文指示查找并识别这些“同卵双胞胎”,还可以了解为什么硬链接会如此有利。
> Linux 系统上的一些文件可能出现在多个位置。按照本文指示查找并识别这些“同卵双胞胎”,还可以了解为什么硬链接会如此有利。
![Archana Jarajapu \(CC BY 2.0\)][1]
识别共享磁盘空间的文件依赖于利用文件共享相同的 `inode` 这一事实。这种数据结构存储除了文件名和内容之外的所有信息。如果两个或多个文件具有不同的名称和文件系统位置,但共享一个 inode则它们还共享内容、所有权、权限等。
识别使用同一个磁盘空间的文件依赖于利用文件使用相同的 inode 这一事实。这种数据结构存储除了文件名和内容之外的所有信息。如果两个或多个文件具有不同的名称和文件系统位置,但共享一个 inode则它们还共享内容、所有权、权限等。
这些文件通常被称为“硬链接”,不像符号链接(即软链接)那样仅仅通过包含它们的名称指向其他文件,符号链接很容易在文件列表中通过第一个位置的 “l” 和引用文件的 **->** 符号识别出来。
这些文件通常被称为“硬链接”,不像符号链接(即软链接)那样仅仅通过包含它们的名称指向其他文件,符号链接很容易在文件列表中通过第一个位置的 `l` 和引用文件的 `->` 符号识别出来。
```
$ ls -l my*
@ -23,7 +25,7 @@ lrwxrwxrwx 1 shs shs 6 Apr 15 11:18 myref -> myfile
-rw-r--r-- 4 shs shs 228 Apr 12 19:37 mytwin
```
识别单个目录中的硬链接并不是很明显,但它仍然非常容易。如果使用 **ls -i** 命令列出文件并按 `inode` 编号排序,则可以非常容易地挑选出硬链接。在这种类型的 `ls` 输出中,第一列显示 `inode` 编号。
在单个目录中的硬链接并不是很明显,但它仍然非常容易找到。如果使用 `ls -i` 命令列出文件并按 inode 编号排序,则可以非常容易地挑选出硬链接。在这种类型的 `ls` 输出中,第一列显示 inode 编号。
```
$ ls -i | sort -n | more
@ -36,11 +38,10 @@ $ ls -i | sort -n | more
800247 nmap-notes
```
扫描输出,查找相同的 `inode` 编号,任何匹配都会告诉你想知道的内容。
扫描输出,查找相同的 inode 编号,任何匹配都会告诉你想知道的内容。
**[另请参考:[Linux 疑难解答的宝贵提示和技巧][2]]**
另一方面,如果你只是想知道某个特定文件是否是另一个文件的硬链接,那么有一种方法比浏览数百个文件的列表更简单,即 `find` 命令的 `-samefile` 选项将帮助你完成工作。
另一方面,如果你只是想知道某个特定文件是否是另一个文件的硬链接,那么有一种方法比浏览数百个文件的列表更简单,即 `find` 命令的 **-samefile** 选项将帮助你完成工作。
```
$ find . -samefile myfile
./myfile
@ -50,7 +51,8 @@ $ find . -samefile myfile
注意,提供给 `find` 命令的起始位置决定文件系统会扫描多少来进行匹配。在上面的示例中,我们正在查看当前目录和子目录。
使用 find 的 **-ls** 选项添加输出的详细信息可能更有说服力:
使用 `find``-ls` 选项添加输出的详细信息可能更有说服力:
```
$ find . -samefile myfile -ls
788000 4 -rw-r--r-- 4 shs shs 228 Apr 12 19:37 ./myfile
@ -58,9 +60,10 @@ $ find . -samefile myfile -ls
788000 4 -rw-r--r-- 4 shs shs 228 Apr 12 19:37 ./mytwin
```
第一列显示 `inode` 编号,然后我们会看到文件权限、链接、所有者、文件大小、日期信息以及引用相同磁盘内容的文件的名称。注意,在这种情况下,`link` 字段是 “4” 而不是我们可能期望的 “3”。这告诉我们还有另一个指向同一个 `inode` 的链接(但不在我们的搜索范围内)。
第一列显示 inode 编号,然后我们会看到文件权限、链接、所有者、文件大小、日期信息以及引用相同磁盘内容的文件的名称。注意,在这种情况下,链接字段是 “4” 而不是我们可能期望的 “3”。这告诉我们还有另一个指向同一个 inode 的链接(但不在我们的搜索范围内)。
如果你想在一个目录中查找所有硬链接的实例,可以尝试以下的脚本来创建列表并为你查找副本:
```
#!/bin/bash
@ -83,13 +86,15 @@ done < /tmp/$0
# clean up
rm /tmp/$0
```
```
$ ./findHardLinks
788000 myfile
788000 mytwin
```
你还可以使用 `find` 命令按 `inode` 编号查找文件,如命令中所示。但是,此搜索可能涉及多个文件系统,因此可能会得到错误的结果。因为相同的 `inode` 编号可能会在另一个文件系统中使用,代表另一个文件。如果是这种情况,文件的其他详细信息将不相同。
你还可以使用 `find` 命令按 inode 编号查找文件,如命令中所示。但是,此搜索可能涉及多个文件系统,因此可能会得到错误的结果。因为相同的 inode 编号可能会在另一个文件系统中使用,代表另一个文件。如果是这种情况,文件的其他详细信息将不相同。
```
$ find / -inum 788000 -ls 2> /dev/null
@ -99,20 +104,18 @@ $ find / -inum 788000 -ls 2> /dev/null
788000 4 -rw-r--r-- 4 shs shs 228 Apr 12 19:37 /home/shs/mytwin
```
注意,错误输出被重定向到 `/dev/null`,这样我们就不必查看所有 "Permission denied" 错误,否则这些错误将显示在我们不允许查看的其他目录中。
注意,错误输出被重定向到 `/dev/null`,这样我们就不必查看所有 “Permission denied” 错误,否则这些错误将显示在我们不允许查看的其他目录中。
此外,扫描包含相同内容但不共享 `inode` 的文件(即,简单的文本拷贝)将花费更多的时间和精力。
加入 [Facebook][3] 和 [LinkedIn][4] 上的网络世界社区,对重要的话题发表评论。
此外,扫描包含相同内容但不共享 inode 的文件(即,简单的文本拷贝)将花费更多的时间和精力。
--------------------------------------------------------------------------------
via: https://www.networkworld.com/article/3387961/how-to-identify-duplicate-files-on-linux.html#tk.rss_all
via: https://www.networkworld.com/article/3387961/how-to-identify-duplicate-files-on-linux.html
作者:[Sandra Henry-Stocker][a]
选题:[lujun9972][b]
译者:[MjSeven](https://github.com/MjSeven)
校对:[校对者ID](https://github.com/校对者ID)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出

View File

@ -0,0 +1,236 @@
[#]: collector: (lujun9972)
[#]: translator: (arrowfeng)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10789-1.html)
[#]: subject: (How to Install MySQL in Ubuntu Linux)
[#]: via: (https://itsfoss.com/install-mysql-ubuntu/)
[#]: author: (Sergiu https://itsfoss.com/author/sergiu/)
怎样在 Ubuntu Linux 上安装 MySQL
======
> 本教程教你如何在基于 Ubuntu 的 Linux 发行版上安装 MySQL。对于首次使用的用户你将会学习到如何验证你的安装和第一次怎样去连接 MySQL。
[MySQL][1] 是一个典型的数据库管理系统。它被用于许多技术栈中,包括流行的 [LAMP][2] Linux、Apache、MySQL、PHP技术栈。它已经被证实了其稳定性。另一个让 MySQL 受欢迎的原因是它是开源的。
MySQL 是关系型数据库基本上是表格数据。以这种方式它很容易去存储、组织和访问数据。它使用SQL结构化查询语言来管理数据。
这这篇文章中,我将向你展示如何在 Ubuntu 18.04 安装和使用 MySQL 8.0。让我们一起来看看吧!
### 在 Ubuntu 上安装 MySQL
![][3]
我将会介绍两种在 Ubuntu 18.04 上安装 MySQL 的方法:
1. 从 Ubuntu 仓库上安装 MySQL。非常简单但不是最新版5.7
2. 从官方仓库安装 MySQL。你将额外增加一些步处理过程但不用担心。你将会拥有最新版的MySQL8.0
有必要的时候,我将会提供屏幕截图去引导你。但这篇文章中的大部分步骤,我将直接在终端(默认热键: `CTRL+ALT+T`)输入命令。别害怕!
#### 方法 1、从 Ubuntu 仓库安装 MySQL
首先,输入下列命令确保你的仓库已经被更新:
```
sudo apt update
```
现在,安装 MySQL 5.7,简单输入下列命令:
```
sudo apt install mysql-server -y
```
就是这样!简单且高效。
#### 方法 2、使用官方仓库安装 MySQL
虽然这个方法多了一些步骤,但我将逐一介绍,并尝试写下清晰的笔记。
首先浏览 MySQL 官方网站的[下载页面][4]。
![][5]
在这里,选择 DEB 软件包点击“Download”链接。
![][6]
滑到有关于 Oracle 网站信息的底部,右键 “No thanks, just start my download.”,然后选择 “Copy link location”。
现在回到终端,我们将使用 [Curl][7] 命令去下载这个软件包:
```
curl -OL https://dev.mysql.com/get/mysql-apt-config_0.8.12-1_all.deb
```
`https://dev.mysql.com/get/mysql-apt-config_0.8.12-1_all.deb` 是我刚刚从网页上复制的链接。根据当前的 MySQL 版本,它有可能不同。让我们使用 `dpkg` 去开始安装 MySQL
```
sudo dpkg -i mysql-apt-config*
```
更新你的仓库:
```
sudo apt update
```
要实际安装 MySQL我们将使用像第一个方法中同样的命令来安装
```
sudo apt install mysql-server -y
```
这样做会在你的终端中打开包配置的提示。使用向下箭头选择“Ok”选项。
![][8]
点击回车。这应该会提示你输入密码:这是在为 MySQL 设置 root 密码。不要与 [Ubuntu 的 root 密码混淆][9]。
![][10]
输入密码然后点击 Tab 键去选择“Ok“。点击回车键你将重新输入密码。操作完之后再次键入 Tab 去选择 “Ok”。按下回车键。
![][11]
将会展示一些关于 MySQL Server 的配置信息。再次按下 Tab 去选择 “Ok” 和按下回车键:
![][12]
这里你需要去选择默认验证插件。确保选择了“Use Strong Password Encryption”。按下 Tab 键和回车键。
就是这样!你已经成功地安装了 MySQL。
#### 验证你的 MySQL 安装
要验证 MySQL 已经正确安装,使用下列命令:
```
sudo systemctl status mysql.service
```
这将展示一些关于 MySQL 服务的信息:
![][13]
你应该在那里看到 “Active: active (running)”。如果你没有看到,使用下列命令去开始这个服务:
```
sudo systemctl start mysql.service
```
#### 配置/保护 MySQL
对于刚安装的 MySQL你应该运行它提供的安全相关的更新命令。就是
```
sudo mysql_secure_installation
```
这样做首先会询问你是否想使用 “<ruby>密码有效强度<rt>validate password component</rt></ruby>”。如果你想使用它你将必须选择一个最小密码强度0 1 2 高)。你将无法输入任何不遵守所选规则的密码。如果你没有使用强密码的习惯(本应该使用),这可能会配上用场。如果你认为它可能有帮助,那你就键入 `y` 或者 `Y`,按下回车键,然后为你的密码选择一个强度等级和输入一个你想使用的密码。如果成功,你将继续强化过程;否则你将重新输入一个密码。
但是,如果你不想要此功能(我不会),只需按回车或任何其他键即可跳过使用它。
对于其他选项,我建议开启它们(对于每一步输入 `y` 或者 `Y` 和按下回车)。它们(依序)是:“<ruby>移除匿名用户<rt>remove anonymous user</rt></ruby>”,“<ruby>禁止 root 远程登录<rt>disallow root login remotely</rt></ruby>”,“<ruby>移除测试数据库及其访问<rt>remove test database and access to it</rt></ruby>”。“<ruby>重新载入权限表<rt>reload privilege tables now</rt></ruby>”。
#### 链接与断开 MySQL Server
为了运行 SQL 查询,你首先必须使用 MySQL 连到服务器并在 MySQL 提示符使用。
执行此操作的命令是:
```
mysql -h host_name -u user -p
```
* `-h` 用来指定一个主机名(如果这个服务被安装到其他机器上,那么会有用;如果没有,忽略它)
* `-u` 指定登录的用户
* `-p` 指定你想输入的密码.
虽然出于安全原因不建议,但是你可以在命令行最右边的 `-p` 后直接输入密码。例如,如果用户`test_user` 的密码是 `1234`,那么你可以在你使用的机器上尝试去连接,你可以这样使用:
```
mysql -u test_user -p1234
```
如果你成功输入了必要的参数,你将会收到由 MySQL shell 提示符提供的欢迎(`mysql >`
![][14]
要从服务端断开连接和离开 MySQL 提示符,输入:
```
QUIT
```
输入 `quit` MySQL 不区分大小写)或者 `\q` 也能工作。按下回车退出。
你使用简单的命令也能输出关于版本的信息:
```
sudo mysqladmin -u root version -p
```
如果你想看命令行选项列表,使用:
```
mysql --help
```
#### 卸载 MySQL
如果您决定要使用较新版本或只是想停止使用 MySQL。
首先,关闭服务:
```
sudo systemctl stop mysql.service && sudo systemctl disable mysql.service
```
确保你备份了你的数据库,以防你之后想使用它们。你可以通过运行下列命令卸载 MySQL
```
sudo apt purge mysql*
```
清理依赖:
```
sudo apt autoremove
```
### 小结
在这篇文章中,我已经介绍如何在 Ubuntu Linux 上安装 Mysql。我很高兴如果这篇文章能帮助到那些正为此挣扎的用户或者刚刚开始的用户。
如果你发现这篇文章是一个很有用的资源,在评论里告诉我们。你为了什么使用 MySQL? 我们渴望收到你的任何反馈、印象和建议。感谢阅读,并毫不犹豫地尝试这个很棒的工具!
--------------------------------------------------------------------------------
via: https://itsfoss.com/install-mysql-ubuntu/
作者:[Sergiu][a]
选题:[lujun9972][b]
译者:[arrowfeng](https://github.com/arrowfeng)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://itsfoss.com/author/sergiu/
[b]: https://github.com/lujun9972
[1]: https://www.mysql.com/
[2]: https://en.wikipedia.org/wiki/LAMP_(software_bundle)
[3]: https://i2.wp.com/itsfoss.com/wp-content/uploads/2019/04/install-mysql-ubuntu.png?resize=800%2C450&ssl=1
[4]: https://dev.mysql.com/downloads/repo/apt/
[5]: https://i0.wp.com/itsfoss.com/wp-content/uploads/2019/04/mysql_apt_download_page.jpg?fit=800%2C280&ssl=1
[6]: https://i0.wp.com/itsfoss.com/wp-content/uploads/2019/04/mysql_deb_download_link.jpg?fit=800%2C507&ssl=1
[7]: https://linuxhandbook.com/curl-command-examples/
[8]: https://i1.wp.com/itsfoss.com/wp-content/uploads/2019/04/mysql_package_configuration_ok.jpg?fit=800%2C587&ssl=1
[9]: https://itsfoss.com/change-password-ubuntu/
[10]: https://i2.wp.com/itsfoss.com/wp-content/uploads/2019/04/mysql_enter_password.jpg?fit=800%2C583&ssl=1
[11]: https://i0.wp.com/itsfoss.com/wp-content/uploads/2019/04/mysql_information_on_configuring.jpg?fit=800%2C581&ssl=1
[12]: https://i2.wp.com/itsfoss.com/wp-content/uploads/2019/04/mysql_default_authentication_plugin.jpg?fit=800%2C586&ssl=1
[13]: https://i1.wp.com/itsfoss.com/wp-content/uploads/2019/04/mysql_service_information.jpg?fit=800%2C402&ssl=1
[14]: https://i2.wp.com/itsfoss.com/wp-content/uploads/2019/04/mysql_shell_prompt-2.jpg?fit=800%2C423&ssl=1

View File

@ -1,38 +1,37 @@
[#]: collector: (lujun9972)
[#]: translator: (zgj1024)
[#]: reviewer: ( )
[#]: publisher: ( )
[#]: url: ( )
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10765-1.html)
[#]: subject: (HTTPie A Modern Command Line HTTP Client For Curl And Wget Alternative)
[#]: via: (https://www.2daygeek.com/httpie-curl-wget-alternative-http-client-linux/)
[#]: author: (Magesh Maruthamuthu https://www.2daygeek.com/author/magesh/)
HTTPie 替代 Curl 和 Wget 的现代 HTTP 命令行客户端
HTTPie替代 Curl 和 Wget 的现代 HTTP 命令行客户端
======
大多数时间我们会使用 Curl 命令或是 Wget 命令下载文件或者做其他事
大多数时间我们会使用 `curl` 命令或是 `wget` 命令下载文件或者做其他事。
我们以前曾写过 **[最佳命令行下载管理器][1]** 的文章。你可以点击相应的 URL 连接来浏览这些文章。
我们以前曾写过 [最佳命令行下载管理器][1] 的文章。你可以点击相应的 URL 连接来浏览这些文章。
* **[aria2 Linux 下的多协议命令行下载工具][2]**
* **[Axel Linux 下的轻量级命令行下载加速器][3]**
* **[Wget Linux 下的标准命令行下载工具][4]**
* **[curl Linux 下的实用的命令行下载工具][5]**
* [aria2 Linux 下的多协议命令行下载工具][2]
* [Axel Linux 下的轻量级命令行下载加速器][3]
* [Wget Linux 下的标准命令行下载工具][4]
* [curl Linux 下的实用的命令行下载工具][5]
今天我们将讨论同样的话题。这个实用程序名为 HTTPie。
今天我们将讨论同样的话题。实用程序名为 HTTPie。
它是现代命令行 http 客户端也是curl和wget命令的最佳替代品。
它是现代命令行 http 客户端,也是 `curl``wget` 命令的最佳替代品。
### 什么是 HTTPie
HTTPie (发音是 aitch-tee-tee-pie) 是一个 Http 命令行客户端。
HTTPie (发音是 aitch-tee-tee-pie) 是一个 HTTP 命令行客户端。
httpie 工具是现代命令的 HTTP 客户端,它能让命令行界面与 Web 服务进行交互。
HTTPie 工具是现代的 HTTP 命令行客户端,它能通过命令行界面与 Web 服务进行交互。
他提供一个简单 Http 命令,运行使用简单而自然的语法发送任意的 HTTP 请求,并会显示彩色的输出。
它提供一个简单的 `http` 命令,允许使用简单而自然的语法发送任意的 HTTP 请求,并会显示彩色的输出。
HTTPie 能用于测试、debugging及与 HTTP 服务器交互。
HTTPie 能用于测试、调试及与 HTTP 服务器交互。
### 主要特点
@ -40,50 +39,52 @@ HTTPie 能用于测试、debugging及与 HTTP 服务器交互。
* 格式化的及彩色化的终端输出
* 内置 JSON 支持
* 表单和文件上传
* HTTPS, 代理, 和认证
* HTTPS、代理和认证
* 任意请求数据
* 自定义头部
* 持久化会话sessions
* 类似 wget 的下载
* 持久化会话
* 类似 `wget` 的下载
* 支持 Python 2.7 和 3.x
### 在 Linux 下如何安装 HTTPie
大部分 Linux 发行版都提供了系统包管理器,可以用它来安装。
**`Fedora`** 系统,使用 **[DNF 命令][6]** 来安装 httpie
Fedora 系统,使用 [DNF 命令][6] 来安装 httpie
```
$ sudo dnf install httpie
```
**`Debian/Ubuntu`** 系统, 使用 **[APT-GET 命令][7]** 或 **[APT 命令][8]** 来安装 httpie。
Debian/Ubuntu 系统,使用 [APT-GET 命令][7] 或 [APT 命令][8] 来安装 HTTPie。
```
$ sudo apt install httpie
```
基于 **`Arch Linux`** 的系统, 使用 **[Pacman 命令][9]** 来安装 httpie。
基于 Arch Linux 的系统,使用 [Pacman 命令][9] 来安装 HTTPie。
```
$ sudo pacman -S httpie
```
**`RHEL/CentOS`** 的系统, 使用 **[YUM 命令][10]** 来安装 httpie。
RHEL/CentOS 的系统,使用 [YUM 命令][10] 来安装 HTTPie。
```
$ sudo yum install httpie
```
**`openSUSE Leap`** 系统, 使用 **[Zypper 命令][11]** 来安装 httpie。
openSUSE Leap 系统,使用 [Zypper 命令][11] 来安装 HTTPie。
```
$ sudo zypper install httpie
```
### 1) 如何使用 HTTPie 请求URL
### 用法
httpie 的基本用法是将网站的 URL 作为参数。
#### 如何使用 HTTPie 请求 URL
HTTPie 的基本用法是将网站的 URL 作为参数。
```
# http 2daygeek.com
@ -99,9 +100,9 @@ Transfer-Encoding: chunked
Vary: Accept-Encoding
```
### 2) 如何使用 HTTPie 下载文件
#### 如何使用 HTTPie 下载文件
你可以使用带 `--download` 参数的 HTTPie 命令下载文件。类似于 wget 命令。
你可以使用带 `--download` 参数的 HTTPie 命令下载文件。类似于 `wget` 命令。
```
# http --download https://www.2daygeek.com/wp-content/uploads/2019/04/Anbox-Easy-Way-To-Run-Android-Apps-On-Linux.png
@ -148,10 +149,11 @@ Vary: Accept-Encoding
Downloading 31.31 kB to "Anbox-1.png"
Done. 31.31 kB in 0.01551s (1.97 MB/s)
```
如何使用HTTPie恢复部分下载
### 3) 如何使用 HTTPie 恢复部分下载?
#### 如何使用 HTTPie 恢复部分下载?
你可以使用带 `-c` 参数的 HTTPie 继续下载。
```
# http --download --continue https://speed.hetzner.de/100MB.bin -o 100MB.bin
HTTP/1.1 206 Partial Content
@ -169,24 +171,24 @@ Downloading 100.00 MB to "100MB.bin"
| 24.14 % 24.14 MB 1.12 MB/s 0:01:07 ETA^C
```
你根据下面的输出验证是否同一个文件
你根据下面的输出验证是否同一个文件:
```
[email protected]:/var/log# ls -lhtr 100MB.bin
-rw-r--r-- 1 root root 25M Apr 9 01:33 100MB.bin
```
### 5) 如何使用 HTTPie 上传文件?
#### 如何使用 HTTPie 上传文件?
你可以通过使用带有 `小于号 "<"` 的 HTTPie 命令上传文件
You can upload a file using HTTPie with the `less-than symbol "<"` symbol.
你可以通过使用带有小于号 `<` 的 HTTPie 命令上传文件
```
$ http https://transfer.sh < Anbox-1.png
```
### 6) 如何使用带有重定向符号">" 的 HTTPie 下载文件?
#### 如何使用带有重定向符号 > 下载文件?
你可以使用带有 `重定向 ">"` 符号的 HTTPie 命令下载文件。
你可以使用带有重定向 `>` 符号的 HTTPie 命令下载文件。
```
# http https://www.2daygeek.com/wp-content/uploads/2019/03/How-To-Install-And-Enable-Flatpak-Support-On-Linux-1.png > Flatpak.png
@ -195,7 +197,7 @@ $ http https://transfer.sh < Anbox-1.png
-rw-r--r-- 1 root root 47K Apr 9 01:44 Flatpak.png
```
### 7) 发送一个 HTTP GET 请求?
#### 发送一个 HTTP GET 请求?
您可以在请求中发送 HTTP GET 方法。GET 方法会使用给定的 URI从给定服务器检索信息。
@ -214,7 +216,7 @@ Transfer-Encoding: chunked
Vary: Accept-Encoding
```
### 8) 提交表单?
#### 提交表单?
使用以下格式提交表单。POST 请求用于向服务器发送数据,例如客户信息、文件上传等。要使用 HTML 表单。
@ -261,24 +263,24 @@ Server: Apache/2.4.29 (Ubuntu)
Vary: Accept-Encoding
```
### 9) HTTP 认证?
#### HTTP 认证?
当前支持的身份验证认证方案是基本认证Basic和摘要验证Digest
The currently supported authentication schemes are Basic and Digest
当前支持的身份验证认证方案是基本认证Basic和摘要验证Digest
基本认证
基本认证
```
$ http -a username:password example.org
```
摘要验证
摘要验证
```
$ http -A digest -a username:password example.org
```
提示输入密码
提示输入密码:
```
$ http -a username example.org
```
@ -289,8 +291,8 @@ via: https://www.2daygeek.com/httpie-curl-wget-alternative-http-client-linux/
作者:[Magesh Maruthamuthu][a]
选题:[lujun9972][b]
译者:[译者ID](https://github.com/zgj1024)
校对:[校对者ID](https://github.com/校对者ID)
译者:[zgj1024](https://github.com/zgj1024)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
@ -306,4 +308,4 @@ via: https://www.2daygeek.com/httpie-curl-wget-alternative-http-client-linux/
[8]: https://www.2daygeek.com/apt-command-examples-manage-packages-debian-ubuntu-systems/
[9]: https://www.2daygeek.com/pacman-command-examples-manage-packages-arch-linux-system/
[10]: https://www.2daygeek.com/yum-command-examples-manage-packages-rhel-centos-systems/
[11]: https://www.2daygeek.com/zypper-command-examples-manage-packages-opensuse-system/
[11]: https://www.2daygeek.com/zypper-command-examples-manage-packages-opensuse-system/

View File

@ -0,0 +1,97 @@
[#]: collector: (lujun9972)
[#]: translator: (geekpi)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10785-1.html)
[#]: subject: (Managing RAID arrays with mdadm)
[#]: via: (https://fedoramagazine.org/managing-raid-arrays-with-mdadm/)
[#]: author: (Gregory Bartholomew https://fedoramagazine.org/author/glb/)
使用 mdadm 管理 RAID 阵列
======
![][1]
mdadm 是<ruby>多磁盘和设备管理<rt>Multiple Disk and Device Administration</rt></ruby> 的缩写。它是一个命令行工具,可用于管理 Linux 上的软件 [RAID][2] 阵列。本文概述了使用它的基础知识。
以下 5 个命令是你使用 mdadm 的基础功能:
1. **创建 RAID 阵列**`mdadm --create /dev/md/test --homehost=any --metadata=1.0 --level=1 --raid-devices=2 /dev/sda1 /dev/sdb1`
2. **组合并启动RAID 阵列**`mdadm --assemble /dev/md/test /dev/sda1 /dev/sdb1`
3. **停止 RAID 阵列**`mdadm --stop /dev/md/test`
4. **删除 RAID 阵列**`mdadm --zero-superblock /dev/sda1 /dev/sdb1`
5. **检查所有已组合的 RAID 阵列的状态**`cat /proc/mdstat`
### 功能说明
#### mdadm --create
上面的创建命令除了 `-create` 参数自身和设备名之外,还包括了四个参数:
1、`homehost`
默认情况下,`mdadm` 将你的计算机名保存为 RAID 阵列的属性。如果你的计算机名与存储的名称不匹配,则阵列将不会自动组合。此功能在共享硬盘的服务器群集中很有用,因为如果多个服务器同时尝试访问同一驱动器,通常会发生文件系统损坏。名称 `any` 是保留字段,并禁用 `-homehost` 限制。
2、 `metadata`
`-mdadm` 保留每个 RAID 设备的一小部分空间,以存储有关 RAID 阵列本身的信息。 `-metadata` 参数指定信息的格式和位置。`1.0` 表示使用版本 1 格式,并将元数据存储在设备的末尾。
3、`level`
`-level` 参数指定数据应如何在底层设备之间分布。级别 `1` 表示每个设备应包含所有数据的完整副本。此级别也称为[磁盘镜像] [3]。
4、`raid-devices`
`-raid-devices` 参数指定将用于创建 RAID 阵列的设备数。
通过将 `-level=1`(镜像)与 `-metadata=1.0` (将元数据存储在设备末尾)结合使用,可以创建一个 RAID1 阵列,如果不通过 mdadm 驱动访问,那么它的底层设备会正常显示。这在灾难恢复的情况下很有用,因为即使新系统不支持 mdadm 阵列,你也可以访问该设备。如果程序需要在 mdadm 可用之前以*只读*访问底层设备时也很有用。例如,计算机中的 [UEFI][4] 固件可能需要在启动 mdadm 之前从 [ESP][5] 读取引导加载程序。
#### mdadm --assemble
如果成员设备丢失或损坏,上面的组合命令将会失败。要强制 RAID 阵列在其中一个成员丢失时进行组合并启动,请使用以下命令:
```
# mdadm --assemble --run /dev/md/test /dev/sda1
```
### 其他重要说明
避免直接写入底层是 RAID1 的设备。这导致设备不同步,并且 mdadm 不会知道它们不同步。如果你访问了在其他地方被修改了设备的某个 RAID1 阵列,则可能导致文件系统损坏。如果你在其他地方修改 RAID1 设备并需要强制阵列重新同步,请从要覆盖的设备中删除 mdadm 元数据,然后将其重新添加到阵列,如下所示:
```
# mdadm --zero-superblock /dev/sdb1
# mdadm --assemble --run /dev/md/test /dev/sda1
# mdadm /dev/md/test --add /dev/sdb1
```
以上用 sda1 的内容完全覆盖 sdb1 的内容。
要指定在计算机启动时自动激活的 RAID 阵列,请创建 `/etc/mdadm.conf` 配置。
有关最新和详细信息,请查看手册页:
```
$ man mdadm
$ man mdadm.conf
```
本系列的下一篇文章将展示如何将现有的单磁盘 Linux 系统变为镜像磁盘安装,这意味着即使其中一个硬盘突然停止工作,系统仍将继续运行!
--------------------------------------------------------------------------------
via: https://fedoramagazine.org/managing-raid-arrays-with-mdadm/
作者:[Gregory Bartholomew][a]
选题:[lujun9972][b]
译者:[geekpi](https://github.com/geekpi)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://fedoramagazine.org/author/glb/
[b]: https://github.com/lujun9972
[1]: https://fedoramagazine.org/wp-content/uploads/2019/04/mdadm-816x345.jpg
[2]: https://en.wikipedia.org/wiki/RAID
[3]: https://en.wikipedia.org/wiki/Disk_mirroring
[4]: https://en.wikipedia.org/wiki/Unified_Extensible_Firmware_Interface
[5]: https://en.wikipedia.org/wiki/EFI_system_partition

View File

@ -0,0 +1,69 @@
[#]: collector: (lujun9972)
[#]: translator: (arrowfeng)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10797-1.html)
[#]: subject: (Most data center workers happy with their jobs -- despite the heavy demands)
[#]: via: (https://www.networkworld.com/article/3389359/most-data-center-workers-happy-with-their-jobs-despite-the-heavy-demands.html#tk.rss_all)
[#]: author: (Andy Patrizio https://www.networkworld.com/author/Andy-Patrizio/)
许多数据中心的工作者很满意他们的工作,将鼓励他们的孩子继续从事这份工作
======
> 一份 Informa Engage 和 Data Center Knowledge 的报告调查发现,在数据中心工作的人很满意他们的工作,因此他们将会鼓励他们的孩子从事这份工作。
![Thinkstock][1]
一份由 [Informa Engage 和 Data Center Knowledge][2] 主导的调查报告显示,数据中心的工作者总体上对他们的工作很满意。尽管对时间和大脑的要求很高,但是他们还是鼓励自己的孩子能从事这项工作。
总体满意度非常好72 的受访者普遍同意“我喜欢我目前的工作”这一说法三分之一的受访者则表示非常同意。75 的人同意声明,“如果我的孩子、侄女或侄子问,我将建议他们进入 IT 行业。”
在数据中心工作的员工之中有一种很重要的感觉88% 的人觉得他们自己对于雇主的成功非常重要。
尽管存在一些挑战,其中最主要的是技能和认证的缺乏。调查的受访者认为缺乏技能是最受关注的领域。只有 56 的人认为他们需要完成工作所需的培训74 的人表示他们已经在 IT 行业工作了十多年。
这个行业提供认证计划,每个主要的 IT 硬件供应商都有,但是 61% 的人表示在过去的 12 个月里他们并没有完成或者重新续订证书。有几个原因:
三分之一34%)说是由于他们工作的组织缺乏培训预算,而 24% 的人认为是缺乏时间16% 的人表示管理者认为不需要培训,以及另外 16% 的人表示在他们的工作地点没有培训计划。
这并不让我感到惊讶,因为科技是世界上最开放的行业之一,在那里你可以找到培训和教育材料并自学。已经证实了[许多程序员是自学成才][4],包括行业巨头比尔·盖茨、史蒂夫·沃兹尼亚克、约翰·卡马克和杰克·多尔西。
### 数据中心工作者们的薪水
数据中心工作者不会抱怨酬劳。当然大部分不会。50% 的人每年可以赚到 $100,000 甚至更多,然而 11% 的人赚的少于 $40,000。三分之二的受访者来自于美国因此那些低端收入人士可能在国外。
有一个值得注意的差异。史蒂夫·布朗是伦敦数据中心人力资源的总经理,他说软件工程师获得的薪水比硬件工程师多。
布朗在这篇报道中说,“数据中心软件工程方面的工作可以与高收入的职业媲美,而在物理基础设施——机械/电气方面的工作——情况并非如此。它更像是中层管理。”
### 数据中心的专业人士仍然主要是男性
最不令人惊讶的发现10 个受访者中有 9 个是男性。该行业正在调整解决性别歧视问题,但是现在没什么改变。
这篇报告的结论有一点不太好,但是我认为是错的:
> “随着数据中心基础设施完成云计算模式的过渡,软件进入到容器和微服务时代,数据中心剩下来的珍贵领导者——在 20 世纪获得技能的人——可能会发现没有任何他们了解的东西需要管理,也没有人需要他们领导。当危机最终来临时,我们可能会感到震惊,但是我们不能说我们没有受到警告。"
我说过了很多次,[数据中心不会消失][6]。
--------------------------------------------------------------------------------
via: https://www.networkworld.com/article/3389359/most-data-center-workers-happy-with-their-jobs-despite-the-heavy-demands.html
作者:[Andy Patrizio][a]
选题:[lujun9972][b]
译者:[arrowfeng](https://github.com/arrowfeng)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://www.networkworld.com/author/Andy-Patrizio/
[b]: https://github.com/lujun9972
[1]: https://images.idgesg.net/images/article/2018/02/data_center_thinkstock_879720438-100749725-large.jpg
[2]: https://informa.tradepub.com/c/pubRD.mpl?sr=oc&_t=oc:&qf=w_dats04&ch=datacenterkids
[3]: https://www.networkworld.com/article/3276025/20-hot-jobs-ambitious-it-pros-should-shoot-for.html
[4]: https://www.networkworld.com/article/3046178/survey-finds-most-coders-are-self-taught.html
[5]: https://pluralsight.pxf.io/c/321564/424552/7490?u=https%3A%2F%2Fwww.pluralsight.com%2Fpaths%2Fupgrading-your-technology-career
[6]: https://www.networkworld.com/article/3289509/two-studies-show-the-data-center-is-thriving-instead-of-dying.html
[7]: https://www.facebook.com/NetworkWorld/
[8]: https://www.linkedin.com/company/network-world

View File

@ -0,0 +1,105 @@
[#]: collector: (lujun9972)
[#]: translator: (geekpi)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10795-1.html)
[#]: subject: (Ubuntu 19.04 Disco Dingo Has Arrived: Downloads Available Now!)
[#]: via: (https://itsfoss.com/ubuntu-19-04-release/)
[#]: author: (Ankush Das https://itsfoss.com/author/ankush/)
下载安装 Ubuntu 19.04 “Disco Dingo”
======
Ubuntu 19.04 “Disco Dingo” 已经发布,可以下载了。虽然我们已经知道 [Ubuntu 19.04 中的新功能][1] —— 我将在下面提到一些重要的地方,还会给出官方的下载链接。
### Ubuntu 19.04:你需要知道什么
以下是你应该了解的有关 Ubuntu 19.04 Disco Dingo 发布的一些内容。
#### Ubuntu 19.04 不是 LTS 版本
与 Ubuntu 18.04 LTS 不同,它不会[支持 10 年][2]。相反,非 LTS 的 19.04 将支持 **9 个月,直到 2020 年 1 月。**
因此,如果你有生产环境,我们可能不会立即建议你进行升级。例如,如果你有一台运行在 Ubuntu 18.04 LTS 上的服务器 —— 只是因为它是一个新的版本就将它升级到 19.04 可能不是一个好主意。
但是,对于希望在计算机上安装最新版本的用户,可以尝试一下。
![][3]
#### Ubuntu 19.04 对 NVIDIA GPU 用户是个不错的更新
Martin Wimpress来自 Canonical在 Ubuntu MATE 19.04Ubuntu 版本之一)的 [GitHub][4] 的最终发布说明中提到 Ubuntu 19.04 对 NVIDIA GPU 用户来说特别重要。
换句话说,在安装专有图形驱动时 —— 它现在会选择与你特定 GPU 型号兼容最佳的驱动程序。
#### Ubuntu 19.04 功能
- https://youtu.be/sbbPYdpdMb8
尽管我们已经讨论过 [Ubuntu 19.04][1] Disco Dingo 的[最佳功能][1],但值得一提的是,我对本次发布的主要变化:桌面更新 GNOME 3.32 和 Linux 内核 5.0)感到兴奋。
#### 从 Ubuntu 18.10 升级到 19.04
显而易见,如果你安装了 Ubuntu 18.10你应该升级它。18.10 将于 2019 年 7 月停止支持 —— 所以我们建议你将其升级到 19.04。
要做到这一点,你可以直接进入“软件和更新”设置,然后选择“更新”选项卡。
现在将选项从“通知我新的 Ubuntu 版本” 变成 “任何新版本都通知我”。
现在再次运行更新管理器时,你应该会看到 Ubuntu 19.04。
![][5]
#### 从 Ubuntu 18.04 升级到 19.04
建议不要直接从 18.04 升级到 19.04,因为你需要先将操作系统更新到 18.10,然后再继续升级到 19.04。
相反,你只需下载 Ubuntu 19.04 的官方 ISO 映像,然后在你的系统上重新安装 Ubuntu。
### Ubuntu 19.04:所有版本都可下载
根据[发行说明][6],现在可以下载 Ubuntu 19.04。你可以在其官方发布下载页面上获取种子或 ISO 文件。
- [下载 Ubuntu 19.04][7]
如果你需要不同的桌面环境或需要特定的东西,你应该查看 Ubuntu 的官方版本:
* [Ubuntu MATE][8]
* [Kubuntu][9]
* [Lubuntu][10]
* [Ubuntu Budgie][11]
* [Ubuntu Studio][12]
* [Xubuntu][13]
上面提到的一些 Ubuntu 版本还没有在页面提供 19.04。但你可以[仍然在 Ubuntu 的发行说明网页上找到 ISO][6]。就个人而言,我使用带 GNOME 桌面的 Ubuntu。你可以选择你喜欢的。
### 总结
你如何看待 Ubuntu 19.04 Disco Dingo这些新功能是否足够令人兴奋你试过了吗请在下面的评论中告诉我们。
--------------------------------------------------------------------------------
via: https://itsfoss.com/ubuntu-19-04-release/
作者:[Ankush Das][a]
选题:[lujun9972][b]
译者:[geekpi](https://github.com/geekpi)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://itsfoss.com/author/ankush/
[b]: https://github.com/lujun9972
[1]: https://itsfoss.com/ubuntu-19-04-release-features/
[2]: https://itsfoss.com/ubuntu-18-04-ten-year-support/
[3]: https://i2.wp.com/itsfoss.com/wp-content/uploads/2018/11/ubuntu-19-04-Disco-Dingo-default-wallpaper.jpg?resize=800%2C450&ssl=1
[4]: https://github.com/ubuntu-mate/ubuntu-mate.org/blob/master/blog/20190418-ubuntu-mate-disco-final-release.md
[5]: https://i0.wp.com/itsfoss.com/wp-content/uploads/2019/04/ubuntu-19-04-upgrade-available.jpg?ssl=1
[6]: https://wiki.ubuntu.com/DiscoDingo/ReleaseNotes
[7]: https://www.ubuntu.com/download/desktop
[8]: https://ubuntu-mate.org/download/
[9]: https://kubuntu.org/getkubuntu/
[10]: https://lubuntu.me/cosmic-released/
[11]: https://ubuntubudgie.org/downloads
[12]: https://ubuntustudio.org/2019/04/ubuntu-studio-19-04-released/
[13]: https://xubuntu.org/download/

View File

@ -0,0 +1,105 @@
[#]: collector: (lujun9972)
[#]: translator: (geekpi)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10787-1.html)
[#]: subject: (4 cool new projects to try in COPR for April 2019)
[#]: via: (https://fedoramagazine.org/4-cool-new-projects-to-try-in-copr-for-april-2019/)
[#]: author: (Dominik Turecek https://fedoramagazine.org/author/dturecek/)
COPR 仓库中 4 个很酷的新软件2019.4
======
![][1]
COPR 是个人软件仓库[集合][1],它不在 Fedora 中。这是因为某些软件不符合轻松打包的标准。或者它可能不符合其他 Fedora 标准尽管它是自由而开源的。COPR 可以在 Fedora 套件之外提供这些项目。COPR 中的软件不受 Fedora 基础设施的支持,或者是由项目自己背书的。但是,这是一种尝试新的或实验性的软件的一种巧妙的方式。
这是 COPR 中一组新的有趣项目。
### Joplin
[Joplin][3] 是一个笔记和待办事项应用。笔记以 Markdown 格式编写并通过使用标签和将它们分类到各种笔记本中进行组织。Joplin 可以从任何 Markdown 源导入笔记或从 Evernote 导出笔记。除了桌面应用之外,还有一个 Android 版本,通过使用 Nextcloud、Dropbox 或其他云服务同步笔记。最后,它还有 Chrome 和 Firefox 的浏览器扩展程序,用于保存网页和屏幕截图。
![][4]
#### 安装说明
[COPR 仓库][5]目前为 Fedora 29 和 30 以及 EPEL 7 提供 Joplin。要安装 Joplin请[带上 sudo][6] 使用这些命令:
```
sudo dnf copr enable taw/joplin
sudo dnf install joplin
```
### Fzy
[Fzy][7] 是用于模糊字符串搜索的命令行程序。它从标准输入读取并根据最有可能的搜索结果进行排序,然后打印所选行。除了命令行,`fzy` 也可以在 vim 中使用。你可以在这个在线 [demo][8] 中尝试 `fzy`
#### 安装说明
[COPR 仓库][9]目前为 Fedora 29、30 和 Rawhide 以及其他发行版提供了 `fzy`。要安装 `fzy`,请使用以下命令:
```
sudo dnf copr enable lehrenfried/fzy
sudo dnf install fzy
```
### Fondo
Fondo 是一个浏览 [unsplash.com][10] 网站照片的程序。它有一个简单的界面,允许你一次查找某个主题或所有主题的图片。然后,你可以通过单击将找到的图片设置为壁纸,或者共享它。
![][11]
#### 安装说明
[COPR 仓库][12]目前为 Fedora 29、30 和 Rawhide 提供 Fondo。要安装 Fondo请使用以下命令
```
sudo dnf copr enable atim/fondo
sudo dnf install fondo
```
### YACReader
[YACReader][13] 是一款数字漫画阅读器,它支持许多漫画和图像格式,例如 cbz、cbr、pdf 等。YACReader 会跟踪阅读进度,并可以从 [Comic Vine][14] 下载漫画信息。它还有一个 YACReader 库,用于组织和浏览你的漫画集。
![][15]
#### 安装说明
[COPR 仓库][16]目前为 Fedora 29、30 和 Rawhide 提供 YACReader。要安装 YACReader请使用以下命令
```
sudo dnf copr enable atim/yacreader
sudo dnf install yacreader
```
--------------------------------------------------------------------------------
via: https://fedoramagazine.org/4-cool-new-projects-to-try-in-copr-for-april-2019/
作者:[Dominik Turecek][a]
选题:[lujun9972][b]
译者:[geekpi](https://github.com/geekpi)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://fedoramagazine.org/author/dturecek/
[b]: https://github.com/lujun9972
[1]: https://fedoramagazine.org/wp-content/uploads/2017/08/4-copr-945x400.jpg
[2]: https://copr.fedorainfracloud.org/
[3]: https://joplin.cozic.net/
[4]: https://fedoramagazine.org/wp-content/uploads/2019/04/joplin.png
[5]: https://copr.fedorainfracloud.org/coprs/taw/joplin/
[6]: https://fedoramagazine.org/howto-use-sudo/
[7]: https://github.com/jhawthorn/fzy
[8]: https://jhawthorn.github.io/fzy-demo/
[9]: https://copr.fedorainfracloud.org/coprs/lehrenfried/fzy/
[10]: https://unsplash.com/
[11]: https://fedoramagazine.org/wp-content/uploads/2019/04/fondo.png
[12]: https://copr.fedorainfracloud.org/coprs/atim/fondo/
[13]: https://www.yacreader.com/
[14]: https://comicvine.gamespot.com/
[15]: https://fedoramagazine.org/wp-content/uploads/2019/04/yacreader.png
[16]: https://copr.fedorainfracloud.org/coprs/atim/yacreader/

View File

@ -0,0 +1,147 @@
[#]: collector: (lujun9972)
[#]: translator: (warmfrog)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10790-1.html)
[#]: subject: (New Features Coming to Debian 10 Buster Release)
[#]: via: (https://itsfoss.com/new-features-coming-to-debian-10-buster-release/)
[#]: author: (Shirish https://itsfoss.com/author/shirish/)
即将到来的 Debian 10 Buster 发布版的新特点
=======================================
Debian 10 Buster 即将发布。第一个发布候选版已经发布,我们预期可以在几周内见到待最终版。
如果你期待对这个新的主要发布版本,让我告诉你里面有什么。
### Debian 10 Buster 发布计划
[Debian 10 Buster][1] 的发布日期并没有确定。为什么这样呢?不像其他分发版,[Debian][2] 并不基于时间发布。相反地它主要关注于修复<ruby>发布版重要 Bug<rt>release-critical bug</rt></ruby>。发布版重要 Bug 要么是严重的安全问题([CVE][3]),要么是一些其他阻止 Debian 发布的严重问题。
Debian 在它的软件归档中分为三个部分,叫做 Main、contrib 和 non-free。在这三者之中Debian 开发者和发布管理者最关心的包组成了该分发版的基石。Main 是像石头一样稳定的。因此他们要确保那里没有主要的功能或者安全问题。他们同样给予了不同的优先级,例如 Essential、Required、Important、Standard、Optional 和 Extra。更多关于此方面的知识参考后续的 Debian 文章。
这是必要的,因为 Debian 在很多环境中被用作服务器,人们已经变得依赖 Debian。他们同样看重升级周期是否有破环因此他们寻找人们来测试来查看当升级的时候是否有破坏并通知 Debian 有这样的问题。
这种提交方式带来的稳定性[是我喜欢 Debian 的众多原因之一][4]。
### Debian 10 Buster 版本的新内容
这里是即将到来的 Debian 主要发布版的一些视觉上和内部的改变。
#### 新的主题和壁纸
Buster 的 Debian 主题被称为 [FuturePrototype][5] 并且看起来如下图:
![Debian Buster FuturePrototype Theme][6]
#### 1、GNOME 桌面 3.30
Debian Stretch 版中的 GNOME 桌面在 Buster 中从 1.3.22 升级到了 1.3.30。在 GNOME 桌面发布版中新包含的一些包是 gnome-todo、tracker 替代了 tracker-gui、gstreamer1.0-packagekit 的依赖,因此可以通过自动地安装编码解码器来做播放电影之类的事。对于所有包来说一个大的改变是从 libgtk2+ 到 libgtk3+。
#### 2、Linux 内核 4.19.0-4
Debian 使用 LTS 内核版本,因此你可以期待更好的硬件支持和长达 5 年的维护和支持周期。我们已经从内核 4.9.0.3 到 4.19.0-4。
```
$ uname -r
4.19.0-4-amd64
```
#### 3、OpenJDK 11.0
Debian 在很长时间里都是 OpenJDK 8.0。现在在 Debian Buster 里我们已经升级为 OpenJDK 11.0,并且会有一个团队维护新的版本。
#### 4、默认启用 AppArmor
在 Debian Buster 中是默认启用 [AppArmor][7] 的。这是一个好事,谨慎是系统管理员必须采取的正确策略。这仅仅是第一步,并且可能需要修复很多对用户觉得有用的脚本。
#### 5、Nodejs 10.15.2
在很长一段时间里 Debian 在仓库中都只有 Nodejs 4.8。在这个周期里 Debian 已经移到 Nodejs 10.15.2。事实上Debian Buster 有很多 javascript 库例如 yarnpkg (一个 nmp 的替代品)等等。
当然,你可以从该项目仓库[在 Debian 中安装最新的 Nodejs][8],但是从 Debian 仓库中看到更新的版本是很棒的。
#### 6、NFtables 替代了 iptables
Debian Buster 提供了 nftables 来完整地替代了 iptables因为它有更好、更简单的语法更好的支持双栈 ipv4/v6 防火墙等等。
#### 7、支持更多的 ARM 64 和 ARMHF 的单板机。
Debian 已经支持一些常见的新的单板机,其中最新的包括 pine64_plus、ARM64 的 pinebook、Firefly-RK3288、ARMHF 64 的 u-boot-rockchip 以及 Odroid HC1/HC2 板、SolidRun Cubox-i 双核/四核1.5som)和 SolidRun Cubox-i 双核/四核1.5som+emmc板、Cubietruckplus 等。同样支持 Rock 64、Banana Pi M2 Berry、Pine A64 LTS Board、Olimex A64 Teres-1 与 Rapberry Pi 1、Zero 和 Pi 3。对于 RISC-V 系统同样支持开箱即用。
#### 8、Python 2 已死Python 3 长存
在 2020 年 1 月 1 日Python 2 将被 python.org 废弃。在 Debian 将所有的软件包从 Python 2.7 移到 Python 3 以后Python 2.7 将从软件仓库中移除。这可能发生在 Buster 发布版或者将来的某个发布版,这是肯定要来临的。因此 Python 开发者被鼓励移植他们的代码库来兼容 Python 3。在写本文的时候在 Debian Buster 中同时支持 python2 和 pythone3。
#### 9、Mailman 3
在 Debian 中终于可以使用 Mailman3 了。同时 [Mailman][10] 已经被细分成为组件。要安装整个软件栈,可以安装 mailman3-full 来获取所有组件。
#### 10、任意已有的 Postgresql 数据库将需要重新索引
由于 glibc 本地数据的更新,放入文本索引中的信息排序的方式将会改变,因为重新索引是有益的,这样在将来就不会有数据破坏发生。
#### 11、默认 Bash 5.0
你可能已经了解了 [Bash 5.0 的新特点][11],在 Debian 中已经是该版本了。
#### 12、Debian 实现 /usr/merge
我们已经分享过一个优秀的 freedesktop [读物][12],介绍了 `/usr/merge` 带来了什么。有一些事项需要注意。当 Debian 想要整个过渡时,可能由于未预见的情况,一些二进制文件可能并没有做这些改变。需要指出的一点是,`/var` 和 `/etc` 不会被触及,因此使用容器或者云技术的不需要考虑太多 :)。
#### 13、支持安全启动
在 Buster RC1 中Debian 现在支持<ruby>安全启动<rt>secure-boot</rt></ruby>。这意味着打开了安全启动设置的机器应该能够轻松安装 Debian。不再需要禁止或者处理安全启动的事 :)
#### 14、Debian-Live 镜像的 Calameres Live-installer
对于 Debian Buster 的 Live 版Debian 引入了 [Calameres 安装器][13]来替代老的 Debian-installer。Debian-installer 比 Calameres 功能更多但对于初学者Calameres 相对于 Debian-installer 提供了另外一种全新的安装方式。安装过程的截图:
![Calamares Partitioning Stage][14]
如图所见,在 Calamares 下安装 Debian 相当简单,只要经历 5 个步骤你就能在你的机器上安装 Debian。
### 下载 Debian 10 Live 镜像 (只用于测试)
现在还不要将它用于生产机器。可以在测试机上尝试或者一个虚拟机。
你可以从 Debian Live [目录][15]获取 Debian 64 位和 32 位的镜像。如果你想要 64 位的就进入 `64-bit` 目录,如果你想要 32 位的,就进入 `32-bit` 目录。
- [下载 Debian 10 Buster Live Images][15]
如果你从已存在的稳定版升级并且出现了一些问题,查看它是否在预安装的[升级报告][16]中提及了,使用 [reportbug][17] 报告你看到的问题。如果 bug 没有被报告,那么请尽可能地报告和分享更多地信息。
### 总结
当上千个包被升级时,看起来不可能一一列出。我已经列出了一些你在 Debian Buster 可以找到的一些主要的改变。你怎么看呢?
--------------------------------------------------------------------------------
via: https://itsfoss.com/new-features-coming-to-debian-10-buster-release/
作者:[Shirish][a]
选题:[lujun9972][b]
译者:[warmfrog](https://github.com/warmfrog)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://itsfoss.com/author/shirish/
[b]: https://github.com/lujun9972
[1]: https://wiki.debian.org/DebianBuster
[2]: https://www.debian.org/
[3]: https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures
[4]: https://itsfoss.com/reasons-why-i-love-debian/
[5]: https://wiki.debian.org/DebianArt/Themes/futurePrototype
[6]: https://itsfoss.com/wp-content/uploads/2019/04/debian-buster-theme-800x450.png
[7]: https://wiki.debian.org/AppArmor
[8]: https://itsfoss.com/install-nodejs-ubuntu/
[9]: https://www.python.org/dev/peps/pep-0373/
[10]: https://www.list.org/
[11]: https://itsfoss.com/bash-5-release/
[12]: https://www.freedesktop.org/wiki/Software/systemd/TheCaseForTheUsrMerge/
[13]: https://calamares.io/about/
[14]: https://i1.wp.com/itsfoss.com/wp-content/uploads/2019/04/calamares-partitioning-wizard.jpg?fit=800%2C538&ssl=1
[15]: https://cdimage.debian.org/cdimage/weekly-live-builds/
[16]: https://bugs.debian.org/cgi-bin/pkgreport.cgi?pkg=upgrade-reports;dist=unstable
[17]: https://itsfoss.com/bug-report-debian/

View File

@ -0,0 +1,164 @@
[#]: collector: (lujun9972)
[#]: translator: (warmfrog)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10812-1.html)
[#]: subject: (What is 5G? How is it better than 4G?)
[#]: via: (https://www.networkworld.com/article/3203489/what-is-5g-how-is-it-better-than-4g.html#tk.rss_all)
[#]: author: (Josh Fruhlinger https://www.networkworld.com/author/Josh-Fruhlinger/)
什么是 5G它比 4G 好在哪里?
==========================
> 5G 网络将使无线网络吞吐量提高 10 倍并且能够替代有线宽带。但是它们什么时候能够投入使用呢,为什么 5G 和物联网如此紧密地联系在一起呢?
![Thinkstock][1]
[5G 无线][2] 是一个概括的术语,用来描述一系列更快的无线互联网的标准和技术,理论上比 4G 快了 20 倍并且延迟降低了 120 倍,为物联网的发展和对新的高带宽应用的支持奠定了基础。
### 什么是 5G科技还是流行词
这个技术在世界范围内完全发挥它的潜能还需要数年时间,但同时当今一些 5G 网络服务已经投入使用。5G 不仅是一个技术术语,也是一个营销术语,并不是市场上的所有 5G 服务是标准的。
- [来自世界移动大会:[5G 时代即将来到][3]]
### 5G 与 4G 的速度对比
无线技术的每一代最大的呼吁是增加速度。5G 网络潜在的峰值下载速度可以达到[20 Gbps一般在 10 Gbps][4]。这不仅仅比当前 4G 网络更快4G 目前峰值大约 1 Gbps并且比更多家庭的有线网络连接更快。5G 提供的网络速度能够与光纤一较高下。
吞吐量不是 5G 仅有的速度提升;它还有的特点是极大降低了网络延迟。这是一个重要的区分:吞吐量用来测量花费多久来下载一个大文件,而延迟由网络瓶颈决定,延迟在往返的通讯中减慢了响应速度。
延迟很难量化,因为它因各种网络状态变化而变化,但是 5G 网络在理想情况下有能力使延迟率在 1 ms 内。总的来说5G 延迟将比 4G 降低 60 到 120 倍。这会使很多应用变得可能,例如当前虚拟现实的延迟使它变得不实际。
### 5G 技术
5G 技术的基础有一系列标准定义,在过去的 10 年里一直在研究更好的部分。这些里面最重要的是 5G New Radio5G NR由 3GPP一个为移动电话开发协议的标准化组织组织标准化。5G NR 规定了很多 5G 设备操作的方式,[于 2018 年 7 月 完成终版][5]。
很多独特的技术同时出现来尽可能地提升 5G 的速度并降低延迟,下面是一些重要的。
### 毫米波
5G 网络大部分使用在 30 到 300 GHz 范围的频率。(正如名称一样,这些频率的波长在 1 到 10 毫米之间)这些高频范围能够[在每个时间单元比低频信号携带更多的信息][7]4G LTE 当前使用的就是通常频率在 1 GHz 以下的低频信号,或者 WiFi最高 6 GHz。
毫米波技术传统上是昂贵并且难于部署的。科技进步已经克服了这些困难,这也是 5G 在如今成为了可能的原因。
### 小蜂窝
毫米波传输的一个缺点是当它们传输通过物理对象的时候比 4G 或 WiFi 信号更容易被干扰。
为了克服这些5G 基础设施的模型将不同于 4G。替代了大的像景观一样移动天线桅杆5G 网络将由[分布在城市中大概间距 250 米的更小的基站][8]提供支持,创建更小的服务区域。
这些 5G 基站的功率要求低于 4G并且可以更容易地连接到建筑物和电线杆上。
### 大量的 MIMO
尽管 5G 基站比 4G 的对应部分小多了,但它们却带了更多的天线。这些天线是[多输入多输出的MIMO][9]意味着在相同的数据信道能够同时处理多个双向会话。5G 网络能够处理比 4G 网络超过 20 倍的会话。
大量的 MIMO 保证了[基站容量限制下的极大提升][10],允许单个基站承载更多的设备会话。这就是 5G 可能推动物联网更广泛应用的原因。理论上,更多的连接到互联网的无线设备能够部署在相同的空间而不会使网络被压垮。
### 波束成形
确保所有的会话来回地到达正确的地方是比较棘手的尤其是前面提到的毫米波信号的干涉问题。为了克服这些问题5G 基站部署了更高级的波束技术,使用建设性和破坏性的无线电干扰来使信号有向而不是广播。这在一个特定的方向上有效地加强了信号强度和范围。
### 5G 可获得性
第一个 5G 商用网络 [2018 年 5 月在卡塔尔推出][12]。自那以后5G 网络已经扩展到全世界,从阿根廷到越南。[Lifewire 有一个不错的,经常更新的列表][13].
牢记一点的是,尽管这样,目前不是所有的 5G 网络都履行了所有的技术承诺。一些早期的 5G 产品依赖于现有的 4G 基础设施,减少了可以获得的潜在速度;其它服务为了市场目的而标榜 5G 但是并不符合标准。仔细观察美国无线运营商的产品都会发现一些陷阱。
### 无线运营商和 5G
技术上讲5G 服务如今在美国已经可获得了。但声明中包含的注意事项因运营商而异,表明 5G 普及之前还有很长的路要走。
Verizon 可能是早期 5G 最大的推动者。它宣告到 2018 年 10 月 将有 4 个城市成为 [5G 家庭][14]的一部分,这是一项需要你的其他设备通过 WiFi 来连接特定的 5G 热点,由热点连接到网络的服务。
Verizon 计划四月在 [Minneapolis 和 Chicago 发布 5G 移动服务][15],该服务将在这一年内传播到其他城市。访问 5G 网络将需要消费者每月额外花费费用,加上购买能够实际访问 5G 的手机花费稍后会详细介绍。另外Verizon 的部署被称作 [5G TF][16],实际上不符合 5G NR 的标准。
AT&T [声明在 2018 年 12 月将有美国的 12 个城市可以使用 5G][17],在 2019 年的末尾将增加 9 个城市,但最终在这些城市里,只有市中心商业区能够访问。为了访问 5G 网络,需要一个特定的 Netgear 热点来连接到 5G 服务,然后为手机和其他设备提供一个 Wi-Fi 信号。
与此同时AT&T 也在推出 4G 网络的速度提升计划,被成为 5GE即使这些提升和 5G 网络没有关系。([这会向后兼容][18]
Sprint 将在 2019 年 5 月之前在四个城市提供 5G 服务,在年末将有更多。但是 Sprint 的 5G 产品充分利用了 MIMO 单元,他们[没有使用毫米波信道][19],意味着 Sprint 的用户不会看到像其他运营商一样的速度提升。
T-Mobile 采用相似的模型,它[在 2019 年年底之前不会推出 5G 服务][20],因为他们没有手机能够连接到它。
一个可能阻止 5G 速度的迅速传播的障碍是需要铺开所有这些小蜂窝基站。它们小的尺寸和较低的功耗需求使它们技术上比 4G 技术更容易部署但这不意味着它能够很简单的使政府和财产拥有者信服到处安装一堆基站。Verizon 实际上建立了[向本地民选官员请愿的网站][21]来加速 5G 基站的部署。
### 5G 手机:何时可获得?何时可以买?
第一部声称为 5G 手机的是 Samsung Galaxy S10 5G将在 2019 年夏末首发。你也可以从 Verizon 订阅一个“[Moto Mod][22]”,用来[转换 Moto Z3 手机为 5G 兼容设备][23]。
但是除非你不能忍受作为一个早期使用者的诱惑,你会希望再等待一下;一些关于运营商的奇怪和突显的问题意味着可能你的手机[不兼容你的运营商的整个 5G 网络][24]。
一个可能令你吃惊的落后者是苹果:分析者确信最早直到 2020 年以前 iPhone 不会与 5G 兼容。但这符合该公司的特点;苹果在 2012 年末也落后于三星发布兼容 4G 的手机。
不可否认5G 洪流已经到来。5G 兼容的设备[在 2019 年统治了巴塞罗那世界移动大会][3],因此期待视野里有更多的选择。
### 为什么人们已经在讨论 6G 了?
一些专家说缺点是[5G 不能够达到延迟和可靠性的目标][27]。这些完美主义者已经在探寻 6G来试图解决这些缺点。
有一个[研究新的能够融入 6G 技术的小组][28],自称为“融合 TeraHertz 通信与传感中心”ComSenTer。根据说明他们努力让每个设备的带宽达到 100Gbps。
除了增加可靠性还突破了可靠性并增加速度6G 同样试图允许上千的并发连接。如果成功的话,这个特点将帮助物联网设备联网,使在工业设置中部署上千个传感器。
即使仍在胚胎当中6G 已经由于新发现的 [在基于 tera-hretz 的网络中潜在的中间人攻击][29]的紧迫性面临安全的考虑。好消息是有大量时间来解决这个问题。6G 网络直到 2030 之前才可能出现。
阅读更多关于 5G 网络:
* [企业如何为 5G 网络做准备][30]
* [5G 与 4G速度、延迟和应用支持的差异][31]
* [私人 5G 网络即将到来][32]
* [5G 和 6G 无线存在安全问题][33]
* [毫米波无线技术如何支持 5G 和物联网][34]
--------------------------------------------------------------------------------
via: https://www.networkworld.com/article/3203489/what-is-5g-how-is-it-better-than-4g.html
作者:[Josh Fruhlinger][a]
选题:[lujun9972][b]
译者:[warmfrog](https://github.com/warmfrog)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://www.networkworld.com/author/Josh-Fruhlinger/
[b]: https://github.com/lujun9972
[1]: https://images.techhive.com/images/article/2017/04/5g-100718139-large.jpg
[2]: https://www.networkworld.com/article/3203489/what-is-5g-wireless-networking-benefits-standards-availability-versus-lte.html
[3]: https://www.networkworld.com/article/3354477/mobile-world-congress-the-time-of-5g-is-almost-here.html
[4]: https://www.networkworld.com/article/3330603/5g-versus-4g-how-speed-latency-and-application-support-differ.html
[5]: https://www.theverge.com/2018/6/15/17467734/5g-nr-standard-3gpp-standalone-finished
[6]: https://pluralsight.pxf.io/c/321564/424552/7490?u=https%3A%2F%2Fwww.pluralsight.com%2Fcourses%2Fmobile-device-management-big-picture
[7]: https://www.networkworld.com/article/3291323/millimeter-wave-wireless-could-help-support-5g-and-iot.html
[8]: https://spectrum.ieee.org/video/telecom/wireless/5g-bytes-small-cells-explained
[9]: https://www.networkworld.com/article/3250268/what-is-mu-mimo-and-why-you-need-it-in-your-wireless-routers.html
[10]: https://spectrum.ieee.org/tech-talk/telecom/wireless/5g-researchers-achieve-new-spectrum-efficiency-record
[11]: https://www.networkworld.com/article/3262991/future-wireless-networks-will-have-no-capacity-limits.html
[12]: https://venturebeat.com/2018/05/14/worlds-first-commercial-5g-network-launches-in-qatar/
[13]: https://www.lifewire.com/5g-availability-world-4156244
[14]: https://www.digitaltrends.com/computing/verizon-5g-home-promises-up-to-gigabit-internet-speeds-for-50/
[15]: https://lifehacker.com/heres-your-cheat-sheet-for-verizons-new-5g-data-plans-1833278817
[16]: https://www.theverge.com/2018/10/2/17927712/verizon-5g-home-internet-real-speed-meaning
[17]: https://www.cnn.com/2018/12/18/tech/5g-mobile-att/index.html
[18]: https://www.networkworld.com/article/3339720/like-4g-before-it-5g-is-being-hyped.html?nsdr=true
[19]: https://www.digitaltrends.com/mobile/sprint-5g-rollout/
[20]: https://www.cnet.com/news/t-mobile-delays-full-600-mhz-5g-launch-until-second-half/
[21]: https://lets5g.com/
[22]: https://www.verizonwireless.com/support/5g-moto-mod-faqs/?AID=11365093&SID=100098X1555750Xbc2e857934b22ebca1a0570d5ba93b7c&vendorid=CJM&PUBID=7105813&cjevent=2e2150cb478c11e98183013b0a1c0e0c
[23]: https://www.digitaltrends.com/cell-phone-reviews/moto-z3-review/
[24]: https://www.businessinsider.com/samsung-galaxy-s10-5g-which-us-cities-have-5g-networks-2019-2
[25]: https://www.cnet.com/news/why-apples-in-no-rush-to-sell-you-a-5g-iphone/
[26]: https://mashable.com/2012/09/09/iphone-5-4g-lte/#hYyQUelYo8qq
[27]: https://www.networkworld.com/article/3305359/6g-will-achieve-terabits-per-second-speeds.html
[28]: https://www.networkworld.com/article/3285112/get-ready-for-upcoming-6g-wireless-too.html
[29]: https://www.networkworld.com/article/3315626/5g-and-6g-wireless-technologies-have-security-issues.html
[30]: https://%20https//www.networkworld.com/article/3306720/mobile-wireless/how-enterprises-can-prep-for-5g.html
[31]: https://%20https//www.networkworld.com/article/3330603/mobile-wireless/5g-versus-4g-how-speed-latency-and-application-support-differ.html
[32]: https://%20https//www.networkworld.com/article/3319176/mobile-wireless/private-5g-networks-are-coming.html
[33]: https://www.networkworld.com/article/3315626/network-security/5g-and-6g-wireless-technologies-have-security-issues.html
[34]: https://www.networkworld.com/article/3291323/mobile-wireless/millimeter-wave-wireless-could-help-support-5g-and-iot.html
[35]: https://www.facebook.com/NetworkWorld/
[36]: https://www.linkedin.com/company/network-world

View File

@ -0,0 +1,87 @@
[#]: collector: (lujun9972)
[#]: translator: (MjSeven)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10809-1.html)
[#]: subject: (Command line quick tips: Cutting content out of files)
[#]: via: (https://fedoramagazine.org/command-line-quick-tips-cutting-content-out-of-files/)
[#]: author: (Stephen Snow https://fedoramagazine.org/author/jakfrost/)
命令行技巧:分割文件内容
======
![][1]
Fedora 发行版是一个功能齐全的操作系统,有出色的图形化桌面环境。用户可以很容易地通过单击动作来完成任何典型任务。所有这些美妙的易用性掩盖了其底层强大的命令行细节。本文是向你展示一些常见命令行实用程序的系列文章的一部分。让我们进入 shell 来看看 `cut`
通常,当你在命令行中工作时,你处理的是文本文件。有时这些文件可能很长,虽然可以完整地阅读它们,但是可能会耗费大量时间,并且容易出错。在本文中,你将学习如何从文本文件中提取内容,并从中获取你所需的信息。
重要的是要意识到,在 Fedora 中有许多方法可以完成类似的命令行任务。例如Fedora 仓库含有用于解析和处理文本的完整语言系统。此外,还有多个命令行实用程序可用于 shell 中任何可能的用途。本文只关注使用其中几个实用程序选项,从文件中提取一些信息并以可读的格式呈现。
### cut 使用
为了演示这个例子,在系统上使用一个标准的大文件,如 `/etc/passwd`。正如本系列的前一篇文章所示,你可以执行 `cat` 命令来查看整个文件:
```
$ cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
...
```
此文件包含系统上所有所有账户的信息。它有一个特定的格式:
```
name:password:user-id:group-id:comment:home-directory:shell
```
假设你只想要系统上所有账户名的列表,如果你只能从每一行中删除 “name” 值。这就是 `cut` 命令派上用场的地方!它一次处理一行输入,并提取该行的特定部分。
`cut` 命令提供了以不同方式选择一行的部分的选项,在本示例中需要两个,`-d` 和 `-f`。`-d` 选项允许你声明用于分隔行中值的分隔符。在本例中,冒号(`:`)用于分隔值。`-f` 选项允许你选择要提取哪些字段值。因此,在本例中,输入的命令是:
```
$ cut -d: -f1 /etc/passwd
root
bin
daemon
adm
...
```
太棒了,成功了!但是你将输出打印到标准输出,在终端会话中意味着它需要占据屏幕。如果你需要稍后完成另一项任务所需的信息,这该怎么办?如果有办法将 `cut` 命令的输出保存到文本文件中那就太好了。对于这样的任务shell 有一个简单的内置功能,重定向功能(`>`)。
```
$ cut -d: -f1 /etc/passwd > names.txt
```
这会将 `cut` 的输出放到一个名为 `names.txt` 的文件中,你可以使用 `cat` 来查看它的内容:
```
$ cat names.txt
root
bin
daemon
adm
...
```
使用两个命令和一个 shell 功能,可以很容易地使用 `cat` 从一个文件进行识别、提取和重定向一些信息,并将其保存到另一个文件以供以后使用。
--------------------------------------------------------------------------------
via: https://fedoramagazine.org/command-line-quick-tips-cutting-content-out-of-files/
作者:[Stephen Snow][a]
选题:[lujun9972][b]
译者:[MjSeven](https://github.com/MjSeven)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://fedoramagazine.org/author/jakfrost/
[b]: https://github.com/lujun9972
[1]: https://fedoramagazine.org/wp-content/uploads/2019/04/commandline-cutting-816x345.jpg
[2]: https://unsplash.com/photos/tA5eSY_hay8?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
[3]: https://unsplash.com/search/photos/command-line?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

View File

@ -0,0 +1,108 @@
[#]: collector: (lujun9972)
[#]: translator: (geekpi)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10833-1.html)
[#]: subject: (Getting started with Python's cryptography library)
[#]: via: (https://opensource.com/article/19/4/cryptography-python)
[#]: author: (Moshe Zadka https://opensource.com/users/moshez)
Python 的加密库入门
======
> 加密你的数据并使其免受攻击者的攻击。
![lock on world map][1]
密码学俱乐部的第一条规则是:永远不要自己*发明*密码系统。密码学俱乐部的第二条规则是:永远不要自己*实现*密码系统:在现实世界中,在*实现*以及设计密码系统阶段都找到过许多漏洞。
Python 中的一个有用的基本加密库就叫做 [cryptography][2]。它既是一个“安全”方面的基础库,也是一个“危险”层。“危险”层需要更加小心和相关的知识,并且使用它很容易出现安全漏洞。在这篇介绍性文章中,我们不会涵盖“危险”层中的任何内容!
cryptography 库中最有用的高级安全功能是一种 Fernet 实现。Fernet 是一种遵循最佳实践的加密缓冲区的标准。它不适用于非常大的文件,如千兆字节以上的文件,因为它要求你一次加载要加密或解密的内容到内存缓冲区中。
Fernet 支持<ruby>对称<rt>symmetric</rt></ruby>(即<ruby>密钥<rt>secret key</rt></ruby>)加密方式*:加密和解密使用相同的密钥,因此必须保持安全。
生成密钥很简单:
```
>>> k = fernet.Fernet.generate_key()
>>> type(k)
<class 'bytes'>
```
这些字节可以写入有适当权限的文件,最好是在安全的机器上。
有了密钥后,加密也很容易:
```
>>> frn = fernet.Fernet(k)
>>> encrypted = frn.encrypt(b"x marks the spot")
>>> encrypted[:10]
b'gAAAAABb1'
```
如果在你的机器上加密,你会看到略微不同的值。不仅因为(我希望)你生成了和我不同的密钥,而且因为 Fernet 将要加密的值与一些随机生成的缓冲区连接起来。这是我之前提到的“最佳实践”之一:它将阻止对手分辨哪些加密值是相同的,这有时是攻击的重要部分。
解密同样简单:
```
>>> frn = fernet.Fernet(k)
>>> frn.decrypt(encrypted)
b'x marks the spot'
```
请注意,这仅加密和解密*字节串*。为了加密和解密*文本串*,通常需要对它们使用 [UTF-8][3] 进行编码和解码。
20 世纪中期密码学最有趣的进展之一是<ruby>公钥<rt>public key</rt></ruby>加密。它可以在发布加密密钥的同时而让*解密密钥*保持保密。例如,它可用于保存服务器使用的 API 密钥:服务器是唯一可以访问解密密钥的一方,但是任何人都可以保存公共加密密钥。
虽然 cryptography 没有任何支持公钥加密的*安全*功能,但 [PyNaCl][4] 库有。PyNaCl 封装并提供了一些很好的方法来使用 Daniel J. Bernstein 发明的 [NaCl][5] 加密系统。
NaCl 始终同时<ruby>加密<rt>encrypt</rt></ruby><ruby>签名<rt>sign</rt></ruby>或者同时<ruby>解密<rt>decrypt</rt></ruby><ruby>验证签名<rt>verify signature</rt></ruby>。这是一种防止<ruby>基于可伸缩性<rt>malleability-based</rt></ruby>的攻击的方法,其中攻击者会修改加密值。
加密是使用公钥完成的,而签名是使用密钥完成的:
```
>>> from nacl.public import PrivateKey, PublicKey, Box
>>> source = PrivateKey.generate()
>>> with open("target.pubkey", "rb") as fpin:
... target_public_key = PublicKey(fpin.read())
>>> enc_box = Box(source, target_public_key)
>>> result = enc_box.encrypt(b"x marks the spot")
>>> result[:4]
b'\xe2\x1c0\xa4'
```
解密颠倒了角色:它需要私钥进行解密,需要公钥验证签名:
```
>>> from nacl.public import PrivateKey, PublicKey, Box
>>> with open("source.pubkey", "rb") as fpin:
... source_public_key = PublicKey(fpin.read())
>>> with open("target.private_key", "rb") as fpin:
... target = PrivateKey(fpin.read())
>>> dec_box = Box(target, source_public_key)
>>> dec_box.decrypt(result)
b'x marks the spot'
```
最后,[PocketProtector][6] 库构建在 PyNaCl 之上,包含完整的密钥管理方案。
--------------------------------------------------------------------------------
via: https://opensource.com/article/19/4/cryptography-python
作者:[Moshe Zadka][a]
选题:[lujun9972][b]
译者:[geekpi](https://github.com/geekpi)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://opensource.com/users/moshez
[b]: https://github.com/lujun9972
[1]: https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/security-lock-cloud-safe.png?itok=yj2TFPzq (lock on world map)
[2]: https://cryptography.io/en/latest/
[3]: https://en.wikipedia.org/wiki/UTF-8
[4]: https://pynacl.readthedocs.io/en/stable/
[5]: https://nacl.cr.yp.to/
[6]: https://github.com/SimpleLegal/pocket_protector/blob/master/USER_GUIDE.md

View File

@ -0,0 +1,74 @@
[#]: collector: (lujun9972)
[#]: translator: (geekpi)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10822-1.html)
[#]: subject: (How to quickly deploy, run Linux applications as unikernels)
[#]: via: (https://www.networkworld.com/article/3387299/how-to-quickly-deploy-run-linux-applications-as-unikernels.html#tk.rss_all)
[#]: author: (Sandra Henry-Stocker https://www.networkworld.com/author/Sandra-Henry_Stocker/)
如何快速部署并作为 unikernel 运行 Linux 应用
======
unikernel 是一种用于在云基础架构上部署应用程序的更小、更快、更安全的方式。使用 NanoVMs OPS任何人都可以将 Linux 应用程序作为 unikernel 运行而无需额外编码。
![Marcho Verch \(CC BY 2.0\)][1]
随着 unikernel 的出现,构建和部署轻量级应用变得更容易、更可靠。虽然功能有限,但 unikernal 在速度和安全性方面有许多优势。
### 什么是 unikernel?
unikernel 是一种非常特殊的<ruby>单一地址空间<rt>single-address-space</rt></ruby>的机器镜像,类似于已经主导大批互联网的云应用,但它们相当小并且是单一用途的。它们很轻,只提供所需的资源。它们加载速度非常快,而且安全性更高 —— 攻击面非常有限。单个可执行文件中包含所需的所有驱动、I/O 例程和支持库。其最终生成的虚拟镜像可以无需其它部分就可以引导和运行。它们通常比容器快 10 到 20 倍。
潜在的攻击者无法进入 shell 并获得控制权,因为它没有 shell。他们无法获取系统的 `/etc/passwd``/etc/shadow` 文件,因为这些文件不存在。创建一个 unikernel 就像应用将自己变成操作系统。使用 unikernel应用和操作系统将成为一个单一的实体。你忽略了不需要的东西从而消除了漏洞并大幅提高性能。
简而言之unikernel
* 提供更高的安全性例如shell 破解代码无用武之地)
* 比标准云应用占用更小空间
* 经过高度优化
* 启动非常快
### unikernel 有什么缺点吗?
unikernel 的唯一严重缺点是你必须构建它们。对于许多开发人员来说,这是一个巨大的进步。由于应用的底层特性,将应用简化为所需的内容然后生成紧凑、平稳运行的应用可能很复杂。在过去,你几乎必须是系统开发人员或底层程序员才能生成它们。
### 这是怎么改变的?
最近2019 年 3 月 24 日)[NanoVMs][3] 宣布了一个将任何 Linux 应用加载为 unikernel 的工具。使用 NanoVMs OPS任何人都可以将 Linux 应用作为 unikernel 运行而无需额外编码。该应用还可以更快、更安全地运行,并且成本和开销更低。
### 什么是 NanoVMs OPS
NanoVMs 是给开发人员的 unikernel 工具。它能让你运行各种企业级软件,但仍然可以非常严格地控制它的运行。
使用 OPS 的其他好处包括:
* 无需经验或知识,开发人员就可以构建 unikernel。
* 该工具可在笔记本电脑上本地构建和运行 unikernel。
* 无需创建帐户,只需下载并一个命令即可执行 OPS。
NanoVMs 的介绍可以在 [Youtube 上的 NanoVMs 视频][5] 上找到。你还可以查看该公司的 [LinkedIn 页面][6]并在[此处][7]阅读有关 NanoVMs 安全性的信息。
还有有关如何[入门][8]的一些信息。
--------------------------------------------------------------------------------
via: https://www.networkworld.com/article/3387299/how-to-quickly-deploy-run-linux-applications-as-unikernels.html
作者:[Sandra Henry-Stocker][a]
选题:[lujun9972][b]
译者:[geekpi](https://github.com/geekpi)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://www.networkworld.com/author/Sandra-Henry_Stocker/
[b]: https://github.com/lujun9972
[1]: https://images.idgesg.net/images/article/2019/04/corn-kernels-100792925-large.jpg
[3]: https://nanovms.com/
[5]: https://www.youtube.com/watch?v=VHWDGhuxHPM
[6]: https://www.linkedin.com/company/nanovms/
[7]: https://nanovms.com/security
[8]: https://nanovms.gitbook.io/ops/getting_started
[9]: https://www.facebook.com/NetworkWorld/
[10]: https://www.linkedin.com/company/network-world

View File

@ -0,0 +1,177 @@
[#]: collector: (lujun9972)
[#]: translator: (robsean)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10843-1.html)
[#]: subject: (Anbox Easy Way To Run Android Apps On Linux)
[#]: via: (https://www.2daygeek.com/anbox-best-android-emulator-for-linux/)
[#]: author: (Magesh Maruthamuthu https://www.2daygeek.com/author/magesh/)
Anbox在 Linux 上运行 Android 应用程序的简单方式
======
Android 模拟器允许我们直接从 Linux 系统上运行我们最喜欢的 Android 应用程序或游戏。对于 Linux 来说,有很多的这样的 Android 模拟器,在过去我们介绍过几个此类应用程序。
你可以通过导航到下面的网址回顾它们。
* [如何在 Linux 上安装官方 Android 模拟器 (SDK)][1]
* [如何在 Linux 上安装 GenyMotion (Android 模拟器)][2]
今天我们将讨论 Anbox Android 模拟器。
### Anbox 是什么?
Anbox 是 “Android in a box” 的缩写。Anbox 是一个基于容器的方法,可以在普通的 GNU/Linux 系统上启动完整的 Android 系统。
它是现代化的新模拟器之一。
Anbox 可以让你在 Linux 系统上运行 Android而没有虚拟化的迟钝因为核心的 Android 操作系统已经使用 Linux 命名空间LXE放置到容器中了。
Android 容器不能直接访问到任何硬件,所有硬件的访问都是通过在主机上的守护进程进行的。
每个应用程序将在一个单独窗口打开,就像其它本地系统应用程序一样,并且它可以显示在启动器中。
### 如何在 Linux 中安装 Anbox
Anbox 也可作为 snap 软件包安装,请确保你已经在你的系统上启用了 snap 支持。
Anbox 软件包最近被添加到 Ubuntu 18.10 (Cosmic) 和 Debian 10 (Buster) 软件仓库。如果你正在运行这些版本,那么你可以轻松地在官方发行版的软件包管理器的帮助下安装。否则可以用 snap 软件包安装。
为使 Anbox 工作,确保需要的内核模块已经安装在你的系统中。对于基于 Ubuntu 的用户,使用下面的 PPA 来安装它。
```
$ sudo add-apt-repository ppa:morphis/anbox-support
$ sudo apt update
$ sudo apt install linux-headers-generic anbox-modules-dkms
```
在你安装 `anbox-modules-dkms` 软件包后,你必须手动重新加载内核模块,或需要系统重新启动。
```
$ sudo modprobe ashmem_linux
$ sudo modprobe binder_linux
```
对于 Debian/Ubuntu 系统,使用 [APT-GET 命令][3] 或 [APT 命令][4] 来安装 anbox。
```
$ sudo apt install anbox
```
对于基于 Arch Linux 的系统,我们总是习惯从 AUR 储存库中获取软件包。所以,使用任一个的 [AUR 助手][5] 来安装它。我喜欢使用 [Yay 工具][6]。
```
$ yuk -S anbox-git
```
否则,你可以通过导航到下面的文章来 [在 Linux 中安装和配置 snap][7]。如果你已经在你的系统上安装 snap其它的步骤可以忽略。
```
$ sudo snap install --devmode --beta anbox
```
### Anbox 的必要条件
默认情况下Anbox 并没有带有 Google Play Store。因此我们需要手动下载每个应用程序APK并使用 Android 调试桥ADB安装它。
ADB 工具在大多数的发行版的软件仓库是轻易可获得的,我们可以容易地安装它。
对于 Debian/Ubuntu 系统,使用 [APT-GET 命令][3] 或 [APT 命令][4] 来安装 ADB。
```
$ sudo apt install android-tools-adb
```
对于 Fedora 系统,使用 [DNF 命令][8] 来安装 ADB。
```
$ sudo dnf install android-tools
```
对于基于 Arch Linux 的系统,使用 [Pacman 命令][9] 来安装 ADB。
```
$ sudo pacman -S android-tools
```
对于 openSUSE Leap 系统,使用 [Zypper 命令][10] 来安装 ADB。
```
$ sudo zypper install android-tools
```
### 在哪里下载 Android 应用程序?
既然我们不能使用 Play Store ,你就得从信得过的网站来下载 APK 软件包,像 [APKMirror][11] ,然后手动安装它。
### 如何启动 Anbox?
Anbox 可以从 Dash 启动。这是默认的 Anbox 外貌。
![][13]
### 如何把应用程序推到 Anbox
像我先前所说,我们需要手动安装它。为测试目的,我们将安装 YouTube 和 Firefox 应用程序。
首先,你需要启动 ADB 服务。为做到这样,运行下面的命令。
```
$ adb devices
```
我们已经下载 YouTube 和 Firefox 应用程序,现在我们将安装。
语法格式:
```
$ adb install Name-Of-Your-Application.apk
```
安装 YouTube 和 Firefox 应用程序:
```
$ adb install 'com.google.android.youtube_14.13.54-1413542800_minAPI19(x86_64)(nodpi)_apkmirror.com.apk'
Success
$ adb install 'org.mozilla.focus_9.0-330191219_minAPI21(x86)(nodpi)_apkmirror.com.apk'
Success
```
我已经在我的 Anbox 中安装 YouTube 和 Firefox。查看下面的截图。
![][14]
像我们在文章的开始所说,它将以新的标签页打开任何的应用程序。在这里,我们将打开 Firefox ,并访问 [2daygeek.com][15] 网站。
![][16]
--------------------------------------------------------------------------------
via: https://www.2daygeek.com/anbox-best-android-emulator-for-linux/
作者:[Magesh Maruthamuthu][a]
选题:[lujun9972][b]
译者:[robsean](https://github.com/robsean)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://www.2daygeek.com/author/magesh/
[b]: https://github.com/lujun9972
[1]: https://www.2daygeek.com/install-configure-sdk-android-emulator-on-linux/
[2]: https://www.2daygeek.com/install-genymotion-android-emulator-on-ubuntu-debian-fedora-arch-linux/
[3]: https://www.2daygeek.com/apt-get-apt-cache-command-examples-manage-packages-debian-ubuntu-systems/
[4]: https://www.2daygeek.com/apt-command-examples-manage-packages-debian-ubuntu-systems/
[5]: https://www.2daygeek.com/category/aur-helper/
[6]: https://www.2daygeek.com/install-yay-yet-another-yogurt-aur-helper-on-arch-linux/
[7]: https://www.2daygeek.com/linux-snap-package-manager-ubuntu/
[8]: https://www.2daygeek.com/dnf-command-examples-manage-packages-fedora-system/
[9]: https://www.2daygeek.com/pacman-command-examples-manage-packages-arch-linux-system/
[10]: https://www.2daygeek.com/zypper-command-examples-manage-packages-opensuse-system/
[11]: https://www.apkmirror.com/
[12]: 
[13]: https://www.2daygeek.com/wp-content/uploads/2019/04/anbox-best-android-emulator-for-linux-1.jpg
[14]: https://www.2daygeek.com/wp-content/uploads/2019/04/anbox-best-android-emulator-for-linux-2.jpg
[15]: https://www.2daygeek.com/
[16]: https://www.2daygeek.com/wp-content/uploads/2019/04/anbox-best-android-emulator-for-linux-3.jpg

View File

@ -0,0 +1,211 @@
[#]: collector: (lujun9972)
[#]: translator: (arrowfeng)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10820-1.html)
[#]: subject: (How To Install And Configure Chrony As NTP Client?)
[#]: via: (https://www.2daygeek.com/configure-ntp-client-using-chrony-in-linux/)
[#]: author: (Magesh Maruthamuthu https://www.2daygeek.com/author/magesh/)
如何安装和配置 Chrony 作为 NTP 客户端?
======
NTP 服务器和 NTP 客户端可以让我们通过网络来同步时钟。之前,我们已经撰写了一篇关于 [NTP 服务器和 NTP 客户端的安装与配置][1] 的文章。
如果你想看这些内容,点击上述的 URL 访问。
### Chrony 客户端
Chrony 是 NTP 客户端的替代品。它能以更精确的时间和更快的速度同步时钟,并且它对于那些不是全天候在线的系统非常有用。
chronyd 更小、更节能,它占用更少的内存且仅当需要时它才唤醒 CPU。即使网络拥塞较长时间它也能很好地运行。它支持 Linux 上的硬件时间戳,允许在本地网络进行极其准确的同步。
它提供下列两个服务。
* `chronyc`Chrony 的命令行接口。
* `chronyd`Chrony 守护进程服务。
### 如何在 Linux 上安装和配置 Chrony
由于安装包在大多数发行版的官方仓库中可用,因此直接使用包管理器去安装它。
对于 Fedora 系统,使用 [DNF 命令][2] 去安装 chrony。
```
$ sudo dnf install chrony
```
对于 Debian/Ubuntu 系统,使用 [APT-GET 命令][3] 或者 [APT 命令][4] 去安装 chrony。
```
$ sudo apt install chrony
```
对基于 Arch Linux 的系统,使用 [Pacman 命令][5] 去安装 chrony。
```
$ sudo pacman -S chrony
```
对于 RHEL/CentOS 系统,使用 [YUM 命令][6] 去安装 chrony。
```
$ sudo yum install chrony
```
对于 openSUSE Leap 系统,使用 [Zypper 命令][7] 去安装 chrony。
```
$ sudo zypper install chrony
```
在这篇文章中,我们将使用下列设置去测试。
* NTP 服务器主机名CentOS7.2daygeek.comIP192.168.1.5OSCentOS 7
* Chrony 客户端主机名Ubuntu18.2daygeek.comIP192.168.1.3OSUbuntu 18.04
服务器的安装请访问 [在 Linux 上安装和配置 NTP 服务器][1] 的 URL。
我已经在 CentOS7.2daygeek.com 这台主机上安装和配置了 NTP 服务器,因此,将其附加到所有的客户端机器上。此外,还包括其他所需信息。
`chrony.conf` 文件的位置根据你的发行版不同而不同。
对基于 RHEL 的系统,它位于 `/etc/chrony.conf`
对基于 Debian 的系统,它位于 `/etc/chrony/chrony.conf`
```
# vi /etc/chrony/chrony.conf
server CentOS7.2daygeek.com prefer iburst
keyfile /etc/chrony/chrony.keys
driftfile /var/lib/chrony/chrony.drift
logdir /var/log/chrony
maxupdateskew 100.0
makestep 1 3
cmdallow 192.168.1.0/24
```
更新配置后需要重启 Chrony 服务。
对于 sysvinit 系统。基于 RHEL 的系统需要去运行 `chronyd` 而不是 `chrony`
```
# service chronyd restart
# chkconfig chronyd on
```
对于 systemctl 系统。 基于 RHEL 的系统需要去运行 `chronyd` 而不是 `chrony`
```
# systemctl restart chronyd
# systemctl enable chronyd
```
使用像 `tacking`、`sources` 和 `sourcestats` 这样的子命令去检查 chrony 的同步细节。
去检查 chrony 的追踪状态。
```
# chronyc tracking
Reference ID : C0A80105 (CentOS7.2daygeek.com)
Stratum : 3
Ref time (UTC) : Thu Mar 28 05:57:27 2019
System time : 0.000002545 seconds slow of NTP time
Last offset : +0.001194361 seconds
RMS offset : 0.001194361 seconds
Frequency : 1.650 ppm fast
Residual freq : +184.101 ppm
Skew : 2.962 ppm
Root delay : 0.107966967 seconds
Root dispersion : 1.060455322 seconds
Update interval : 2.0 seconds
Leap status : Normal
```
运行 `sources` 命令去显示当前时间源的信息。
```
# chronyc sources
210 Number of sources = 1
MS Name/IP address Stratum Poll Reach LastRx Last sample
===============================================================================
^* CentOS7.2daygeek.com 2 6 17 62 +36us[+1230us] +/- 1111ms
```
`sourcestats` 命令显示有关 chronyd 当前正在检查的每个源的漂移率和偏移估计过程的信息。
```
# chronyc sourcestats
210 Number of sources = 1
Name/IP Address NP NR Span Frequency Freq Skew Offset Std Dev
==============================================================================
CentOS7.2daygeek.com 5 3 71 -97.314 78.754 -469us 441us
```
当 chronyd 配置为 NTP 客户端或对等端时,你就能通过 `chronyc ntpdata` 命令向每一个 NTP 源发送/接收时间戳模式和交错模式的报告。
```
# chronyc ntpdata
Remote address : 192.168.1.5 (C0A80105)
Remote port : 123
Local address : 192.168.1.3 (C0A80103)
Leap status : Normal
Version : 4
Mode : Server
Stratum : 2
Poll interval : 6 (64 seconds)
Precision : -23 (0.000000119 seconds)
Root delay : 0.108994 seconds
Root dispersion : 0.076523 seconds
Reference ID : 85F3EEF4 ()
Reference time : Thu Mar 28 06:43:35 2019
Offset : +0.000160221 seconds
Peer delay : 0.000664478 seconds
Peer dispersion : 0.000000178 seconds
Response time : 0.000243252 seconds
Jitter asymmetry: +0.00
NTP tests : 111 111 1111
Interleaved : No
Authenticated : No
TX timestamping : Kernel
RX timestamping : Kernel
Total TX : 46
Total RX : 46
Total valid RX : 46
```
最后运行 `date` 命令。
```
# date
Thu Mar 28 03:08:11 CDT 2019
```
为了立即跟进系统时钟,绕过任何正在进行的缓步调整,请以 root 身份运行以下命令(以手动调整系统时钟)。
```
# chronyc makestep
```
--------------------------------------------------------------------------------
via: https://www.2daygeek.com/configure-ntp-client-using-chrony-in-linux/
作者:[Magesh Maruthamuthu][a]
选题:[lujun9972][b]
译者:[arrowfeng](https://github.com/arrowfeng)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://www.2daygeek.com/author/magesh/
[b]: https://github.com/lujun9972
[1]: https://linux.cn/article-10811-1.html
[2]: https://www.2daygeek.com/dnf-command-examples-manage-packages-fedora-system/
[3]: https://www.2daygeek.com/apt-get-apt-cache-command-examples-manage-packages-debian-ubuntu-systems/
[4]: https://www.2daygeek.com/apt-command-examples-manage-packages-debian-ubuntu-systems/
[5]: https://www.2daygeek.com/pacman-command-examples-manage-packages-arch-linux-system/
[6]: https://www.2daygeek.com/yum-command-examples-manage-packages-rhel-centos-systems/
[7]: https://www.2daygeek.com/zypper-command-examples-manage-packages-opensuse-system/

View File

@ -0,0 +1,252 @@
[#]: collector: (lujun9972)
[#]: translator: (arrowfeng)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10811-1.html)
[#]: subject: (How To Install And Configure NTP Server And NTP Client In Linux?)
[#]: via: (https://www.2daygeek.com/install-configure-ntp-server-ntp-client-in-linux/)
[#]: author: (Magesh Maruthamuthu https://www.2daygeek.com/author/magesh/)
如何在 Linux 上安装、配置 NTP 服务器和客户端?
======
你也许听说过这个词很多次或者你可能已经在使用它了。在这篇文章中我将会清晰的告诉你 NTP 服务器和客户端的安装。
之后我们将会了解 **[Chrony NTP 客户端的安装][1]**。
### 什么是 NTP 服务?
NTP 意即<ruby>网络时间协议<rt>Network Time Protocol</rt></ruby>。它是通过网络在计算机系统之间进行时钟同步的网络协议。换言之,它可以让那些通过 NTP 或者 Chrony 客户端连接到 NTP 服务器的系统保持时间上的一致(它能保持一个精确的时间)。
NTP 在公共互联网上通常能够保持时间延迟在几十毫秒以内的精度,并在理想条件下,它能在局域网下达到低于一毫秒的延迟精度。
它使用用户数据报协议UDP在端口 123 上发送和接受时间戳。它是个 C/S 架构的应用程序。
### NTP 客户端
NTP 客户端将其时钟与网络时间服务器同步。
### Chrony 客户端
Chrony 是 NTP 客户端的替代品。它能以更精确的时间更快的同步系统时钟,并且它对于那些不总是在线的系统很有用。
### 为什么我们需要 NTP 服务?
为了使你组织中的所有服务器与基于时间的作业保持精确的时间同步。
为了说明这点,我将告诉你一个场景。比如说,我们有两个服务器(服务器 1 和服务器 2。服务器 1 通常在 10:55 完成离线作业,然后服务器 2 在 11:00 需要基于服务器 1 完成的作业报告去运行其他作业。
如果两个服务器正在使用不同的时间(如果服务器 2 时间比服务器 1 提前,服务器 1 的时间就落后于服务器 2然后我们就不能去执行这个作业。为了达到时间一致我们应该安装 NTP。
希望上述能清除你对于 NTP 的疑惑。
在这篇文章中,我们将使用下列设置去测试。
* **NTP 服务器:** 主机名CentOS7.2daygeek.comIP192.168.1.8OSCentOS 7
* **NTP 客户端:** 主机名Ubuntu18.2daygeek.comIP192.168.1.5OSUbuntu 18.04
### NTP 服务器端:如何在 Linux 上安装 NTP
因为它是 C/S 架构,所以 NTP 服务器端和客户端的安装包没有什么不同。在发行版的官方仓库中都有 NTP 安装包,因此可以使用发行版的包管理器安装它。
对于 Fedora 系统,使用 [DNF 命令][2] 去安装 ntp。
```
$ sudo dnf install ntp
```
对于 Debian/Ubuntu 系统,使用 [APT-GET 命令][3] 或者 [APT 命令][4] 去安装 ntp。
```
$ sudo apt install ntp
```
对基于 Arch Linux 的系统,使用 [Pacman 命令][5] 去安装 ntp。
```
$ sudo pacman -S ntp
```
对 RHEL/CentOS 系统,使用 [YUM 命令][6] 去安装 ntp。
```
$ sudo yum install ntp
```
对于 openSUSE Leap 系统,使用 [Zypper 命令][7] 去安装 ntp。
```
$ sudo zypper install ntp
```
### 如何在 Linux 上配置 NTP 服务器?
安装 NTP 软件包后,请确保在服务器端的 `/etc/ntp.conf` 文件中取消以下配置的注释。
默认情况下NTP 服务器配置依赖于 `X.distribution_name.pool.ntp.org`。 如果有必要,可以使用默认配置,也可以访问<https://www.ntppool.org/zone/@>站点,根据你所在的位置(特定国家/地区)进行更改。
比如说如果你在印度,然后你的 NTP 服务器将是 `0.in.pool.ntp.org`,并且这个地址适用于大多数国家。
```
# vi /etc/ntp.conf
restrict default kod nomodify notrap nopeer noquery
restrict -6 default kod nomodify notrap nopeer noquery
restrict 127.0.0.1
restrict -6 ::1
server 0.asia.pool.ntp.org
server 1.asia.pool.ntp.org
server 2.asia.pool.ntp.org
server 3.asia.pool.ntp.org
restrict 192.168.1.0 mask 255.255.255.0 nomodify notrap
driftfile /var/lib/ntp/drift
keys /etc/ntp/keys
```
我们仅允许 `192.168.1.0/24` 子网的客户端访问这个 NTP 服务器。
由于默认情况下基于 RHEL7 的发行版的防火墙是打开的,因此要允许 ntp 服务通过。
```
# firewall-cmd --add-service=ntp --permanent
# firewall-cmd --reload
```
更新配置后要重启服务:
对于 sysvinit 系统。基于 Debian 的系统需要去运行 `ntp` 而不是 `ntpd`
```
# service ntpd restart
# chkconfig ntpd on
```
对于 systemctl 系统。基于 Debian 的需要去运行 `ntp``ntpd`
```
# systemctl restart ntpd
# systemctl enable ntpd
```
### NTP 客户端:如何在 Linux 上安装 NTP 客户端?
正如我在这篇文章中前面所说的。NTP 服务器端和客户端的安装包没有什么不同。因此在客户端上也安装同样的软件包。
对于 Fedora 系统,使用 [DNF 命令][2] 去安装 ntp。
```
$ sudo dnf install ntp
```
对于 Debian/Ubuntu 系统,使用 [APT-GET 命令][3] 或者 [APT 命令][4] 去安装 ntp。
```
$ sudo apt install ntp
```
对基于 Arch Linux 的系统,使用 [Pacman 命令][5] 去安装 ntp。
```
$ sudo pacman -S ntp
```
对 RHEL/CentOS 系统,使用 [YUM 命令][6] 去安装 ntp。
```
$ sudo yum install ntp
```
对于 openSUSE Leap 系统,使用 [Zypper 命令][7] 去安装 ntp。
```
$ sudo zypper install ntp
```
我已经在 CentOS7.2daygeek.com` 这台主机上安装和配置了 NTP 服务器,因此将其附加到所有的客户端机器上。
```
# vi /etc/ntp.conf
```
```
restrict default kod nomodify notrap nopeer noquery
restrict -6 default kod nomodify notrap nopeer noquery
restrict 127.0.0.1
restrict -6 ::1
server CentOS7.2daygeek.com prefer iburst
driftfile /var/lib/ntp/drift
keys /etc/ntp/keys
```
更新配置后重启服务:
对于 sysvinit 系统。基于 Debian 的系统需要去运行 `ntp` 而不是 `ntpd`
```
# service ntpd restart
# chkconfig ntpd on
```
对于 systemctl 系统。基于 Debian 的需要去运行 `ntp``ntpd`
```
# systemctl restart ntpd
# systemctl enable ntpd
```
重新启动 NTP 服务后等待几分钟以便从 NTP 服务器获取同步的时间。
在 Linux 上运行下列命令去验证 NTP 服务的同步状态。
```
# ntpq p
# ntpq -pn
remote refid st t when poll reach delay offset jitter
==============================================================================
*CentOS7.2daygee 133.243.238.163 2 u 14 64 37 0.686 0.151 16.432
```
运行下列命令去得到 ntpd 的当前状态。
```
# ntpstat
synchronised to NTP server (192.168.1.8) at stratum 3
time correct to within 508 ms
polling server every 64 s
```
最后运行 `date` 命令。
```
# date
Tue Mar 26 23:17:05 CDT 2019
```
如果你观察到 NTP 中输出的时间偏移很大。运行下列命令从 NTP 服务器手动同步时钟。当你执行下列命令的时候,确保你的 NTP 客户端应该为未活动状态。LCTT 译注:当时间偏差很大时,客户端的自动校正需要花费很长时间才能逐步追上,因此应该手动运行以更新)
```
# ntpdate uv CentOS7.2daygeek.com
```
--------------------------------------------------------------------------------
via: https://www.2daygeek.com/install-configure-ntp-server-ntp-client-in-linux/
作者:[Magesh Maruthamuthu][a]
选题:[lujun9972][b]
译者:[arrowfeng](https://github.com/arrowfeng)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://www.2daygeek.com/author/magesh/
[b]: https://github.com/lujun9972
[1]: https://www.2daygeek.com/configure-ntp-client-using-chrony-in-linux/
[2]: https://www.2daygeek.com/dnf-command-examples-manage-packages-fedora-system/
[3]: https://www.2daygeek.com/apt-get-apt-cache-command-examples-manage-packages-debian-ubuntu-systems/
[4]: https://www.2daygeek.com/apt-command-examples-manage-packages-debian-ubuntu-systems/
[5]: https://www.2daygeek.com/pacman-command-examples-manage-packages-arch-linux-system/
[6]: https://www.2daygeek.com/yum-command-examples-manage-packages-rhel-centos-systems/
[7]: https://www.2daygeek.com/zypper-command-examples-manage-packages-opensuse-system/

View File

@ -0,0 +1,135 @@
[#]: collector: (lujun9972)
[#]: translator: (geekpi)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10921-1.html)
[#]: subject: (Be your own certificate authority)
[#]: via: (https://opensource.com/article/19/4/certificate-authority)
[#]: author: (Moshe Zadka https://opensource.com/users/moshez/users/elenajon123)
自己成为一个证书颁发机构CA
======
> 为你的微服务架构或者集成测试创建一个简单的内部 CA。
![](https://img.linux.net.cn/data/attachment/album/201905/31/091023sg9s0ss11rsoseqg.jpg)
传输层安全([TLS][2])模型(有时也称它的旧名称 SSL基于<ruby>[证书颁发机构][3]<rt>certificate authoritie</rt></ruby>CA的概念。这些机构受到浏览器和操作系统的信任从而*签名*服务器的的证书以用于验证其所有权。
但是,对于内部网络,微服务架构或集成测试,有时候*本地 CA*更有用:一个只在内部受信任的 CA然后签名本地服务器的证书。
这对集成测试特别有意义。获取证书可能会带来负担,因为这会占用服务器几分钟。但是在代码中使用“忽略证书”可能会被引入到生产环境,从而导致安全灾难。
CA 证书与常规服务器证书没有太大区别。重要的是它被本地代码信任。例如,在 Python `requests` 库中,可以通过将 `REQUESTS_CA_BUNDLE` 变量设置为包含此证书的目录来完成。
在为集成测试创建证书的例子中,不需要*长期的*证书:如果你的集成测试需要超过一天,那么你应该已经测试失败了。
因此,计算**昨天**和**明天**作为有效期间隔:
```
>>> import datetime
>>> one_day = datetime.timedelta(days=1)
>>> today = datetime.date.today()
>>> yesterday = today - one_day
>>> tomorrow = today - one_day
```
现在你已准备好创建一个简单的 CA 证书。你需要生成私钥,创建公钥,设置 CA 的“参数”然后自签名证书CA 证书*总是*自签名的。最后,导出证书文件以及私钥文件。
```
from cryptography.hazmat.primitives.asymmetric import rsa
from cryptography.hazmat.primitives import hashes, serialization
from cryptography import x509
from cryptography.x509.oid import NameOID
private_key = rsa.generate_private_key(
public_exponent=65537,
key_size=2048,
backend=default_backend()
)
public_key = private_key.public_key()
builder = x509.CertificateBuilder()
builder = builder.subject_name(x509.Name([
x509.NameAttribute(NameOID.COMMON_NAME, 'Simple Test CA'),
]))
builder = builder.issuer_name(x509.Name([
x509.NameAttribute(NameOID.COMMON_NAME, 'Simple Test CA'),
]))
builder = builder.not_valid_before(yesterday)
builder = builder.not_valid_after(tomorrow)
builder = builder.serial_number(x509.random_serial_number())
builder = builder.public_key(public_key)
builder = builder.add_extension(
x509.BasicConstraints(ca=True, path_length=None),
critical=True)
certificate = builder.sign(
private_key=private_key, algorithm=hashes.SHA256(),
backend=default_backend()
)
private_bytes = private_key.private_bytes(
encoding=serialization.Encoding.PEM,
format=serialization.PrivateFormat.TraditionalOpenSSL,
encryption_algorithm=serialization.NoEncrption())
public_bytes = certificate.public_bytes(
encoding=serialization.Encoding.PEM)
with open("ca.pem", "wb") as fout:
fout.write(private_bytes + public_bytes)
with open("ca.crt", "wb") as fout:
fout.write(public_bytes)
```
通常,真正的 CA 会需要[证书签名请求][4]CSR来签名证书。但是当你是自己的 CA 时,你可以制定自己的规则!可以径直签名你想要的内容。
继续集成测试的例子,你可以创建私钥并立即签名相应的公钥。注意 `COMMON_NAME` 需要是 `https` URL 中的“服务器名称”。如果你已配置名称查询,你需要服务器能响应对 `service.test.local` 的请求。
```
service_private_key = rsa.generate_private_key(
public_exponent=65537,
key_size=2048,
backend=default_backend()
)
service_public_key = service_private_key.public_key()
builder = x509.CertificateBuilder()
builder = builder.subject_name(x509.Name([
x509.NameAttribute(NameOID.COMMON_NAME, 'service.test.local')
]))
builder = builder.not_valid_before(yesterday)
builder = builder.not_valid_after(tomorrow)
builder = builder.public_key(public_key)
certificate = builder.sign(
private_key=private_key, algorithm=hashes.SHA256(),
backend=default_backend()
)
private_bytes = service_private_key.private_bytes(
encoding=serialization.Encoding.PEM,
format=serialization.PrivateFormat.TraditionalOpenSSL,
encryption_algorithm=serialization.NoEncrption())
public_bytes = certificate.public_bytes(
encoding=serialization.Encoding.PEM)
with open("service.pem", "wb") as fout:
fout.write(private_bytes + public_bytes)
```
现在 `service.pem` 文件有一个私钥和一个“有效”的证书:它已由本地的 CA 签名。该文件的格式可以给 Nginx、HAProxy 或大多数其他 HTTPS 服务器使用。
通过将此逻辑用在测试脚本中,只要客户端配置信任该 CA那么就可以轻松创建看起来真实的 HTTPS 服务器。
--------------------------------------------------------------------------------
via: https://opensource.com/article/19/4/certificate-authority
作者:[Moshe Zadka][a]
选题:[lujun9972][b]
译者:[geekpi](https://github.com/geekpi)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://opensource.com/users/moshez/users/elenajon123
[b]: https://github.com/lujun9972
[1]: https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/rh_commun_4604_02_mech_connections_rhcz0.5x.png?itok=YPPU4dMj
[2]: https://en.wikipedia.org/wiki/Transport_Layer_Security
[3]: https://en.wikipedia.org/wiki/Certificate_authority
[4]: https://en.wikipedia.org/wiki/Certificate_signing_request

View File

@ -0,0 +1,133 @@
[#]: collector: (lujun9972)
[#]: translator: (warmfrog)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10817-1.html)
[#]: subject: (Installing Ubuntu MATE on a Raspberry Pi)
[#]: via: (https://itsfoss.com/ubuntu-mate-raspberry-pi/)
[#]: author: (Chinmay https://itsfoss.com/author/chinmay/)
在树莓派上安装 Ubuntu MATE
=================================
> 简介: 这篇快速指南告诉你如何在树莓派设备上安装 Ubuntu MATE。
[树莓派][1] 是目前最流行的单板机并且是创客首选的板子。[Raspbian][2] 是基于 Debian 的树莓派官方操作系统。它是轻量级的,内置了教育工具和能在大部分场景下完成工作的工具。
[安装 Raspbian][3] 安装同样简单,但是与 [Debian][4] 随同带来的问题是慢的升级周期和旧的软件包。
在树莓派上运行 Ubuntu 可以给你带来一个更丰富的体验和最新的软件。当在你的树莓派上运行 Ubuntu 时我们有几个选择。
1. [Ubuntu MATE][5] Ubuntu MATE 是仅有的原生支持树莓派且包含一个完整的桌面环境的发行版。
2. [Ubuntu Server 18.04][6] + 手动安装一个桌面环境。
3. 使用 [Ubuntu Pi Flavor Maker][7] 社区构建的镜像,这些镜像只支持树莓派 2B 和 3B 的变种,并且**不能**更新到最新的 LTS 发布版。
第一个选择安装是最简单和快速的,而第二个选择给了你自由选择安装桌面环境的机会。我推荐选择前两个中的任一个。
这里是一些磁盘镜像下载链接。在这篇文章里我只会提及 Ubuntu MATE 的安装。
### 在树莓派上安装 Ubuntu MATE
去 Ubuntu MATE 的下载页面获取推荐的镜像。
![][8]
试验性的 ARM64 版本只应在你需要在树莓派服务器上运行像 MongoDB 这样的 64 位应用时使用。
- [下载为树莓派准备的 Ubuntu MATE][9]
#### 第 1 步:设置 SD 卡
镜像文件一旦下载完成后需要解压。你可以简单的右击来提取它。
也可以使用下面命令做同样的事。
```
xz -d ubuntu-mate***.img.xz
```
如果你在 Windows 上你可以使用 [7-zip][10] 替代。
安装 [Balena Etcher][11],我们将使用这个工具将镜像写入 SD 卡。确保你的 SD 卡有至少 8 GB 的容量。
启动 Etcher选择镜像文件和 SD 卡。
![][12]
一旦进度完成 SD 卡就准备好了。
#### 第 2 步:设置树莓派
你可能已经知道你需要一些外设才能使用树莓派例如鼠标、键盘、HDMI 线等等。你同样可以[不用键盘和鼠标安装树莓派][13],但是这篇指南不是那样。
* 插入一个鼠标和一个键盘。
* 连接 HDMI 线缆。
* 插入 SD 卡 到 SD 卡槽。
插入电源线给它供电。确保你有一个好的电源供应5V、3A 至少)。一个不好的电源供应可能降低性能。
#### Ubuntu MATE 安装
一旦你给树莓派供电,你将遇到非常熟悉的 Ubuntu 安装过程。在这里的安装过程相当直接。
![选择你的键盘布局][14]
![选择你的时区][15]
选择你的 WiFi 网络并且在网络连接中输入密码。
![添加用户名和密码][16]
在设置了键盘布局、时区和用户凭证后,在几分钟后你将被带到登录界面。瞧!你快要完成了。
![][17]
一旦登录,第一件事你应该做的是[更新 Ubuntu][18]。你应该使用下列命令。
```
sudo apt update
sudo apt upgrade
```
你同样可以使用软件更新器。
![][19]
一旦更新完成安装你就可以开始了。你可以根据你的需要继续安装树莓派平台为 GPIO 和其他 I/O 准备的特定软件包。
是什么让你考虑在 Raspberry 上安装 Ubuntu你对 Raspbian 的体验如何呢?请在下方评论来让我知道。
--------------------------------------------------------------------------------
via: https://itsfoss.com/ubuntu-mate-raspberry-pi/
作者:[Chinmay][a]
选题:[lujun9972][b]
译者:[warmfrog](https://github.com/warmfrog)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://itsfoss.com/author/chinmay/
[b]: https://github.com/lujun9972
[1]: https://www.raspberrypi.org/
[2]: https://www.raspberrypi.org/downloads/
[3]: https://itsfoss.com/tutorial-how-to-install-raspberry-pi-os-raspbian-wheezy/
[4]: https://www.debian.org/
[5]: https://ubuntu-mate.org/
[6]: https://wiki.ubuntu.com/ARM/RaspberryPi#Recovering_a_system_using_the_generic_kernel
[7]: https://ubuntu-pi-flavour-maker.org/download/
[8]: https://i0.wp.com/itsfoss.com/wp-content/uploads/2019/04/ubuntu-mate-raspberry-pi-download.jpg?ssl=1
[9]: https://ubuntu-mate.org/download/
[10]: https://www.7-zip.org/download.html
[11]: https://www.balena.io/etcher/
[12]: https://i0.wp.com/itsfoss.com/wp-content/uploads/2019/04/Screenshot-from-2019-04-08-01-36-16.png?ssl=1
[13]: https://linuxhandbook.com/raspberry-pi-headless-setup/
[14]: https://i2.wp.com/itsfoss.com/wp-content/uploads/2019/04/Keyboard-layout-ubuntu.jpg?fit=800%2C467&ssl=1
[15]: https://i2.wp.com/itsfoss.com/wp-content/uploads/2019/04/select-time-zone-ubuntu.jpg?fit=800%2C468&ssl=1
[16]: https://i2.wp.com/itsfoss.com/wp-content/uploads/2019/04/Credentials-ubuntu.jpg?fit=800%2C469&ssl=1
[17]: https://i2.wp.com/itsfoss.com/wp-content/uploads/2019/04/Desktop-ubuntu.jpg?fit=800%2C600&ssl=1
[18]: https://itsfoss.com/update-ubuntu/
[19]: https://i1.wp.com/itsfoss.com/wp-content/uploads/2019/04/update-software.png?ssl=1

View File

@ -0,0 +1,317 @@
[#]: collector: (lujun9972)
[#]: translator: (warmfrog)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10823-1.html)
[#]: subject: (12 Single Board Computers: Alternative to Raspberry Pi)
[#]: via: (https://itsfoss.com/raspberry-pi-alternatives/)
[#]: author: (Ankush Das https://itsfoss.com/author/ankush/)
12 个可替代树莓派的单板机
================================
> 正在寻找树莓派的替代品?这里有一些单板机可以满足你的 DIY 渴求。
树莓派是当前最流行的单板机。你可以在你的 DIY 项目中使用它,或者用它作为一个成本效益高的系统来学习编代码,或者为了你的便利,利用一个[流媒体软件][1]运行在上面作为流媒体设备。
你可以使用树莓派做很多事,但它不是各种极客的最终解决方案。一些人可能在寻找更便宜的开发板,一些可能在寻找更强大的。
无论是哪种情况,我们都有很多原因需要树莓派的替代品。因此,在这片文章里,我们将讨论最好的 12 个我们认为能够替代树莓派的单板机。
![][2]
### 满足你 DIY 渴望的树莓派替代品
这个列表没有特定的顺序排名。链接的一部分是赞助链接。请阅读我们的[赞助政策][3]。
#### 1、Onion Omega2+
![][4]
只要 $13Omega2+ 是这里你可以找到的最便宜的 IoT 单板机设备。它运行 LEDELinux 嵌入式开发环境Linux 系统 —— 这是一个基于 [OpenWRT][5] 的发行版。
由于运行一个自定义 Linux 系统,它的组成元件、花费和灵活性使它完美适合几乎所有类型的 IoT 应用。
你可以在[亚马逊商城的 Onion Omega 套件][6]或者从他们的网站下单,可能会收取额外的邮费。
**关键参数:**
* MT7688 SoC
* 2.4 GHz IEEE 802.11 b/g/n WiFi
* 128 MB DDR2 RAM
* 32 MB on-board flash storage
* MicroSD Slot
* USB 2.0
* 12 GPIO Pins
[查看官网][7]
#### 2、NVIDIA Jetson Nano Developer Kit
这是来自 NVIDIA 的只要 **$99** 的非常独特和有趣的树莓派替代品。是的,它不是每个人都能充分利用的设备 —— 只为特定的一组极客或者开发者而生。
NVIDIA 使用下面的用例解释它:
> NVIDIA® Jetson Nano™ Developer Kit 是一个小的、强大的计算机,可以让你并行运行多个神经网络的应用像图像分类、对象侦察、图像分段、语音处理。全部在一个易于使用的、运行功率只有 5 瓦特的平台上。
>
> nvidia
因此,基本上,如果你正在研究 AI 或者深度学习,你可以充分利用开发设备。如果你很好奇,该设备的产品计算模块将在 2019 年 7 月到来。
**关键参数:**
* CPU: Quad-core ARM A57 @ 1.43 GHz
* GPU: 128-core Maxwell
* RAM: 4 GB 64-bit LPDDR4 25.6 GB/s
* Display: HDMI 2.0
* 4 x USB 3.0 and eDP 1.4
[查看官网][9]
#### 3、ASUS Tinker Board S
![][10]
ASUS Tinker Board S 不是大多数人可负担得起的树莓派的替换设备 **$82**[亚马逊商城][11]),但是它是一个强大的替代品。它的特点是它有你通常可以发现与标准树莓派 3 一样的 40 针脚的连接器,但是提供了强大的处理器和 GPU。同样的Tinker Board S 的大小恰巧和标准的树莓派3 一样大。
这个板子的主要亮点是 16 GB [eMMC][12] (用外行术语说,它的板上有一个类似 SSD 的存储单元使它工作时运行的更快。) 的存在。
**关键参数:**
* Rockchip Quad-Core RK3288 processor
* 2 GB DDR3 RAM
* Integrated Graphics Processor
* ARM® Mali™-T764 GPU
* 16 GB eMMC
* MicroSD Card Slot
* 802.11 b/g/n, Bluetooth V4.0 + EDR
* USB 2.0
* 28 GPIO pins
* HDMI Interface
[查看网站][13]
#### 4、ClockworkPi
![][14]
如果你正在想方设法组装一个模块化的复古的游戏控制台Clockwork Pi 可能就是你需要的,它通常是 [GameShell Kit][15] 的一部分。然而,你可以 使用 $49 单独购买板子。
它紧凑的大小、WiFi 连接性和 micro HDMI 端口的存在使它成为许多方面的选择。
**关键参数:**
* Allwinner R16-J Quad-core Cortex-A7 CPU @1.2GHz
* Mali-400 MP2 GPU
* RAM: 1GB DDR3
* WiFi & Bluetooth v4.0
* Micro HDMI output
* MicroSD Card Slot
[查看官网][16]
#### 5、Arduino Mega 2560
![][17]
如果你正在研究机器人项目或者你想要一个 3D 打印机 —— Arduino Mega 2560 将是树莓派的便利的替代品。不像树莓派,它是基于微控制器而不是微处理器的。
在他们的[官网][18],你需要花费 $38.50,或者在[在亚马逊商城是 $33][19]。
**关键参数:**
* Microcontroller: ATmega2560
* Clock Speed: 16 MHz
* Digital I/O Pins: 54
* Analog Input Pins: 16
* Flash Memory: 256 KB of which 8 KB used by bootloader
[查看官网][18]
#### 6、Rock64 Media Board
![][20]
用与你可能想要的树莓派 3 B+ 相同的价格,你将在 Rock64 Media Board 上获得更快的处理器和双倍的内存。除此之外,如果你想要 1 GB RAM 版的,它提供了一个比树莓派更便宜的替代品,花费更少,只要 $10 。
不像树莓派,它没有无线连接支持,但是 USB 3.0 和 HDMI 2.0 的存在使它与众不同,如果它对你很重要的话。
**关键参数:**
* Rockchip RK3328 Quad-Core ARM Cortex A53 64-Bit Processor
* Supports up to 4GB 1600MHz LPDDR3 RAM
* eMMC module socket
* MicroSD Card slot
* USB 3.0
* HDMI 2.0
[查看官网][21]
#### 7、Odroid-XU4
![][22]
Odroid-XU4 是一个完美的树莓派的替代品,如果你有能够稍微提高预算的空间($80-$100 甚至更低,取决于存储的容量)。
它确实是一个强大的替代品并且体积更小。支持 eMMC 和 USB 3.0 使它工作起来更快。
**关键参数:**
* Samsung Exynos 5422 Octa ARM Cortex™-A15 Quad 2Ghz and Cortex™-A7 Quad 1.3GHz CPUs
* 2Gbyte LPDDR3 RAM
* GPU: Mali-T628 MP6
* USB 3.0
* HDMI 1.4a
* eMMC 5.0 module socket
* MicroSD Card Slot
[查看官网][23]
#### 8、PocketBeagle
![][24]
它是一个难以置信的小的单板机 —— 几乎和树莓派Zero 相似。然而它的价格相当于完整大小的树莓派 3。主要的亮点是你可以用它作为一个 USB 便携式信息终端,并且进入 Linux 命令行工作。
**关键参数:**
* Processor: Octavo Systems OSD3358 1GHz ARM® Cortex-A8
* RAM: 512 MB DDR3
* 72 expansion pin headers
* microUSB
* USB 2.0
[查看官网][25]
#### 9、Le Potato
![][26]
由 [Libre Computer][27] 出品的 Le Potato其型号是 AML-S905X-CC。它需要花费你 [$45][28]。
如果你花费的比树莓派更多的钱,你就能得到双倍内存和 HDMI 2.0 接口,这可能是一个完美的选择。尽管,你还是不能找到嵌入的无线连接。
**关键参数:**
* Amlogic S905X SoC
* 2GB DDR3 SDRAM
* USB 2.0
* HDMI 2.0
* microUSB
* MicroSD Card Slot
* eMMC Interface
[查看官网][29]
#### 10、Banana Pi M64
![][30]
它自带了 8G 的 eMMC —— 这是替代树莓派的主要亮点。因此,它需要花费 $60。
HDMI 接口的存在使它胜任 4K。除此之外Banana Pi 提供了更多种类的开源单板机作为树莓派的替代。
**关键参数:**
* 1.2 Ghz Quad-Core ARM Cortex A53 64-Bit Processor-R18
* 2GB DDR3 SDRAM
* 8 GB eMMC
* WiFi & Bluetooth
* USB 2.0
* HDMI
[查看官网][31]
#### 11、Orange Pi Zero
![][32]
Orange Pi Zero 相对于树莓派来说难以置信的便宜。你可以在 Aliexpress 或者亚马逊上以最多 $10 就能够获得。如果[稍微多花点,你能够获得 512 MB RAM][33]。
如果这还不够,你可以花费大概 $25 获得更好的配置,比如 Orange Pi 3。
**关键参数:**
* H2 Quad-core Cortex-A7
* Mali400MP2 GPU
* RAM: Up to 512 MB
* TF Card support
* WiFi
* USB 2.0
[查看官网][34]
#### 12、VIM 2 SBC by Khadas
![][35]
由 Khadas 出品的 VIM 2 是最新的单板机,因此你能够在板上得到蓝牙 5.0 支持。它的价格范围[从 $99 的基础款到上限 $140][36]。
基础款包含 2 GB RAM、16 GB eMMC 和蓝牙 4.1。然而Pro/Max 版包含蓝牙 5.0,更多的内存,更多的 eMMC 存储。
**关键参数:**
* Amlogic S912 1.5GHz 64-bit Octa-Core CPU
* T820MP3 GPU
* Up to 3 GB DDR4 RAM
* Up to 64 GB eMMC
* Bluetooth 5.0 (Pro/Max)
* Bluetooth 4.1 (Basic)
* HDMI 2.0a
* WiFi
### 总结
我们知道有很多不同种类的单板机电脑。一些比树莓派更好 —— 它的一些小规格的版本有更便宜的价格。同样的,像 Jetson Nano 这样的单板机已经被裁剪用于特定用途。因此,取决于你需要什么 —— 你应该检查一下单板机的配置。
如果你知道比上述提到的更好的东西,请随意在下方评论来让我们知道。
--------------------------------------------------------------------------------
via: https://itsfoss.com/raspberry-pi-alternatives/
作者:[Ankush Das][a]
选题:[lujun9972][b]
译者:[warmfrog](https://github.com/warmfrog)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://itsfoss.com/author/ankush/
[b]: https://github.com/lujun9972
[1]: https://itsfoss.com/best-linux-media-server/
[2]: https://i2.wp.com/itsfoss.com/wp-content/uploads/2019/04/raspberry-pi-alternatives.png?resize=800%2C450&ssl=1
[3]: https://itsfoss.com/affiliate-policy/
[4]: https://i2.wp.com/itsfoss.com/wp-content/uploads/2019/04/omega-2-plus-e1555306748755-800x444.jpg?resize=800%2C444&ssl=1
[5]: https://openwrt.org/
[6]: https://amzn.to/2Xj8pkn
[7]: https://onion.io/store/omega2p/
[8]: https://i2.wp.com/itsfoss.com/wp-content/uploads/2019/04/Jetson-Nano-e1555306350976-800x590.jpg?resize=800%2C590&ssl=1
[9]: https://developer.nvidia.com/embedded/buy/jetson-nano-devkit
[10]: https://i0.wp.com/itsfoss.com/wp-content/uploads/2019/04/asus-tinker-board-s-e1555304945760-800x450.jpg?resize=800%2C450&ssl=1
[11]: https://amzn.to/2XfkOFT
[12]: https://en.wikipedia.org/wiki/MultiMediaCard
[13]: https://www.asus.com/in/Single-Board-Computer/Tinker-Board-S/
[14]: https://i2.wp.com/itsfoss.com/wp-content/uploads/2019/04/clockwork-pi-e1555305016242-800x506.jpg?resize=800%2C506&ssl=1
[15]: https://itsfoss.com/gameshell-console/
[16]: https://www.clockworkpi.com/product-page/cpi-v3-1
[17]: https://i2.wp.com/itsfoss.com/wp-content/uploads/2019/04/arduino-mega-2560-e1555305257633.jpg?ssl=1
[18]: https://store.arduino.cc/usa/mega-2560-r3
[19]: https://amzn.to/2KCi041
[20]: https://i0.wp.com/itsfoss.com/wp-content/uploads/2019/04/ROCK64_board-e1555306092845-800x440.jpg?resize=800%2C440&ssl=1
[21]: https://www.pine64.org/?product=rock64-media-board-computer
[22]: https://i1.wp.com/itsfoss.com/wp-content/uploads/2019/04/odroid-xu4.jpg?fit=800%2C354&ssl=1
[23]: https://www.hardkernel.com/shop/odroid-xu4-special-price/
[24]: https://i0.wp.com/itsfoss.com/wp-content/uploads/2019/04/PocketBeagle.jpg?fit=800%2C450&ssl=1
[25]: https://beagleboard.org/p/products/pocketbeagle
[26]: https://i1.wp.com/itsfoss.com/wp-content/uploads/2019/04/aml-libre.-e1555306237972-800x514.jpg?resize=800%2C514&ssl=1
[27]: https://libre.computer/
[28]: https://amzn.to/2DpG3xl
[29]: https://libre.computer/products/boards/aml-s905x-cc/
[30]: https://i2.wp.com/itsfoss.com/wp-content/uploads/2019/04/banana-pi-m6.jpg?fit=800%2C389&ssl=1
[31]: http://www.banana-pi.org/m64.html
[32]: https://i2.wp.com/itsfoss.com/wp-content/uploads/2019/04/orange-pi-zero.jpg?fit=800%2C693&ssl=1
[33]: https://amzn.to/2IlI81g
[34]: http://www.orangepi.org/orangepizero/index.html
[35]: https://i0.wp.com/itsfoss.com/wp-content/uploads/2019/04/khadas-vim-2-e1555306505640-800x563.jpg?resize=800%2C563&ssl=1
[36]: https://amzn.to/2UDvrFE

View File

@ -1,38 +1,30 @@
[#]: collector: (lujun9972)
[#]: translator: ( )
[#]: reviewer: ( )
[#]: publisher: ( )
[#]: url: ( )
[#]: translator: (bodhix)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10844-1.html)
[#]: subject: (How To Enable (UP) And Disable (DOWN) A Network Interface Port (NIC) In Linux?)
[#]: via: (https://www.2daygeek.com/enable-disable-up-down-nic-network-interface-port-linux-using-ifconfig-ifdown-ifup-ip-nmcli-nmtui/)
[#]: author: (Magesh Maruthamuthu https://www.2daygeek.com/author/magesh/)
How To Enable (UP) And Disable (DOWN) A Network Interface Port (NIC) In Linux?
Linux 中如何启用和禁用网卡?
======
You may need to run these commands based on your requirements.
你可能会根据你的需要执行以下命令。我会在这里列举一些你会用到这些命令的例子。
I can tell you few examples, where you would be needed this.
当你添加一个网卡或者从一个物理网卡创建出一个虚拟网卡的时候,你可能需要使用这些命令将新网卡启用起来。另外,如果你对网卡做了某些修改或者网卡本身没有启用,那么你也需要使用以下的某个命令将网卡启用起来。
When you add a new network interface or when you create a new virtual network interface from the original physical interface.
启用、禁用网卡有很多种方法。在这篇文章里,我们会介绍我们使用过的最好的 5 种方法。
you may need to bounce these commands to bring up the new interface.
启用禁用网卡可以使用以下 5 个方法来完成:
Also, if you made any changes or if its down then you need to run one of the below commands to bring them up.
* `ifconfig` 命令:用于配置网卡。它可以提供网卡的很多信息。
* `ifdown/up` 命令:`ifdown` 命令用于禁用网卡,`ifup` 命令用于启用网卡。
* `ip` 命令:用于管理网卡,用于替代老旧的、不推荐使用的 `ifconfig` 命令。它和 `ifconfig` 命令很相似,但是提供了很多 `ifconfig` 命令所不具有的强大的特性。
* `nmcli` 命令:是一个控制 NetworkManager 并报告网络状态的命令行工具。
* `nmtui` 命令:是一个与 NetworkManager 交互的、基于 curses 图形库的终端 UI 应用。
It can be done on many ways and we would like to add best five method which we used in the article.
It can be done using the below five methods.
* **`ifconfig Command:`** The ifconfig command is used configure a network interface. It provides so many information about NIC.
* **`ifdown/up Command:`** The ifdown command take a network interface down and the ifup command bring a network interface up.
* **`ip Command:`** ip command is used to manage NIC. Its replacement of old and deprecated ifconfig command. Its similar to ifconfig command but has many powerful features which isnt available in ifconfig command.
* **`nmcli Command:`** nmcli is a command-line tool for controlling NetworkManager and reporting network status.
* **`nmtui Command:`** nmtui is a cursesbased TUI application for interacting with NetworkManager.
The below output shows the available network interface card (NIC) information in my Linux system.
以下显示的是我的 Linux 系统中可用网卡的信息。
```
# ip a
@ -56,25 +48,25 @@ The below output shows the available network interface card (NIC) information in
valid_lft forever preferred_lft forever
```
### 1) How To Bring UP And Bring Down A Network Interface In Linux Using ifconfig Command?
### 1、如何使用 ifconfig 命令启用禁用网卡?
The ifconfig command is used configure a network interface.
`ifconfig` 命令用于配置网卡。
It is used at boot time to set up interfaces as necessary. It provides so many information about NIC. We can use ifconfig command when we need to make any changes on NIC.
在系统启动过程中如果需要启用网卡,调用的命令就是 `ifconfig`。`ifconfig` 可以提供很多网卡的信息。不管我们想修改网卡的什么配置,都可以使用该命令。
Common Syntax for ifconfig:
`ifconfig` 的常用语法:
```
# ifconfig [NIC_NAME] Down/Up
```
Run the following command to bring down the `enp0s3` interface in Linux. Make a note, you have to input your interface name instead of us.
执行以下命令禁用 `enp0s3` 网卡。注意,这里你需要输入你自己的网卡名字。
```
# ifconfig enp0s3 down
```
Yes, the given interface is down now as per the following output.
从以下输出结果可以看到网卡已经被禁用了。
```
# ip a | grep -A 1 "enp0s3:"
@ -82,13 +74,13 @@ Yes, the given interface is down now as per the following output.
link/ether 08:00:27:c2:e4:e8 brd ff:ff:ff:ff:ff:ff
```
Run the following command to bring down the `enp0s3` interface in Linux.
执行以下命令启用 `enp0s3` 网卡。
```
# ifconfig enp0s3 up
```
Yes, the given interface is up now as per the following output.
从以下输出结果可以看到网卡已经启用了。
```
# ip a | grep -A 5 "enp0s3:"
@ -100,27 +92,26 @@ Yes, the given interface is up now as per the following output.
valid_lft forever preferred_lft forever
```
### 2) How To Enable And Disable A Network Interface In Linux Using ifdown/up Command?
### 2、如何使用 ifdown/up 命令启用禁用网卡?
The ifdown command take a network interface down and the ifup command bring a network interface up.
`ifdown` 命令用于禁用网卡,`ifup` 命令用于启用网卡。
**Note:**It doesnt work on new interface device name like `enpXXX`
注意:这两个命令不支持以 `enpXXX` 命名的新的网络设备。
Common Syntax for ifdown/ifup:
`ifdown`/`ifup` 的常用语法:
```
# ifdown [NIC_NAME]
# ifup [NIC_NAME]
```
Run the following command to bring down the `eth1` interface in Linux.
执行以下命令禁用 `eth1` 网卡。
```
# ifdown eth0
# ifdown eth1
```
Run the following command to bring down the `eth1` interface in Linux.
从以下输出结果可以看到网卡已经被禁用了。
```
# ip a | grep -A 3 "eth1:"
@ -128,13 +119,13 @@ Run the following command to bring down the `eth1` interface in Linux.
link/ether 08:00:27:d5:a0:18 brd ff:ff:ff:ff:ff:ff
```
Run the following command to bring down the `eth1` interface in Linux.
执行以下命令启用 `eth1` 网卡。
```
# ifup eth0
# ifup eth1
```
Yes, the given interface is up now as per the following output.
从以下输出结果可以看到网卡已经启用了。
```
# ip a | grep -A 5 "eth1:"
@ -145,32 +136,32 @@ Yes, the given interface is up now as per the following output.
valid_lft forever preferred_lft forever
```
ifup and ifdown doesnt supporting the latest interface device `enpXXX` names. I got the below message when i ran the command.
`ifup``ifdown` 不支持以 `enpXXX` 命名的网卡。当执行该命令时得到的结果如下:
```
# ifdown enp0s8
Unknown interface enp0s8
```
### 3) How To Bring UP/Bring Down A Network Interface In Linux Using ip Command?
### 3、如何使用 ip 命令启用禁用网卡?
ip command is used to manage Network Interface Card (NIC). Its replacement of old and deprecated ifconfig command on modern Linux systems.
`ip` 命令用于管理网卡,用于替代老旧的、不推荐使用的 `ifconfig` 命令。
Its similar to ifconfig command but has many powerful features which isnt available in ifconfig command.
它和 `ifconfig` 命令很相似,但是提供了很多 `ifconfig` 命令不具有的强大的特性。
Common Syntax for ip:
`ip` 的常用语法:
```
# ip link set Down/Up
```
Run the following command to bring down the `enp0s3` interface in Linux.
执行以下命令禁用 `enp0s3` 网卡。
```
# ip link set enp0s3 down
```
Yes, the given interface is down now as per the following output.
从以下输出结果可以看到网卡已经被禁用了。
```
# ip a | grep -A 1 "enp0s3:"
@ -178,13 +169,13 @@ Yes, the given interface is down now as per the following output.
link/ether 08:00:27:c2:e4:e8 brd ff:ff:ff:ff:ff:ff
```
Run the following command to bring down the `enp0s3` interface in Linux.
执行以下命令启用 `enp0s3` 网卡。
```
# ip link set enp0s3 up
```
Yes, the given interface is up now as per the following output.
从以下输出结果可以看到网卡已经启用了。
```
# ip a | grep -A 5 "enp0s3:"
@ -196,15 +187,13 @@ Yes, the given interface is up now as per the following output.
valid_lft forever preferred_lft forever
```
### 4) How To Enable And Disable A Network Interface In Linux Using nmcli Command?
### 4、如何使用 nmcli 命令启用禁用网卡?
nmcli is a command-line tool for controlling NetworkManager and reporting network status.
`nmcli` 是一个控制 NetworkManager 并报告网络状态的命令行工具。
It can be utilized as a replacement for nm-applet or other graphical clients. nmcli is used to create, display, edit, delete, activate, and deactivate network
`nmcli` 可以用做 nm-applet 或者其他图形化客户端的替代品。它可以用于展示、创建、修改、删除、启用和停用网络连接。除此之后,它还可以用来管理和展示网络设备状态。
connections, as well as control and display network device status.
Run the following command to identify the interface name because nmcli command is perform most of the task using `profile name` instead of `device name`.
`nmcli` 命令大部分情况下都是使用“配置名称”工作而不是“设备名称”。所以执行以下命令获取网卡对应的配置名称。LCTT 译注:在使用 `nmtui` 或者 `nmcli` 管理网络连接的时候,可以为网络连接配置一个名称,就是这里提到的<ruby>配置名称<rt>Profile name</rt></ruby>`
```
# nmcli con show
@ -213,20 +202,20 @@ Wired connection 1 3d5afa0a-419a-3d1a-93e6-889ce9c6a18c ethernet enp0s3
Wired connection 2 a22154b7-4cc4-3756-9d8d-da5a4318e146 ethernet enp0s8
```
Common Syntax for ip:
`nmcli` 的常用语法:
```
# nmcli con Down/Up
```
Run the following command to bring down the `enp0s3` interface in Linux. You have to give `profile name` instead of `device name` to bring down it.
执行以下命令禁用 `enp0s3` 网卡。在禁用网卡的时候,你需要使用配置名称而不是设备名称。
```
# nmcli con down 'Wired connection 1'
Connection 'Wired connection 1' successfully deactivated (D-Bus active path: /org/freedesktop/NetworkManager/ActiveConnection/6)
```
Yes, the given interface is down now as per the following output.
从以下输出结果可以看到网卡已经禁用了。
```
# nmcli dev status
@ -236,14 +225,14 @@ enp0s3 ethernet disconnected --
lo loopback unmanaged --
```
Run the following command to bring down the `enp0s3` interface in Linux. You have to give `profile name` instead of `device name` to bring down it.
执行以下命令启用 `enp0s3` 网卡。同样的,这里你需要使用配置名称而不是设备名称。
```
# nmcli con up 'Wired connection 1'
Connection successfully activated (D-Bus active path: /org/freedesktop/NetworkManager/ActiveConnection/7)
```
Yes, the given interface is up now as per the following output.
从以下输出结果可以看到网卡已经启用了。
```
# nmcli dev status
@ -253,25 +242,27 @@ enp0s3 ethernet connected Wired connection 1
lo loopback unmanaged --
```
### 5) How To Bring UP/Bring Down A Network Interface In Linux Using nmtui Command?
### 5、如何使用 nmtui 命令启用禁用网卡?
nmtui is a curses based TUI application for interacting with NetworkManager.
`nmtui` 是一个与 NetworkManager 交互的、基于 curses 图形库的终端 UI 应用。
When starting nmtui, the user is prompted to choose the activity to perform unless it was specified as the first argument.
在启用 `nmtui` 的时候,如果第一个参数没有特别指定,它会引导用户选择对应的操作去执行。
Run the following command launch the nmtui interface. Select “Active a connection” and hit “OK”
执行以下命令打开 `mntui` 界面。选择 “Active a connection” 然后点击 “OK”。
```
# nmtui
```
[![][1]![][1]][2]
![][2]
Select the interface which you want to bring down then hit “Deactivate” button.
[![][1]![][1]][3]
选择你要禁用的网卡,然后点击 “Deactivate” 按钮,就可以将网卡禁用。
For activation do the same above procedure.
[![][1]![][1]][4]
![][3]
如果要启用网卡,使用上述同样的步骤即可。
![][4]
--------------------------------------------------------------------------------
@ -279,8 +270,8 @@ via: https://www.2daygeek.com/enable-disable-up-down-nic-network-interface-port-
作者:[Magesh Maruthamuthu][a]
选题:[lujun9972][b]
译者:[译者ID](https://github.com/译者ID)
校对:[校对者ID](https://github.com/校对者ID)
译者:[bodhix](https://github.com/bodhix)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出

View File

@ -0,0 +1,439 @@
[#]: collector: (lujun9972)
[#]: translator: (FSSlc)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10826-1.html)
[#]: subject: (Inter-process communication in Linux: Shared storage)
[#]: via: (https://opensource.com/article/19/4/interprocess-communication-linux-storage)
[#]: author: (Marty Kalin https://opensource.com/users/mkalindepauledu)
Linux 下的进程间通信:共享存储
======
> 学习在 Linux 中进程是如何与其他进程进行同步的。
![Filing papers and documents][1]
本篇是 Linux 下[进程间通信][2]IPC系列的第一篇文章。这个系列将使用 C 语言代码示例来阐明以下 IPC 机制:
* 共享文件
* 共享内存(使用信号量)
* 管道(命名的或非命名的管道)
* 消息队列
* 套接字
* 信号
在聚焦上面提到的共享文件和共享内存这两个机制之前,这篇文章将带你回顾一些核心的概念。
### 核心概念
*进程*是运行着的程序,每个进程都有着它自己的地址空间,这些空间由进程被允许访问的内存地址组成。进程有一个或多个执行*线程*,而线程是一系列执行指令的集合:*单线程*进程就只有一个线程,而*多线程*的进程则有多个线程。一个进程中的线程共享各种资源,特别是地址空间。另外,一个进程中的线程可以直接通过共享内存来进行通信,尽管某些现代语言(例如 Go鼓励一种更有序的方式例如使用线程安全的通道。当然对于不同的进程默认情况下它们**不**能共享内存。
有多种方法启动之后要进行通信的进程,下面所举的例子中主要使用了下面的两种方法:
* 一个终端被用来启动一个进程,另外一个不同的终端被用来启动另一个。
* 在一个进程(父进程)中调用系统函数 `fork`,以此生发另一个进程(子进程)。
第一个例子采用了上面使用终端的方法。这些[代码示例][3]的 ZIP 压缩包可以从我的网站下载到。
### 共享文件
程序员对文件访问应该都已经很熟识了,包括许多坑(不存在的文件、文件权限损坏等等),这些问题困扰着程序对文件的使用。尽管如此,共享文件可能是最为基础的 IPC 机制了。考虑一下下面这样一个相对简单的例子,其中一个进程(生产者 `producer`)创建和写入一个文件,然后另一个进程(消费者 `consumer `)从这个相同的文件中进行读取:
```
writes +-----------+ reads
producer-------->| disk file |<-------consumer
+-----------+
```
在使用这个 IPC 机制时最明显的挑战是*竞争条件*可能会发生:生产者和消费者可能恰好在同一时间访问该文件,从而使得输出结果不确定。为了避免竞争条件的发生,该文件在处于*读*或*写*状态时必须以某种方式处于被锁状态,从而阻止在*写*操作执行时和其他操作的冲突。在标准系统库中与锁相关的 API 可以被总结如下:
* 生产者应该在写入文件时获得一个文件的排斥锁。一个*排斥*锁最多被一个进程所拥有。这样就可以排除掉竞争条件的发生,因为在锁被释放之前没有其他的进程可以访问这个文件。
* 消费者应该在从文件中读取内容时得到至少一个共享锁。多个*读取者*可以同时保有一个*共享*锁,但是没有*写入者*可以获取到文件内容,甚至在当只有一个*读取者*保有一个共享锁时。
共享锁可以提升效率。假如一个进程只是读入一个文件的内容,而不去改变它的内容,就没有什么原因阻止其他进程来做同样的事。但如果需要写入内容,则很显然需要文件有排斥锁。
标准的 I/O 库中包含一个名为 `fcntl` 的实用函数,它可以被用来检查或者操作一个文件上的排斥锁和共享锁。该函数通过一个*文件描述符*(一个在进程中的非负整数值)来标记一个文件(在不同的进程中不同的文件描述符可能标记同一个物理文件)。对于文件的锁定, Linux 提供了名为 `flock` 的库函数,它是 `fcntl` 的一个精简包装。第一个例子中使用 `fcntl` 函数来暴露这些 API 细节。
#### 示例 1. 生产者程序
```c
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#define FileName "data.dat"
#define DataString "Now is the winter of our discontent\nMade glorious summer by this sun of York\n"
void report_and_exit(const char* msg) {
perror(msg);
exit(-1); /* EXIT_FAILURE */
}
int main() {
struct flock lock;
lock.l_type = F_WRLCK; /* read/write (exclusive versus shared) lock */
lock.l_whence = SEEK_SET; /* base for seek offsets */
lock.l_start = 0; /* 1st byte in file */
lock.l_len = 0; /* 0 here means 'until EOF' */
lock.l_pid = getpid(); /* process id */
int fd; /* file descriptor to identify a file within a process */
if ((fd = open(FileName, O_RDWR | O_CREAT, 0666)) < 0) /* -1 signals an error */
report_and_exit("open failed...");
if (fcntl(fd, F_SETLK, &lock) < 0) /** F_SETLK doesn't block, F_SETLKW does **/
report_and_exit("fcntl failed to get lock...");
else {
write(fd, DataString, strlen(DataString)); /* populate data file */
fprintf(stderr, "Process %d has written to data file...\n", lock.l_pid);
}
/* Now release the lock explicitly. */
lock.l_type = F_UNLCK;
if (fcntl(fd, F_SETLK, &lock) < 0)
report_and_exit("explicit unlocking failed...");
close(fd); /* close the file: would unlock if needed */
return 0; /* terminating the process would unlock as well */
}
```
上面生产者程序的主要步骤可以总结如下:
* 这个程序首先声明了一个类型为 `struct flock` 的变量,它代表一个锁,并对它的 5 个域做了初始化。第一个初始化
```c
lock.l_type = F_WRLCK; /* exclusive lock */
```
使得这个锁为排斥锁read-write而不是一个共享锁read-only。假如生产者获得了这个锁则其他的进程将不能够对文件做读或者写操作直到生产者释放了这个锁或者显式地调用 `fcntl`,又或者隐式地关闭这个文件。(当进程终止时,所有被它打开的文件都会被自动关闭,从而释放了锁)
* 上面的程序接着初始化其他的域。主要的效果是*整个*文件都将被锁上。但是,有关锁的 API 允许特别指定的字节被上锁。例如,假如文件包含多个文本记录,则单个记录(或者甚至一个记录的一部分)可以被锁,而其余部分不被锁。
* 第一次调用 `fcntl`
```c
if (fcntl(fd, F_SETLK, &lock) < 0)
```
尝试排斥性地将文件锁住,并检查调用是否成功。一般来说, `fcntl` 函数返回 `-1` (因此小于 0意味着失败。第二个参数 `F_SETLK` 意味着 `fcntl` 的调用*不是*堵塞的;函数立即做返回,要么获得锁,要么显示失败了。假如替换地使用 `F_SETLKW`(末尾的 `W` 代指*等待*),那么对 `fcntl` 的调用将是阻塞的,直到有可能获得锁的时候。在调用 `fcntl` 函数时,它的第一个参数 `fd` 指的是文件描述符,第二个参数指定了将要采取的动作(在这个例子中,`F_SETLK` 指代设置锁),第三个参数为锁结构的地址(在本例中,指的是 `&lock`)。
* 假如生产者获得了锁,这个程序将向文件写入两个文本记录。
* 在向文件写入内容后,生产者改变锁结构中的 `l_type` 域为 `unlock` 值:
```c
lock.l_type = F_UNLCK;
```
并调用 `fcntl` 来执行解锁操作。最后程序关闭了文件并退出。
#### 示例 2. 消费者程序
```c
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>
#define FileName "data.dat"
void report_and_exit(const char* msg) {
perror(msg);
exit(-1); /* EXIT_FAILURE */
}
int main() {
struct flock lock;
lock.l_type = F_WRLCK; /* read/write (exclusive) lock */
lock.l_whence = SEEK_SET; /* base for seek offsets */
lock.l_start = 0; /* 1st byte in file */
lock.l_len = 0; /* 0 here means 'until EOF' */
lock.l_pid = getpid(); /* process id */
int fd; /* file descriptor to identify a file within a process */
if ((fd = open(FileName, O_RDONLY)) < 0) /* -1 signals an error */
report_and_exit("open to read failed...");
/* If the file is write-locked, we can't continue. */
fcntl(fd, F_GETLK, &lock); /* sets lock.l_type to F_UNLCK if no write lock */
if (lock.l_type != F_UNLCK)
report_and_exit("file is still write locked...");
lock.l_type = F_RDLCK; /* prevents any writing during the reading */
if (fcntl(fd, F_SETLK, &lock) < 0)
report_and_exit("can't get a read-only lock...");
/* Read the bytes (they happen to be ASCII codes) one at a time. */
int c; /* buffer for read bytes */
while (read(fd, &c, 1) > 0) /* 0 signals EOF */
write(STDOUT_FILENO, &c, 1); /* write one byte to the standard output */
/* Release the lock explicitly. */
lock.l_type = F_UNLCK;
if (fcntl(fd, F_SETLK, &lock) < 0)
report_and_exit("explicit unlocking failed...");
close(fd);
return 0;
}
```
相比于锁的 API消费者程序会相对复杂一点儿。特别的消费者程序首先检查文件是否被排斥性的被锁然后才尝试去获得一个共享锁。相关的代码为
```
lock.l_type = F_WRLCK;
...
fcntl(fd, F_GETLK, &lock); /* sets lock.l_type to F_UNLCK if no write lock */
if (lock.l_type != F_UNLCK)
report_and_exit("file is still write locked...");
```
`fcntl` 调用中的 `F_GETLK` 操作指定检查一个锁,在本例中,上面代码的声明中给了一个 `F_WRLCK` 的排斥锁。假如特指的锁不存在,那么 `fcntl` 调用将会自动地改变锁类型域为 `F_UNLCK` 以此来显示当前的状态。假如文件是排斥性地被锁,那么消费者将会终止。(一个更健壮的程序版本或许应该让消费者*睡*会儿,然后再尝试几次。)
假如当前文件没有被锁那么消费者将尝试获取一个共享read-only`F_RDLCK`)。为了缩短程序,`fcntl` 中的 `F_GETLK` 调用可以丢弃,因为假如其他进程已经保有一个读写锁,`F_RDLCK` 的调用就可能会失败。重新调用一个只读锁能够阻止其他进程向文件进行写的操作,但可以允许其他进程对文件进行读取。简而言之,共享锁可以被多个进程所保有。在获取了一个共享锁后,消费者程序将立即从文件中读取字节数据,然后在标准输出中打印这些字节的内容,接着释放锁,关闭文件并终止。
下面的 `%` 为命令行提示符,下面展示的是从相同终端开启这两个程序的输出:
```
% ./producer
Process 29255 has written to data file...
% ./consumer
Now is the winter of our discontent
Made glorious summer by this sun of York
```
在本次的代码示例中,通过 IPC 传输的数据是文本:它们来自莎士比亚的戏剧《理查三世》中的两行台词。然而,共享文件的内容还可以是纷繁复杂的,任意的字节数据(例如一个电影)都可以,这使得文件共享变成了一个非常灵活的 IPC 机制。但它的缺点是文件获取速度较慢,因为文件的获取涉及到读或者写。同往常一样,编程总是伴随着折中。下面的例子将通过共享内存来做 IPC而不是通过共享文件在性能上相应的有极大的提升。
### 共享内存
对于共享内存Linux 系统提供了两类不同的 API传统的 System V API 和更新一点的 POSIX API。在单个应用中这些 API 不能混用。但是POSIX 方式的一个坏处是它的特性仍在发展中并且依赖于安装的内核版本这非常影响代码的可移植性。例如默认情况下POSIX API 用*内存映射文件*来实现共享内存:对于一个共享的内存段,系统为相应的内容维护一个*备份文件*。在 POSIX 规范下共享内存可以被配置为不需要备份文件,但这可能会影响可移植性。我的例子中使用的是带有备份文件的 POSIX API这既结合了内存获取的速度优势又获得了文件存储的持久性。
下面的共享内存例子中包含两个程序,分别名为 `memwriter``memreader`,并使用*信号量*来调整它们对共享内存的获取。在任何时候当共享内存进入一个*写入者*场景时,无论是多进程还是多线程,都有遇到基于内存的竞争条件的风险,所以,需要引入信号量来协调(同步)对共享内存的获取。
`memwriter` 程序应当在它自己所处的终端首先启动,然后 `memreader` 程序才可以在它自己所处的终端启动(在接着的十几秒内)。`memreader` 的输出如下:
```
This is the way the world ends...
```
在每个源程序的最上方注释部分都解释了在编译它们时需要添加的链接参数。
首先让我们复习一下信号量是如何作为一个同步机制工作的。一般的信号量也被叫做一个*计数信号量*,因为带有一个可以增加的值(通常初始化为 0。考虑一家租用自行车的商店在它的库存中有 100 辆自行车,还有一个供职员用于租赁的程序。每当一辆自行车被租出去,信号量就增加 1当一辆自行车被还回来信号量就减 1。在信号量的值为 100 之前都还可以进行租赁业务,但如果等于 100 时,就必须停止业务,直到至少有一辆自行车被还回来,从而信号量减为 99。
*二元信号量*是一个特例它只有两个值0 和 1。在这种情况下信号量的表现为*互斥量*(一个互斥的构造)。下面的共享内存示例将把信号量用作互斥量。当信号量的值为 0 时,只有 `memwriter` 可以获取共享内存,在写操作完成后,这个进程将增加信号量的值,从而允许 `memreader` 来读取共享内存。
#### 示例 3. memwriter 进程的源程序
```c
/** Compilation: gcc -o memwriter memwriter.c -lrt -lpthread **/
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <semaphore.h>
#include <string.h>
#include "shmem.h"
void report_and_exit(const char* msg) {
perror(msg);
exit(-1);
}
int main() {
int fd = shm_open(BackingFile, /* name from smem.h */
O_RDWR | O_CREAT, /* read/write, create if needed */
AccessPerms); /* access permissions (0644) */
if (fd < 0) report_and_exit("Can't open shared mem segment...");
ftruncate(fd, ByteSize); /* get the bytes */
caddr_t memptr = mmap(NULL, /* let system pick where to put segment */
ByteSize, /* how many bytes */
PROT_READ | PROT_WRITE, /* access protections */
MAP_SHARED, /* mapping visible to other processes */
fd, /* file descriptor */
0); /* offset: start at 1st byte */
if ((caddr_t) -1 == memptr) report_and_exit("Can't get segment...");
fprintf(stderr, "shared mem address: %p [0..%d]\n", memptr, ByteSize - 1);
fprintf(stderr, "backing file: /dev/shm%s\n", BackingFile );
/* semaphore code to lock the shared mem */
sem_t* semptr = sem_open(SemaphoreName, /* name */
O_CREAT, /* create the semaphore */
AccessPerms, /* protection perms */
0); /* initial value */
if (semptr == (void*) -1) report_and_exit("sem_open");
strcpy(memptr, MemContents); /* copy some ASCII bytes to the segment */
/* increment the semaphore so that memreader can read */
if (sem_post(semptr) < 0) report_and_exit("sem_post");
sleep(12); /* give reader a chance */
/* clean up */
munmap(memptr, ByteSize); /* unmap the storage */
close(fd);
sem_close(semptr);
shm_unlink(BackingFile); /* unlink from the backing file */
return 0;
}
```
下面是 `memwriter``memreader` 程序如何通过共享内存来通信的一个总结:
* 上面展示的 `memwriter` 程序调用 `shm_open` 函数来得到作为系统协调共享内存的备份文件的文件描述符。此时,并没有内存被分配。接下来调用的是令人误解的名为 `ftruncate` 的函数
```c
ftruncate(fd, ByteSize); /* get the bytes */
```
它将分配 `ByteSize` 字节的内存,在该情况下,一般为大小适中的 512 字节。`memwriter` 和 `memreader` 程序都只从共享内存中获取数据,而不是从备份文件。系统将负责共享内存和备份文件之间数据的同步。
* 接着 `memwriter` 调用 `mmap` 函数:
```c
caddr_t memptr = mmap(NULL, /* let system pick where to put segment */
ByteSize, /* how many bytes */
PROT_READ | PROT_WRITE, /* access protections */
MAP_SHARED, /* mapping visible to other processes */
fd, /* file descriptor */
0); /* offset: start at 1st byte */
```
来获得共享内存的指针。(`memreader` 也做一次类似的调用。) 指针类型 `caddr_t``c` 开头,它代表 `calloc`,而这是动态初始化分配的内存为 0 的一个系统函数。`memwriter` 通过库函数 `strcpy`(字符串复制)来获取后续*写*操作的 `memptr`
* 到现在为止,`memwriter` 已经准备好进行写操作了,但首先它要创建一个信号量来确保共享内存的排斥性。假如 `memwriter` 正在执行写操作而同时 `memreader` 在执行读操作,则有可能出现竞争条件。假如调用 `sem_open` 成功了:
```c
sem_t* semptr = sem_open(SemaphoreName, /* name */
O_CREAT, /* create the semaphore */
AccessPerms, /* protection perms */
0); /* initial value */
```
那么,接着写操作便可以执行。上面的 `SemaphoreName`(任意一个唯一的非空名称)用来在 `memwriter``memreader` 识别信号量。初始值 0 将会传递给信号量的创建者,在这个例子中指的是 `memwriter` 赋予它执行*写*操作的权利。
* 在写操作完成后,`memwriter* 通过调用 `sem_post` 函数将信号量的值增加到 1
```c
if (sem_post(semptr) < 0) ..
```
增加信号了将释放互斥锁,使得 `memreader` 可以执行它的*读*操作。为了更好地测量,`memwriter` 也将从它自己的地址空间中取消映射,
```c
munmap(memptr, ByteSize); /* unmap the storage *
```
这将使得 `memwriter` 不能进一步地访问共享内存。
#### 示例 4. memreader 进程的源代码
```c
/** Compilation: gcc -o memreader memreader.c -lrt -lpthread **/
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <semaphore.h>
#include <string.h>
#include "shmem.h"
void report_and_exit(const char* msg) {
perror(msg);
exit(-1);
}
int main() {
int fd = shm_open(BackingFile, O_RDWR, AccessPerms); /* empty to begin */
if (fd < 0) report_and_exit("Can't get file descriptor...");
/* get a pointer to memory */
caddr_t memptr = mmap(NULL, /* let system pick where to put segment */
ByteSize, /* how many bytes */
PROT_READ | PROT_WRITE, /* access protections */
MAP_SHARED, /* mapping visible to other processes */
fd, /* file descriptor */
0); /* offset: start at 1st byte */
if ((caddr_t) -1 == memptr) report_and_exit("Can't access segment...");
/* create a semaphore for mutual exclusion */
sem_t* semptr = sem_open(SemaphoreName, /* name */
O_CREAT, /* create the semaphore */
AccessPerms, /* protection perms */
0); /* initial value */
if (semptr == (void*) -1) report_and_exit("sem_open");
/* use semaphore as a mutex (lock) by waiting for writer to increment it */
if (!sem_wait(semptr)) { /* wait until semaphore != 0 */
int i;
for (i = 0; i < strlen(MemContents); i++)
write(STDOUT_FILENO, memptr + i, 1); /* one byte at a time */
sem_post(semptr);
}
/* cleanup */
munmap(memptr, ByteSize);
close(fd);
sem_close(semptr);
unlink(BackingFile);
return 0;
}
```
`memwriter``memreader` 程序中,共享内存的主要着重点都在 `shm_open``mmap` 函数上:在成功时,第一个调用返回一个备份文件的文件描述符,而第二个调用则使用这个文件描述符从共享内存段中获取一个指针。它们对 `shm_open` 的调用都很相似,除了 `memwriter` 程序创建共享内存,而 `memreader 只获取这个已经创建的内存:
```c
int fd = shm_open(BackingFile, O_RDWR | O_CREAT, AccessPerms); /* memwriter */
int fd = shm_open(BackingFile, O_RDWR, AccessPerms); /* memreader */
```
有了文件描述符,接着对 `mmap` 的调用就是类似的了:
```c
caddr_t memptr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
```
`mmap` 的第一个参数为 `NULL`,这意味着让系统自己决定在虚拟内存地址的哪个地方分配内存,当然也可以指定一个地址(但很有技巧性)。`MAP_SHARED` 标志着被分配的内存在进程中是共享的,最后一个参数(在这个例子中为 0 意味着共享内存的偏移量应该为第一个字节。`size` 参数特别指定了将要分配的字节数目(在这个例子中是 512另外的保护参数`AccessPerms`)暗示着共享内存是可读可写的。
`memwriter` 程序执行成功后,系统将创建并维护备份文件,在我的系统中,该文件为 `/dev/shm/shMemEx`,其中的 `shMemEx` 是我为共享存储命名的(在头文件 `shmem.h` 中给定)。在当前版本的 `memwriter``memreader` 程序中,下面的语句
```c
shm_unlink(BackingFile); /* removes backing file */
```
将会移除备份文件。假如没有 `unlink` 这个语句,则备份文件在程序终止后仍然持久地保存着。
`memreader``memwriter` 一样,在调用 `sem_open` 函数时,通过信号量的名字来获取信号量。但 `memreader` 随后将进入等待状态,直到 `memwriter` 将初始值为 0 的信号量的值增加。
```c
if (!sem_wait(semptr)) { /* wait until semaphore != 0 */
```
一旦等待结束,`memreader` 将从共享内存中读取 ASCII 数据,然后做些清理工作并终止。
共享内存 API 包括显式地同步共享内存段和备份文件。在这次的示例中,这些操作都被省略了,以免文章显得杂乱,好让我们专注于内存共享和信号量的代码。
即便在信号量代码被移除的情况下,`memwriter` 和 `memreader` 程序很大几率也能够正常执行而不会引入竞争条件:`memwriter` 创建了共享内存段,然后立即向它写入;`memreader` 不能访问共享内存,直到共享内存段被创建好。然而,当一个*写操作*处于混合状态时,最佳实践需要共享内存被同步。信号量 API 足够重要,值得在代码示例中着重强调。
### 总结
上面共享文件和共享内存的例子展示了进程是怎样通过*共享存储*来进行通信的,前者通过文件而后者通过内存块。这两种方法的 API 相对来说都很直接。这两种方法有什么共同的缺点吗?现代的应用经常需要处理流数据,而且是非常大规模的数据流。共享文件或者共享内存的方法都不能很好地处理大规模的流数据。按照类型使用管道会更加合适一些。所以这个系列的第二部分将会介绍管道和消息队列,同样的,我们将使用 C 语言写的代码示例来辅助讲解。
--------------------------------------------------------------------------------
via: https://opensource.com/article/19/4/interprocess-communication-linux-storage
作者:[Marty Kalin][a]
选题:[lujun9972][b]
译者:[FSSlc](https://github.com/FSSlc)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://opensource.com/users/mkalindepauledu
[b]: https://github.com/lujun9972
[1]: https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/documents_papers_file_storage_work.png?itok=YlXpAqAJ (Filing papers and documents)
[2]: https://en.wikipedia.org/wiki/Inter-process_communication
[3]: http://condor.depaul.edu/mkalin
[4]: http://www.opengroup.org/onlinepubs/009695399/functions/perror.html
[5]: http://www.opengroup.org/onlinepubs/009695399/functions/exit.html
[6]: http://www.opengroup.org/onlinepubs/009695399/functions/strlen.html
[7]: http://www.opengroup.org/onlinepubs/009695399/functions/fprintf.html
[8]: http://www.opengroup.org/onlinepubs/009695399/functions/strcpy.html

View File

@ -0,0 +1,209 @@
[#]: collector: (lujun9972)
[#]: translator: (StdioA)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10908-1.html)
[#]: subject: (Kubernetes on Fedora IoT with k3s)
[#]: via: (https://fedoramagazine.org/kubernetes-on-fedora-iot-with-k3s/)
[#]: author: (Lennart Jern https://fedoramagazine.org/author/lennartj/)
使用 k3s 在 Fedora IoT 上运行 K8S
======
![](https://img.linux.net.cn/data/attachment/album/201905/28/094048yrzlik9oek5rbs5s.jpg)
Fedora IoT 是一个即将发布的、面向物联网的 Fedora 版本。去年 Fedora Magazine 的《[如何使用 Fedora IoT 点亮 LED 灯][2]》一文第一次介绍了它。从那以后,它与 Fedora Silverblue 一起不断改进,以提供针对面向容器的工作流的不可变基础操作系统。
Kubernetes 是一个颇受欢迎的容器编排系统。它可能最常用在那些能够处理巨大负载的强劲硬件上。不过,它也能在像树莓派 3 这样轻量级的设备上运行。让我们继续阅读,来了解如何运行它。
### 为什么用 Kubernetes
虽然 Kubernetes 在云计算领域风靡一时,但让它在小型单板机上运行可能并不是常见的。不过,我们有非常明确的理由来做这件事。首先,这是一个不需要昂贵硬件就可以学习并熟悉 Kubernetes 的好方法;其次,由于它的流行性,市面上有[大量应用][3]进行了预先打包,以用于在 Kubernetes 集群中运行。更不用说,当你遇到问题时,会有大规模的社区用户为你提供帮助。
最后但同样重要的是,即使是在家庭实验室这样的小规模环境中,容器编排也确实能够使事情变得更加简单。虽然在学习曲线方面,这一点并不明显,但这些技能在你将来与任何集群打交道的时候都会有帮助。不管你面对的是一个单节点树莓派集群,还是一个大规模的机器学习场,它们的操作方式都是类似的。
#### K3s - 轻量级的 Kubernetes
一个“正常”安装的 Kubernetes如果有这么一说的话对于物联网来说有点沉重。K8s 的推荐内存配置,是每台机器 2GB不过我们也有一些替代品其中一个新人是 [k3s][4] —— 一个轻量级的 Kubernetes 发行版。
K3s 非常特殊,因为它将 etcd 替换成了 SQLite 以满足键值存储需求。还有一点,在于整个 k3s 将使用一个二进制文件分发,而不是每个组件一个。这减少了内存占用并简化了安装过程。基于上述原因,我们只需要 512MB 内存即可运行 k3s极度适合小型单板电脑
### 你需要的东西
1. Fedora IoT 运行在虚拟机或实体设备中运行的。在[这里][5]可以看到优秀的入门指南。一台机器就足够了,不过两台可以用来测试向集群添加更多节点。
2. [配置防火墙][6],允许 6443 和 8372 端口的通信。或者,你也可以简单地运行 `systemctl stop firewalld` 来为这次实验关闭防火墙。
### 安装 k3s
安装 k3s 非常简单。直接运行安装脚本:
```
curl -sfL https://get.k3s.io | sh -
```
它会下载、安装并启动 k3s。安装完成后运行以下命令来从服务器获取节点列表
```
kubectl get nodes
```
需要注意的是,有几个选项可以通过环境变量传递给安装脚本。这些选项可以在[文档][7]中找到。当然,你也完全可以直接下载二进制文件来手动安装 k3s。
对于实验和学习来说,这样已经很棒了,不过单节点的集群也不能算一个集群。幸运的是,添加另一个节点并不比设置第一个节点要难。只需要向安装脚本传递两个环境变量,它就可以找到第一个节点,而不用运行 k3s 的服务器部分。
```
curl -sfL https://get.k3s.io | K3S_URL=https://example-url:6443 \
K3S_TOKEN=XXX sh -
```
上面的 `example-url` 应被替换为第一个节点的 IP 地址,或一个完全限定域名。在该节点中,(用 XXX 表示的)令牌可以在 `/var/lib/rancher/k3s/server/node-token` 文件中找到。
### 部署一些容器
现在我们有了一个 Kubernetes 集群,我们可以真正做些什么呢?让我们从部署一个简单的 Web 服务器开始吧。
```
kubectl create deployment my-server --image nginx
```
这会从名为 `nginx` 的容器镜像中创建出一个名叫 `my-server` 的 [部署][8](默认使用 docker hub 注册中心,以及 `latest` 标签)。
```
kubectl get pods
```
为了访问到 pod 中运行的 nginx 服务器,首先通过一个 [服务][9] 来暴露该部署。以下命令将创建一个与该部署同名的服务。
```
kubectl expose deployment my-server --port 80
```
服务将作为一种负载均衡器和 Pod 的 DNS 记录来工作。比如,当运行第二个 Pod 时,我们只需指定 `my-server`(服务名称)就可以通过 `curl` 访问 nginx 服务器。有关如何操作,可以看下面的实例。
```
# 启动一个 pod在里面以交互方式运行 bash
kubectl run debug --generator=run-pod/v1 --image=fedora -it -- bash
# 等待 bash 提示符出现
curl my-server
# 你可以看到“Welcome to nginx!”的输出页面
```
### Ingress 控制器及外部 IP
默认状态下,一个服务只能获得一个 ClusterIP只能从集群内部访问但你也可以通过把它的类型设置为 [LoadBalancer][10] 为该服务申请一个外部 IP。不过并非所有应用都需要自己的 IP 地址。相反,通常可以通过基于 Host 请求头部或请求路径进行路由,从而使多个服务共享一个 IP 地址。你可以在 Kubernetes 使用 [Ingress][11] 完成此操作而这也是我们要做的。Ingress 也提供了额外的功能,比如无需配置应用即可对流量进行 TLS 加密。
Kubernetes 需要 Ingress 控制器来使 Ingress 资源工作k3s 包含 [Traefik][12] 正是出于此目的。它还包含了一个简单的服务负载均衡器,可以为集群中的服务提供外部 IP。这篇[文档][13]描述了这种服务:
> k3s 包含一个使用可用主机端口的基础服务负载均衡器。比如,如果你尝试创建一个监听 80 端口的负载均衡器,它会尝试在集群中寻找一个 80 端口空闲的节点。如果没有可用端口,那么负载均衡器将保持在 Pending 状态。
>
> k3s README
Ingress 控制器已经通过这个负载均衡器暴露在外。你可以使用以下命令找到它正在使用的 IP 地址。
```
$ kubectl get svc --all-namespaces
NAMESPACE NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
default kubernetes ClusterIP 10.43.0.1 443/TCP 33d
default my-server ClusterIP 10.43.174.38 80/TCP 30m
kube-system kube-dns ClusterIP 10.43.0.10 53/UDP,53/TCP,9153/TCP 33d
kube-system traefik LoadBalancer 10.43.145.104 10.0.0.8 80:31596/TCP,443:31539/TCP 33d
```
找到名为 `traefik` 的服务。在上面的例子中,我们感兴趣的 IP 是 10.0.0.8。
### 路由传入的请求
让我们创建一个 Ingress使它通过基于 Host 头部的路由规则将请求路由至我们的服务器。这个例子中我们使用 [xip.io][14] 来避免必要的 DNS 记录配置工作。它的工作原理是将 IP 地址作为子域包含,以使用 `10.0.0.8.xip.io` 的任何子域来达到 IP `10.0.0.8`。换句话说,`my-server.10.0.0.8.xip.io` 被用于访问集群中的 Ingress 控制器。你现在就可以尝试(使用你自己的 IP而不是 10.0.0.8)。如果没有 Ingress你应该会访问到“默认后端”只是一个写着“404 page not found”的页面。
我们可以使用以下 Ingress 让 Ingress 控制器将请求路由到我们的 Web 服务器的服务。
```
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
name: my-server
spec:
rules:
- host: my-server.10.0.0.8.xip.io
http:
paths:
- path: /
backend:
serviceName: my-server
servicePort: 80
```
将以上片段保存到 `my-ingress.yaml` 文件中,然后运行以下命令将其加入集群:
```
kubectl apply -f my-ingress.yaml
```
你现在应该能够在你选择的完全限定域名中访问到 nginx 的默认欢迎页面了。在我的例子中,它是 `my-server.10.0.0.8.xip.io`。Ingress 控制器会通过 Ingress 中包含的信息来路由请求。对 `my-server.10.0.0.8.xip.io` 的请求将被路由到 Ingress 中定义为 `backend` 的服务和端口(在本例中为 `my-server``80`)。
### 那么,物联网呢?
想象如下场景:你的家或农场周围有很多的设备。它是一个具有各种硬件功能、传感器和执行器的物联网设备的异构集合。也许某些设备拥有摄像头、天气或光线传感器。其它设备可能会被连接起来,用来控制通风、灯光、百叶窗或闪烁的 LED。
这种情况下,你想从所有传感器中收集数据,在最终使用它来制定决策和控制执行器之前,也可能会对其进行处理和分析。除此之外,你可能还想配置一个仪表盘来可视化那些正在发生的事情。那么 Kubernetes 如何帮助我们来管理这样的事情呢?我们怎么保证 Pod 在合适的设备上运行?
简单的答案就是“标签”。你可以根据功能来标记节点,如下所示:
```
kubectl label nodes <node-name> <label-key>=<label-value>
# 举例
kubectl label nodes node2 camera=available
```
一旦它们被打上标签,我们就可以轻松地使用 [nodeSelector][15] 为你的工作负载选择合适的节点。拼图的最后一块:如果你想在*所有*合适的节点上运行 Pod那应该使用 [DaemonSet][16] 而不是部署。换句话说,应为每个使用唯一传感器的数据收集应用程序创建一个 DaemonSet并使用 nodeSelector 确保它们仅在具有适当硬件的节点上运行。
服务发现功能允许 Pod 通过服务名称来寻找彼此,这项功能使得这类分布式系统的管理工作变得易如反掌。你不需要为应用配置 IP 地址或自定义端口,也不需要知道它们。相反,它们可以通过集群中的命名服务轻松找到彼此。
#### 充分利用空闲资源
随着集群的启动并运行,收集数据并控制灯光和气候,可能使你觉得你已经把它完成了。不过,集群中还有大量的计算资源可以用于其它项目。这才是 Kubernetes 真正出彩的地方。
你不必担心这些资源的确切位置,或者去计算是否有足够的内存来容纳额外的应用程序。这正是编排系统所解决的问题!你可以轻松地在集群中部署更多的应用,让 Kubernetes 来找出适合运行它们的位置(或是否适合运行它们)。
为什么不运行一个你自己的 [NextCloud][17] 实例呢?或者运行 [gitea][18]?你还可以为你所有的物联网容器设置一套 CI/CD 流水线。毕竟,如果你可以在集群中进行本地构建,为什么还要在主计算机上构建并交叉编译它们呢?
这里的要点是Kubernetes 可以更容易地利用那些你可能浪费掉的“隐藏”资源。Kubernetes 根据可用资源和容错处理规则来调度 Pod因此你也无需手动完成这些工作。但是为了帮助 Kubernetes 做出合理的决定,你绝对应该为你的工作负载添加[资源请求][19]配置。
### 总结
尽管 Kuberenetes 或一般的容器编排平台通常不会与物联网相关联但在管理分布式系统时使用一个编排系统肯定是有意义的。你不仅可以使用统一的方式来处理多样化和异构的设备还可以简化它们的通信方式。此外Kubernetes 还可以更好地对闲置资源加以利用。
容器技术使构建“随处运行”应用的想法成为可能。现在Kubernetes 可以更轻松地来负责“随处”的部分。作为构建一切的不可变基础,我们使用 Fedora IoT。
--------------------------------------------------------------------------------
via: https://fedoramagazine.org/kubernetes-on-fedora-iot-with-k3s/
作者:[Lennart Jern][a]
选题:[lujun9972][b]
译者:[StdioA](https://github.com/StdioA)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://fedoramagazine.org/author/lennartj/
[b]: https://github.com/lujun9972
[1]: https://fedoramagazine.org/wp-content/uploads/2019/04/k3s-1-816x345.png
[2]: https://linux.cn/article-10380-1.html
[3]: https://hub.helm.sh/
[4]: https://k3s.io
[5]: https://docs.fedoraproject.org/en-US/iot/getting-started/
[6]: https://github.com/rancher/k3s#open-ports--network-security
[7]: https://github.com/rancher/k3s#systemd
[8]: https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
[9]: https://kubernetes.io/docs/concepts/services-networking/service/
[10]: https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
[11]: https://kubernetes.io/docs/concepts/services-networking/ingress/
[12]: https://traefik.io/
[13]: https://github.com/rancher/k3s/blob/master/README.md#service-load-balancer
[14]: http://xip.io/
[15]: https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
[16]: https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
[17]: https://nextcloud.com/
[18]: https://gitea.io/en-us/
[19]: https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/

View File

@ -0,0 +1,347 @@
[#]: collector: (lujun9972)
[#]: translator: (wxy)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10840-1.html)
[#]: subject: (Building a DNS-as-a-service with OpenStack Designate)
[#]: via: (https://opensource.com/article/19/4/getting-started-openstack-designate)
[#]: author: (Amjad Yaseen https://opensource.com/users/ayaseen)
用 OpenStack Designate 构建一个 DNS 即服务DNSaaS
======
> 学习如何安装和配置 Designate这是一个 OpenStack 的多租户 DNS 即服务DNSaaS
![Command line prompt](https://img.linux.net.cn/data/attachment/album/201905/11/110822rjub9wtwtwtmccet.jpg)
[Designate][2] 是一个多租户的 DNS 即服务,它包括一个用于域名和记录管理的 REST API 和集成了 [Neutron][3] 的框架,并支持 Bind9。
DNSaaS 可以提供:
* 一个管理区域和记录的干净利落的 REST API
* 自动生成记录(集成 OpenStack
* 支持多个授权名字服务器
* 可以托管多个项目/组织
![Designate's architecture][4]
这篇文章解释了如何在 CentOS 和 RHEL 上手动安装和配置 Designate 的最新版本,但是同样的配置也可以用在其它发行版上。
### 在 OpenStack 上安装 Designate
在我的 [GitHub 仓库][5]里,我已经放了 Ansible 的 bind 和 Designate 角色的示范设置。
这个设置假定 bing 服务是安装 OpenStack 控制器节点之外(即使你可以在本地安装 bind
1、在 OpenStack 控制节点上安装 Designate 和 bind 软件包:
```
# yum install openstack-designate-* bind bind-utils -y
```
2、创建 Designate 数据库和用户:
```
MariaDB [(none)]> CREATE DATABASE designate CHARACTER SET utf8 COLLATE utf8_general_ci;
MariaDB [(none)]> GRANT ALL PRIVILEGES ON designate.* TO \
'designate'@'localhost' IDENTIFIED BY 'rhlab123';
MariaDB [(none)]> GRANT ALL PRIVILEGES ON designate.* TO 'designate'@'%' \
IDENTIFIED BY 'rhlab123';
```
注意bind 包必须安装在控制节点之外才能使<ruby>远程名字服务控制<rt>Remote Name Daemon Control</rt></ruby>RNDC功能正常。
### 配置 bindDNS 服务器)
1、生成 RNDC 文件:
```
rndc-confgen -a -k designate -c /etc/rndc.key -r /dev/urandom
cat <<EOF> etcrndc.conf
include "/etc/rndc.key";
options {
default-key "designate";
default-server {{ DNS_SERVER_IP }};
default-port 953;
};
EOF
```
2、将下列配置添加到 `named.conf`
```
include "/etc/rndc.key";
controls {
inet {{ DNS_SERVER_IP }} allow { localhost;{{ CONTROLLER_SERVER_IP }}; } keys { "designate"; };
};
```
`option` 节中,添加:
```
options {
...
allow-new-zones yes;
request-ixfr no;
listen-on port 53 { any; };
recursion no;
allow-query { 127.0.0.1; {{ CONTROLLER_SERVER_IP }}; };
};
```
添加正确的权限:
```
chown named:named /etc/rndc.key
chown named:named /etc/rndc.conf
chmod 600 /etc/rndc.key
chown -v root:named /etc/named.conf
chmod g+w /var/named
# systemctl restart named
# setsebool named_write_master_zones 1
```
3、把 `rndc.key``rndc.conf` 推入 OpenStack 控制节点:
```
# scp -r /etc/rndc* {{ CONTROLLER_SERVER_IP }}:/etc/
```
### 创建 OpenStack Designate 服务和端点
输入:
```
# openstack user create --domain default --password-prompt designate
# openstack role add --project services --user designate admin
# openstack service create --name designate --description "DNS" dns
# openstack endpoint create --region RegionOne dns public http://{{ CONTROLLER_SERVER_IP }}:9001/
# openstack endpoint create --region RegionOne dns internal http://{{ CONTROLLER_SERVER_IP }}:9001/
# openstack endpoint create --region RegionOne dns admin http://{{ CONTROLLER_SERVER_IP }}:9001/
```
### 配置 Designate 服务
1、编辑 `/etc/designate/designate.conf`
`[service:api]` 节配置 `auth_strategy`
```
[service:api]
listen = 0.0.0.0:9001
auth_strategy = keystone
api_base_uri = http://{{ CONTROLLER_SERVER_IP }}:9001/
enable_api_v2 = True
enabled_extensions_v2 = quotas, reports
```
`[keystone_authtoken]` 节配置下列选项:
```
[keystone_authtoken]
auth_type = password
username = designate
password = rhlab123
project_name = service
project_domain_name = Default
user_domain_name = Default
www_authenticate_uri = http://{{ CONTROLLER_SERVER_IP }}:5000/
auth_url = http://{{ CONTROLLER_SERVER_IP }}:5000/
```
`[service:worker]` 节,启用 worker 模型:
```
enabled = True
notify = True
```
`[storage:sqlalchemy]` 节,配置数据库访问:
```
[storage:sqlalchemy]
connection = mysql+pymysql://designate:rhlab123@{{ CONTROLLER_SERVER_IP }}/designate
```
填充 Designate 数据库:
```
# su -s /bin/sh -c "designate-manage database sync" designate
```
2、 创建 Designate 的 `pools.yaml` 文件(包含 target 和 bind 细节):
编辑 `/etc/designate/pools.yaml`
```
- name: default
# The name is immutable. There will be no option to change the name after
# creation and the only way will to change it will be to delete it
# (and all zones associated with it) and recreate it.
description: Default Pool
attributes: {}
# List out the NS records for zones hosted within this pool
# This should be a record that is created outside of designate, that
# points to the public IP of the controller node.
ns_records:
- hostname: {{Controller_FQDN}}. # Thisis mDNS
priority: 1
# List out the nameservers for this pool. These are the actual BIND servers.
# We use these to verify changes have propagated to all nameservers.
nameservers:
- host: {{ DNS_SERVER_IP }}
port: 53
# List out the targets for this pool. For BIND there will be one
# entry for each BIND server, as we have to run rndc command on each server
targets:
- type: bind9
description: BIND9 Server 1
# List out the designate-mdns servers from which BIND servers should
# request zone transfers (AXFRs) from.
# This should be the IP of the controller node.
# If you have multiple controllers you can add multiple masters
# by running designate-mdns on them, and adding them here.
masters:
- host: {{ CONTROLLER_SERVER_IP }}
port: 5354
# BIND Configuration options
options:
host: {{ DNS_SERVER_IP }}
port: 53
rndc_host: {{ DNS_SERVER_IP }}
rndc_port: 953
rndc_key_file: /etc/rndc.key
rndc_config_file: /etc/rndc.conf
```
填充 Designate 池:
```
su -s /bin/sh -c "designate-manage pool update" designate
```
3、启动 Designate 中心和 API 服务:
```
systemctl enable --now designate-central designate-api
```
4、验证 Designate 服务运行:
```
# openstack dns service list
+--------------+--------+-------+--------------+
| service_name | status | stats | capabilities |
+--------------+--------+-------+--------------+
| central | UP | - | - |
| api | UP | - | - |
| mdns | UP | - | - |
| worker | UP | - | - |
| producer | UP | - | - |
+--------------+--------+-------+--------------+
```
### 用外部 DNS 配置 OpenStack Neutron
1、为 Designate 服务配置 iptables
```
# iptables -I INPUT -p tcp -m multiport --dports 9001 -m comment --comment "designate incoming" -j ACCEPT
# iptables -I INPUT -p tcp -m multiport --dports 5354 -m comment --comment "Designate mdns incoming" -j ACCEPT
# iptables -I INPUT -p tcp -m multiport --dports 53 -m comment --comment "bind incoming" -j ACCEPT
# iptables -I INPUT -p udp -m multiport --dports 53 -m comment --comment "bind/powerdns incoming" -j ACCEPT
# iptables -I INPUT -p tcp -m multiport --dports 953 -m comment --comment "rndc incoming - bind only" -j ACCEPT
# service iptables save; service iptables restart
# setsebool named_write_master_zones 1
```
2、 编辑 `/etc/neutron/neutron.conf``[default]` 节:
```
external_dns_driver = designate
```
3、 在 `/etc/neutron/neutron.conf` 中添加 `[designate]` 节:
```
[designate]
url = http://{{ CONTROLLER_SERVER_IP }}:9001/v2 ## This end point of designate
auth_type = password
auth_url = http://{{ CONTROLLER_SERVER_IP }}:5000
username = designate
password = rhlab123
project_name = services
project_domain_name = Default
user_domain_name = Default
allow_reverse_dns_lookup = True
ipv4_ptr_zone_prefix_size = 24
ipv6_ptr_zone_prefix_size = 116
```
4、编辑 `neutron.conf``dns_domain`
```
dns_domain = rhlab.dev.
```
重启:
```
# systemctl restart neutron-*
```
5、在 `/etc/neutron/plugins/ml2/ml2_conf.ini` 中的组成层 2ML2中添加 `dns`
```
extension_drivers=port_security,qos,dns
```
6、在 Designate 中添加区域:
```
# openstack zone create email=admin@rhlab.dev rhlab.dev.
```
`rhlab.dev` 区域中添加记录:
```
# openstack recordset create --record '192.168.1.230' --type A rhlab.dev. Test
```
Designate 现在就安装和配置好了。
--------------------------------------------------------------------------------
via: https://opensource.com/article/19/4/getting-started-openstack-designate
作者:[Amjad Yaseen][a]
选题:[lujun9972][b]
译者:[wxy](https://github.com/wxy)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://opensource.com/users/ayaseen
[b]: https://github.com/lujun9972
[1]: https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/command_line_prompt.png?itok=wbGiJ_yg (Command line prompt)
[2]: https://docs.openstack.org/designate/latest/
[3]: /article/19/3/openstack-neutron
[4]: https://opensource.com/sites/default/files/uploads/openstack_designate_architecture.png (Designate's architecture)
[5]: https://github.com/ayaseen/designate

View File

@ -0,0 +1,780 @@
[#]: collector: (lujun9972)
[#]: translator: (warmfrog)
[#]: reviewer: (wxy)
[#]: publisher: (wxy)
[#]: url: (https://linux.cn/article-10891-1.html)
[#]: subject: (Detecting malaria with deep learning)
[#]: via: (https://opensource.com/article/19/4/detecting-malaria-deep-learning)
[#]: author: (Dipanjan Sarkar https://opensource.com/users/djsarkar)
使用深度学习检测疟疾
==================
> 人工智能结合开源硬件工具能够提升严重传染病疟疾的诊断。
![][1]
人工智能AI和开源工具、技术和框架是促进社会进步的强有力的结合。“健康就是财富”可能有点陈词滥调但它却是非常准确的在本篇文章我们将测试 AI 是如何与低成本、有效、精确的开源深度学习方法结合起来一起用来检测致死的传染病疟疾。
我既不是一个医生,也不是一个医疗保健研究者,我也绝不像他们那样合格,我只是对将 AI 应用到医疗保健研究感兴趣。在这片文章中我的想法是展示 AI 和开源解决方案如何帮助疟疾检测和减少人工劳动的方法。
![Python and TensorFlow][2]
*Python 和 TensorFlow: 一个构建开源深度学习方法的很棒的结合*
感谢 Python 的强大和像 TensorFlow 这样的深度学习框架,我们能够构建健壮的、大规模的、有效的深度学习方法。因为这些工具是自由和开源的,我们能够构建非常经济且易于被任何人采纳和使用的解决方案。让我们开始吧!
### 项目动机
疟疾是由*疟原虫*造成的致死的、有传染性的、蚊子传播的疾病,主要通过受感染的雌性按蚊叮咬传播。共有五种寄生虫能够引起疟疾,但是大多数病例是这两种类型造成的:恶性疟原虫和间日疟原虫。
![疟疾热图][3]
这个地图显示了疟疾在全球传播分布形势,尤其在热带地区,但疾病的性质和致命性是该项目的主要动机。
如果一只受感染雌性蚊子叮咬了你蚊子携带的寄生虫进入你的血液并且开始破坏携带氧气的红细胞RBC。通常疟疾的最初症状类似于流感病毒在蚊子叮咬后他们通常在几天或几周内发作。然而这些致死的寄生虫可以在你的身体里生存长达一年并且不会造成任何症状延迟治疗可能造成并发症甚至死亡。因此早期的检查能够挽救生命。
世界健康组织WHO的[疟疾实情][4]表明,世界近乎一半的人口面临疟疾的风险,有超过 2 亿的疟疾病例,每年由于疟疾造成的死亡将近 40 万。这是使疟疾检测和诊断快速、简单和有效的一个动机。
### 检测疟疾的方法
有几种方法能够用来检测和诊断疟疾。该文中的项目就是基于 Rajaraman, et al. 的论文:“[预先训练的卷积神经网络作为特征提取器,用于改善薄血涂片图像中的疟疾寄生虫检测][5]”介绍的一些方法包含聚合酶链反应PCR和快速诊断测试RDT。这两种测试通常用于无法提供高质量显微镜服务的地方。
标准的疟疾诊断通常是基于血液涂片工作流程的,根据 Carlos Ariza 的文章“[Malaria Hero一个更快诊断疟原虫的网络应用][6]”,我从中了解到 Adrian Rosebrock 的“[使用 Keras 的深度学习和医学图像分析][7]”。我感激这些优秀的资源的作者,让我在疟原虫预防、诊断和治疗方面有了更多的想法。
![疟原虫检测的血涂片工作流程][8]
*一个疟原虫检测的血涂片工作流程*
根据 WHO 方案,诊断通常包括对放大 100 倍的血涂片的集中检测。受过训练的人们手工计算在 5000 个细胞中有多少红细胞中包含疟原虫。正如上述解释中引用的 Rajaraman et al. 的论文:
> 厚血涂片有助于检测寄生虫的存在,而薄血涂片有助于识别引起感染的寄生虫种类(疾病控制和预防中心, 2012。诊断准确性在很大程度上取决于诊断人的专业知识并且可能受到观察者间差异和疾病流行/资源受限区域大规模诊断所造成的不利影响Mitiku, Mengistu 和 Gelaw, 2003。可替代的技术是使用聚合酶链反应PCR和快速诊断测试RDT然而PCR 分析受限于它的性能Hommelsheim, et al., 2014RDT 在疾病流行的地区成本效益低Hawkes, Katsuva 和 Masumbuko, 2009
因此,疟疾检测可能受益于使用机器学习的自动化。
### 疟疾检测的深度学习
人工诊断血涂片是一个繁重的手工过程,需要专业知识来分类和计数被寄生虫感染的和未感染的细胞。这个过程可能不能很好的规模化,尤其在那些专业人士不足的地区。在利用最先进的图像处理和分析技术提取人工选取特征和构建基于机器学习的分类模型方面取得了一些进展。然而,这些模型不能大规模推广,因为没有更多的数据用来训练,并且人工选取特征需要花费很长时间。
深度学习模型或者更具体地讲卷积神经网络CNN已经被证明在各种计算机视觉任务中非常有效。如果你想更多的了解关于 CNN 的背景知识,我推荐你阅读[视觉识别的 CS2331n 卷积神经网络][9]。简单地讲CNN 模型的关键层包含卷积和池化层,正如下图所示。
![A typical CNN architecture][10]
*一个典型的 CNN 架构*
卷积层从数据中学习空间层级模式,它是平移不变的,因此它们能够学习图像的不同方面。例如,第一个卷积层将学习小的和局部图案,例如边缘和角落,第二个卷积层将基于第一层的特征学习更大的图案,等等。这允许 CNN 自动化提取特征并且学习对于新数据点通用的有效的特征。池化层有助于下采样和减少尺寸。
因此CNN 有助于自动化和规模化的特征工程。同样,在模型末尾加上密集层允许我们执行像图像分类这样的任务。使用像 CNN 这样的深度学习模型自动的疟疾检测可能非常有效、便宜和具有规模性,尤其是迁移学习和预训练模型效果非常好,甚至在少量数据的约束下。
Rajaraman, et al. 的论文在一个数据集上利用六个预训练模型在检测疟疾对比无感染样本获取到令人吃惊的 95.9% 的准确率。我们的重点是从头开始尝试一些简单的 CNN 模型和用一个预训练的训练模型使用迁移学习来查看我们能够从相同的数据集中得到什么。我们将使用开源工具和框架,包括 Python 和 TensorFlow来构建我们的模型。
### 数据集
我们分析的数据来自 Lister Hill 国家生物医学交流中心LHNCBC的研究人员该中心是国家医学图书馆NLM的一部分他们细心收集和标记了公开可用的健康和受感染的血涂片图像的[数据集][11]。这些研究者已经开发了一个运行在 Android 智能手机的[疟疾检测手机应用][12],连接到一个传统的光学显微镜。它们使用吉姆萨染液将 150 个受恶性疟原虫感染的和 50 个健康病人的薄血涂片染色,这些薄血涂片是在孟加拉的吉大港医学院附属医院收集和照相的。使用智能手机的内置相机获取每个显微镜视窗内的图像。这些图片由在泰国曼谷的马希多-牛津热带医学研究所的一个专家使用幻灯片阅读器标记的。
让我们简要地查看一下数据集的结构。首先,我将安装一些基础的依赖(基于使用的操作系统)。
![Installing dependencies][13]
我使用的是云上的带有一个 GPU 的基于 Debian 的操作系统,这样我能更快的运行我的模型。为了查看目录结构,我们必须使用 `sudo apt install tree` 安装 `tree` 及其依赖(如果我们没有安装的话)。
![Installing the tree dependency][14]
我们有两个文件夹包含血细胞的图像,包括受感染的和健康的。我们通过输入可以获取关于图像总数更多的细节:
```
import os
import glob
base_dir = os.path.join('./cell_images')
infected_dir = os.path.join(base_dir,'Parasitized')
healthy_dir = os.path.join(base_dir,'Uninfected')
infected_files = glob.glob(infected_dir+'/*.png')
healthy_files = glob.glob(healthy_dir+'/*.png')
len(infected_files), len(healthy_files)
# Output
(13779, 13779)
```
看起来我们有一个平衡的数据集,包含 13,779 张疟疾的和 13,779 张非疟疾的(健康的)血细胞图像。让我们根据这些构建数据帧,我们将用这些数据帧来构建我们的数据集。
```
import numpy as np
import pandas as pd
np.random.seed(42)
files_df = pd.DataFrame({
'filename': infected_files + healthy_files,
'label': ['malaria'] * len(infected_files) + ['healthy'] * len(healthy_files)
}).sample(frac=1, random_state=42).reset_index(drop=True)
files_df.head()
```
![Datasets][15]
### 构建和了解图像数据集
为了构建深度学习模型,我们需要训练数据,但是我们还需要使用不可见的数据测试模型的性能。相应的,我们将使用 60:10:30 的比例来划分用于训练、验证和测试的数据集。我们将在训练期间应用训练和验证数据集,并用测试数据集来检查模型的性能。
```
from sklearn.model_selection import train_test_split
from collections import Counter
train_files, test_files, train_labels, test_labels = train_test_split(files_df['filename'].values,
files_df['label'].values,
test_size=0.3, random_state=42)
train_files, val_files, train_labels, val_labels = train_test_split(train_files,
train_labels,
test_size=0.1, random_state=42)
print(train_files.shape, val_files.shape, test_files.shape)
print('Train:', Counter(train_labels), '\nVal:', Counter(val_labels), '\nTest:', Counter(test_labels))
# Output
(17361,) (1929,) (8268,)
Train: Counter({'healthy': 8734, 'malaria': 8627})
Val: Counter({'healthy': 970, 'malaria': 959})
Test: Counter({'malaria': 4193, 'healthy': 4075})
```
这些图片尺寸并不相同,因为血涂片和细胞图像是基于人、测试方法、图片方向不同而不同的。让我们总结我们的训练数据集的统计信息来决定最佳的图像尺寸(牢记,我们根本不会碰测试数据集)。
```
import cv2
from concurrent import futures
import threading
def get_img_shape_parallel(idx, img, total_imgs):
if idx % 5000 == 0 or idx == (total_imgs - 1):
print('{}: working on img num: {}'.format(threading.current_thread().name,
idx))
return cv2.imread(img).shape
ex = futures.ThreadPoolExecutor(max_workers=None)
data_inp = [(idx, img, len(train_files)) for idx, img in enumerate(train_files)]
print('Starting Img shape computation:')
train_img_dims_map = ex.map(get_img_shape_parallel,
[record[0] for record in data_inp],
[record[1] for record in data_inp],
[record[2] for record in data_inp])
train_img_dims = list(train_img_dims_map)
print('Min Dimensions:', np.min(train_img_dims, axis=0))
print('Avg Dimensions:', np.mean(train_img_dims, axis=0))
print('Median Dimensions:', np.median(train_img_dims, axis=0))
print('Max Dimensions:', np.max(train_img_dims, axis=0))
# Output
Starting Img shape computation:
ThreadPoolExecutor-0_0: working on img num: 0
ThreadPoolExecutor-0_17: working on img num: 5000
ThreadPoolExecutor-0_15: working on img num: 10000
ThreadPoolExecutor-0_1: working on img num: 15000
ThreadPoolExecutor-0_7: working on img num: 17360
Min Dimensions: [46 46 3]
Avg Dimensions: [132.77311215 132.45757733 3.]
Median Dimensions: [130. 130. 3.]
Max Dimensions: [385 394 3]
```
我们应用并行处理来加速图像读取,并且基于汇总统计结果,我们将每幅图片的尺寸重新调整到 125x125 像素。让我们载入我们所有的图像并重新调整它们为这些固定尺寸。
```
IMG_DIMS = (125, 125)
def get_img_data_parallel(idx, img, total_imgs):
if idx % 5000 == 0 or idx == (total_imgs - 1):
print('{}: working on img num: {}'.format(threading.current_thread().name,
idx))
img = cv2.imread(img)
img = cv2.resize(img, dsize=IMG_DIMS,
interpolation=cv2.INTER_CUBIC)
img = np.array(img, dtype=np.float32)
return img
ex = futures.ThreadPoolExecutor(max_workers=None)
train_data_inp = [(idx, img, len(train_files)) for idx, img in enumerate(train_files)]
val_data_inp = [(idx, img, len(val_files)) for idx, img in enumerate(val_files)]
test_data_inp = [(idx, img, len(test_files)) for idx, img in enumerate(test_files)]
print('Loading Train Images:')
train_data_map = ex.map(get_img_data_parallel,
[record[0] for record in train_data_inp],
[record[1] for record in train_data_inp],
[record[2] for record in train_data_inp])
train_data = np.array(list(train_data_map))
print('\nLoading Validation Images:')
val_data_map = ex.map(get_img_data_parallel,
[record[0] for record in val_data_inp],
[record[1] for record in val_data_inp],
[record[2] for record in val_data_inp])
val_data = np.array(list(val_data_map))
print('\nLoading Test Images:')
test_data_map = ex.map(get_img_data_parallel,
[record[0] for record in test_data_inp],
[record[1] for record in test_data_inp],
[record[2] for record in test_data_inp])
test_data = np.array(list(test_data_map))
train_data.shape, val_data.shape, test_data.shape
# Output
Loading Train Images:
ThreadPoolExecutor-1_0: working on img num: 0
ThreadPoolExecutor-1_12: working on img num: 5000
ThreadPoolExecutor-1_6: working on img num: 10000
ThreadPoolExecutor-1_10: working on img num: 15000
ThreadPoolExecutor-1_3: working on img num: 17360
Loading Validation Images:
ThreadPoolExecutor-1_13: working on img num: 0
ThreadPoolExecutor-1_18: working on img num: 1928
Loading Test Images:
ThreadPoolExecutor-1_5: working on img num: 0
ThreadPoolExecutor-1_19: working on img num: 5000
ThreadPoolExecutor-1_8: working on img num: 8267
((17361, 125, 125, 3), (1929, 125, 125, 3), (8268, 125, 125, 3))
```
我们再次应用并行处理来加速有关图像载入和重新调整大小的计算。最终,我们获得了所需尺寸的图片张量,正如前面的输出所示。我们现在查看一些血细胞图像样本,以对我们的数据有个印象。
```
import matplotlib.pyplot as plt
%matplotlib inline
plt.figure(1 , figsize = (8 , 8))
n = 0
for i in range(16):
n += 1
r = np.random.randint(0 , train_data.shape[0] , 1)
plt.subplot(4 , 4 , n)
plt.subplots_adjust(hspace = 0.5 , wspace = 0.5)
plt.imshow(train_data[r[0]]/255.)
plt.title('{}'.format(train_labels[r[0]]))
plt.xticks([]) , plt.yticks([])
```
![Malaria cell samples][16]
基于这些样本图像,我们看到一些疟疾和健康细胞图像的细微不同。我们将使我们的深度学习模型试图在模型训练中学习这些模式。
开始我们的模型训练前,我们必须建立一些基础的配置设置。
```
BATCH_SIZE = 64
NUM_CLASSES = 2
EPOCHS = 25
INPUT_SHAPE = (125, 125, 3)
train_imgs_scaled = train_data / 255.
val_imgs_scaled = val_data / 255.
# encode text category labels
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
le.fit(train_labels)
train_labels_enc = le.transform(train_labels)
val_labels_enc = le.transform(val_labels)
print(train_labels[:6], train_labels_enc[:6])
# Output
['malaria' 'malaria' 'malaria' 'healthy' 'healthy' 'malaria'] [1 1 1 0 0 1]
```
我们修复我们的图像尺寸、批量大小和纪元并编码我们的分类的类标签。TensorFlow 2.0 于 2019 年三月发布,这个练习是尝试它的完美理由。
```
import tensorflow as tf
# Load the TensorBoard notebook extension (optional)
%load_ext tensorboard.notebook
tf.random.set_seed(42)
tf.__version__
# Output
'2.0.0-alpha0'
```
### 深度学习训练
在模型训练阶段,我们将构建三个深度训练模型,使用我们的训练集训练,使用验证数据比较它们的性能。然后,我们保存这些模型并在之后的模型评估阶段使用它们。
#### 模型 1从头开始的 CNN
我们的第一个疟疾检测模型将从头开始构建和训练一个基础的 CNN。首先让我们定义我们的模型架构
```
inp = tf.keras.layers.Input(shape=INPUT_SHAPE)
conv1 = tf.keras.layers.Conv2D(32, kernel_size=(3, 3),
activation='relu', padding='same')(inp)
pool1 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = tf.keras.layers.Conv2D(64, kernel_size=(3, 3),
activation='relu', padding='same')(pool1)
pool2 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = tf.keras.layers.Conv2D(128, kernel_size=(3, 3),
activation='relu', padding='same')(pool2)
pool3 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(conv3)
flat = tf.keras.layers.Flatten()(pool3)
hidden1 = tf.keras.layers.Dense(512, activation='relu')(flat)
drop1 = tf.keras.layers.Dropout(rate=0.3)(hidden1)
hidden2 = tf.keras.layers.Dense(512, activation='relu')(drop1)
drop2 = tf.keras.layers.Dropout(rate=0.3)(hidden2)
out = tf.keras.layers.Dense(1, activation='sigmoid')(drop2)
model = tf.keras.Model(inputs=inp, outputs=out)
model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'])
model.summary()
# Output
Model: "model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) [(None, 125, 125, 3)] 0
_________________________________________________________________
conv2d (Conv2D) (None, 125, 125, 32) 896
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 62, 62, 32) 0
_________________________________________________________________
conv2d_1 (Conv2D) (None, 62, 62, 64) 18496
_________________________________________________________________
...
...
_________________________________________________________________
dense_1 (Dense) (None, 512) 262656
_________________________________________________________________
dropout_1 (Dropout) (None, 512) 0
_________________________________________________________________
dense_2 (Dense) (None, 1) 513
=================================================================
Total params: 15,102,529
Trainable params: 15,102,529
Non-trainable params: 0
_________________________________________________________________
```
基于这些代码的架构,我们的 CNN 模型有三个卷积和一个池化层,其后是两个致密层,以及用于正则化的失活。让我们训练我们的模型。
```
import datetime
logdir = os.path.join('/home/dipanzan_sarkar/projects/tensorboard_logs',
datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
tensorboard_callback = tf.keras.callbacks.TensorBoard(logdir, histogram_freq=1)
reduce_lr = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5,
patience=2, min_lr=0.000001)
callbacks = [reduce_lr, tensorboard_callback]
history = model.fit(x=train_imgs_scaled, y=train_labels_enc,
batch_size=BATCH_SIZE,
epochs=EPOCHS,
validation_data=(val_imgs_scaled, val_labels_enc),
callbacks=callbacks,
verbose=1)
# Output
Train on 17361 samples, validate on 1929 samples
Epoch 1/25
17361/17361 [====] - 32s 2ms/sample - loss: 0.4373 - accuracy: 0.7814 - val_loss: 0.1834 - val_accuracy: 0.9393
Epoch 2/25
17361/17361 [====] - 30s 2ms/sample - loss: 0.1725 - accuracy: 0.9434 - val_loss: 0.1567 - val_accuracy: 0.9513
...
...
Epoch 24/25
17361/17361 [====] - 30s 2ms/sample - loss: 0.0036 - accuracy: 0.9993 - val_loss: 0.3693 - val_accuracy: 0.9565
Epoch 25/25
17361/17361 [====] - 30s 2ms/sample - loss: 0.0034 - accuracy: 0.9994 - val_loss: 0.3699 - val_accuracy: 0.9559
```
我们获得了 95.6% 的验证精确率,这很好,尽管我们的模型看起来有些过拟合(通过查看我们的训练精确度,是 99.9%)。通过绘制训练和验证的精度和损失曲线,我们可以清楚地看到这一点。
```
f, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
t = f.suptitle('Basic CNN Performance', fontsize=12)
f.subplots_adjust(top=0.85, wspace=0.3)
max_epoch = len(history.history['accuracy'])+1
epoch_list = list(range(1,max_epoch))
ax1.plot(epoch_list, history.history['accuracy'], label='Train Accuracy')
ax1.plot(epoch_list, history.history['val_accuracy'], label='Validation Accuracy')
ax1.set_xticks(np.arange(1, max_epoch, 5))
ax1.set_ylabel('Accuracy Value')
ax1.set_xlabel('Epoch')
ax1.set_title('Accuracy')
l1 = ax1.legend(loc="best")
ax2.plot(epoch_list, history.history['loss'], label='Train Loss')
ax2.plot(epoch_list, history.history['val_loss'], label='Validation Loss')
ax2.set_xticks(np.arange(1, max_epoch, 5))
ax2.set_ylabel('Loss Value')
ax2.set_xlabel('Epoch')
ax2.set_title('Loss')
l2 = ax2.legend(loc="best")
```
![Learning curves for basic CNN][17]
*基础 CNN 学习曲线*
我们可以看在在第五个纪元,情况并没有改善很多。让我们保存这个模型用于将来的评估。
```
model.save('basic_cnn.h5')
```
#### 深度迁移学习
就像人类有与生俱来在不同任务间传输知识的能力一样,迁移学习允许我们利用从以前任务学到的知识用到新的相关的任务,即使在机器学习或深度学习的情况下也是如此。如果想深入探究迁移学习,你应该看我的文章“[一个易于理解与现实应用一起学习深度学习中的迁移学习的指导实践][18]”和我的书《[Python 迁移学习实践][19]》。
![深度迁移学习的想法][20]
在这篇实践中我们想要探索的想法是:
> 在我们的问题背景下,我们能够利用一个预训练深度学习模型(在大数据集上训练的,像 ImageNet通过应用和迁移知识来解决疟疾检测的问题吗
我们将应用两个最流行的深度迁移学习策略。
* 预训练模型作为特征提取器
* 微调的预训练模型
我们将使用预训练的 VGG-19 深度训练模型由剑桥大学的视觉几何组VGG开发进行我们的实验。像 VGG-19 这样的预训练模型是在一个大的数据集([Imagenet][21])上使用了很多不同的图像分类训练的。因此,这个模型应该已经学习到了健壮的特征层级结构,相对于你的 CNN 模型学到的特征,是空间不变的、转动不变的、平移不变的。因此,这个模型,已经从百万幅图片中学习到了一个好的特征显示,对于像疟疾检测这样的计算机视觉问题,可以作为一个好的合适新图像的特征提取器。在我们的问题中发挥迁移学习的能力之前,让我们先讨论 VGG-19 模型。
##### 理解 VGG-19 模型
VGG-19 模型是一个构建在 ImageNet 数据库之上的 19 层卷积和全连接的的深度学习网络ImageNet 数据库为了图像识别和分类的目的而开发。该模型是由 Karen Simonyan 和 Andrew Zisserman 构建的,在他们的论文“[大规模图像识别的非常深的卷积网络][22]”中进行了描述。VGG-19 的架构模型是:
![VGG-19 模型架构][23]
你可以看到我们总共有 16 个使用 3x3 卷积过滤器的卷积层,与最大的池化层来下采样,和由 4096 个单元组成的两个全连接的隐藏层,每个隐藏层之后跟随一个由 1000 个单元组成的致密层,每个单元代表 ImageNet 数据库中的一个分类。我们不需要最后三层,因为我们将使用我们自己的全连接致密层来预测疟疾。我们更关心前五个块,因此我们可以利用 VGG 模型作为一个有效的特征提取器。
我们将使用模型之一作为一个简单的特征提取器,通过冻结五个卷积块的方式来确保它们的位权在每个纪元后不会更新。对于最后一个模型,我们会对 VGG 模型进行微调,我们会解冻最后两个块(第 4 和第 5因此当我们训练我们的模型时它们的位权在每个时期每批数据被更新。
#### 模型 2预训练的模型作为一个特征提取器
为了构建这个模型,我们将利用 TensorFlow 载入 VGG-19 模型并冻结卷积块,因此我们能够将它们用作特征提取器。我们在末尾插入我们自己的致密层来执行分类任务。
```
vgg = tf.keras.applications.vgg19.VGG19(include_top=False, weights='imagenet',
input_shape=INPUT_SHAPE)
vgg.trainable = False
# Freeze the layers
for layer in vgg.layers:
layer.trainable = False
base_vgg = vgg
base_out = base_vgg.output
pool_out = tf.keras.layers.Flatten()(base_out)
hidden1 = tf.keras.layers.Dense(512, activation='relu')(pool_out)
drop1 = tf.keras.layers.Dropout(rate=0.3)(hidden1)
hidden2 = tf.keras.layers.Dense(512, activation='relu')(drop1)
drop2 = tf.keras.layers.Dropout(rate=0.3)(hidden2)
out = tf.keras.layers.Dense(1, activation='sigmoid')(drop2)
model = tf.keras.Model(inputs=base_vgg.input, outputs=out)
model.compile(optimizer=tf.keras.optimizers.RMSprop(lr=1e-4),
loss='binary_crossentropy',
metrics=['accuracy'])
model.summary()
# Output
Model: "model_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_2 (InputLayer) [(None, 125, 125, 3)] 0
_________________________________________________________________
block1_conv1 (Conv2D) (None, 125, 125, 64) 1792
_________________________________________________________________
block1_conv2 (Conv2D) (None, 125, 125, 64) 36928
_________________________________________________________________
...
...
_________________________________________________________________
block5_pool (MaxPooling2D) (None, 3, 3, 512) 0
_________________________________________________________________
flatten_1 (Flatten) (None, 4608) 0
_________________________________________________________________
dense_3 (Dense) (None, 512) 2359808
_________________________________________________________________
dropout_2 (Dropout) (None, 512) 0
_________________________________________________________________
dense_4 (Dense) (None, 512) 262656
_________________________________________________________________
dropout_3 (Dropout) (None, 512) 0
_________________________________________________________________
dense_5 (Dense) (None, 1) 513
=================================================================
Total params: 22,647,361
Trainable params: 2,622,977
Non-trainable params: 20,024,384
_________________________________________________________________
```
从整个输出可以明显看出,在我们的模型中我们有了很多层,我们将只利用 VGG-19 模型的冻结层作为特征提取器。你可以使用下列代码来验证我们的模型有多少层是实际可训练的,以及我们的网络中总共存在多少层。
```
print("Total Layers:", len(model.layers))
print("Total trainable layers:",
sum([1 for l in model.layers if l.trainable]))
# Output
Total Layers: 28
Total trainable layers: 6
```
我们将使用和我们之前的模型相似的配置和回调来训练我们的模型。参考[我的 GitHub 仓库][24]以获取训练模型的完整代码。我们观察下列图表,以显示模型精确度和损失曲线。
![Learning curves for frozen pre-trained CNN][25]
*冻结的预训练的 CNN 的学习曲线*
这表明我们的模型没有像我们的基础 CNN 模型那样过拟合,但是性能有点不如我们的基础的 CNN 模型。让我们保存这个模型,以备将来的评估。
```
model.save('vgg_frozen.h5')
```
#### 模型 3使用图像增强来微调预训练的模型
在我们的最后一个模型中,我们将在预定义好的 VGG-19 模型的最后两个块中微调层的位权。我们同样引入了图像增强的概念。图像增强背后的想法和其名字一样。我们从训练数据集中载入现有图像,并且应用转换操作,例如旋转、裁剪、转换、放大缩小等等,来产生新的、改变过的版本。由于这些随机转换,我们每次获取到的图像不一样。我们将应用 tf.keras 中的一个名为 ImageDataGenerator 的优秀工具来帮助构建图像增强器。
```
train_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1./255,
zoom_range=0.05,
rotation_range=25,
width_shift_range=0.05,
height_shift_range=0.05,
shear_range=0.05, horizontal_flip=True,
fill_mode='nearest')
val_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1./255)
# build image augmentation generators
train_generator = train_datagen.flow(train_data, train_labels_enc, batch_size=BATCH_SIZE, shuffle=True)
val_generator = val_datagen.flow(val_data, val_labels_enc, batch_size=BATCH_SIZE, shuffle=False)
```
我们不会对我们的验证数据集应用任何转换(除非是调整大小,因为这是必须的),因为我们将使用它评估每个纪元的模型性能。对于在传输学习环境中的图像增强的详细解释,请随时查看我上面引用的[文章][18]。让我们从一批图像增强转换中查看一些样本结果。
```
img_id = 0
sample_generator = train_datagen.flow(train_data[img_id:img_id+1], train_labels[img_id:img_id+1],
batch_size=1)
sample = [next(sample_generator) for i in range(0,5)]
fig, ax = plt.subplots(1,5, figsize=(16, 6))
print('Labels:', [item[1][0] for item in sample])
l = [ax[i].imshow(sample[i][0][0]) for i in range(0,5)]
```
![Sample augmented images][26]
你可以清晰的看到与之前的输出的我们图像的轻微变化。我们现在构建我们的学习模型,确保 VGG-19 模型的最后两块是可以训练的。
```
vgg = tf.keras.applications.vgg19.VGG19(include_top=False, weights='imagenet',
input_shape=INPUT_SHAPE)
# Freeze the layers
vgg.trainable = True
set_trainable = False
for layer in vgg.layers:
if layer.name in ['block5_conv1', 'block4_conv1']:
set_trainable = True
if set_trainable:
layer.trainable = True
else:
layer.trainable = False
base_vgg = vgg
base_out = base_vgg.output
pool_out = tf.keras.layers.Flatten()(base_out)
hidden1 = tf.keras.layers.Dense(512, activation='relu')(pool_out)
drop1 = tf.keras.layers.Dropout(rate=0.3)(hidden1)
hidden2 = tf.keras.layers.Dense(512, activation='relu')(drop1)
drop2 = tf.keras.layers.Dropout(rate=0.3)(hidden2)
out = tf.keras.layers.Dense(1, activation='sigmoid')(drop2)
model = tf.keras.Model(inputs=base_vgg.input, outputs=out)
model.compile(optimizer=tf.keras.optimizers.RMSprop(lr=1e-5),
loss='binary_crossentropy',
metrics=['accuracy'])
print("Total Layers:", len(model.layers))
print("Total trainable layers:", sum([1 for l in model.layers if l.trainable]))
# Output
Total Layers: 28
Total trainable layers: 16
```
在我们的模型中我们降低了学习率,因为我们不想在微调的时候对预训练的层做大的位权更新。模型的训练过程可能有轻微的不同,因为我们使用了数据生成器,因此我们将应用 `fit_generator(...)` 函数。
```
tensorboard_callback = tf.keras.callbacks.TensorBoard(logdir, histogram_freq=1)
reduce_lr = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5,
patience=2, min_lr=0.000001)
callbacks = [reduce_lr, tensorboard_callback]
train_steps_per_epoch = train_generator.n // train_generator.batch_size
val_steps_per_epoch = val_generator.n // val_generator.batch_size
history = model.fit_generator(train_generator, steps_per_epoch=train_steps_per_epoch, epochs=EPOCHS,
validation_data=val_generator, validation_steps=val_steps_per_epoch,
verbose=1)
# Output
Epoch 1/25
271/271 [====] - 133s 489ms/step - loss: 0.2267 - accuracy: 0.9117 - val_loss: 0.1414 - val_accuracy: 0.9531
Epoch 2/25
271/271 [====] - 129s 475ms/step - loss: 0.1399 - accuracy: 0.9552 - val_loss: 0.1292 - val_accuracy: 0.9589
...
...
Epoch 24/25
271/271 [====] - 128s 473ms/step - loss: 0.0815 - accuracy: 0.9727 - val_loss: 0.1466 - val_accuracy: 0.9682
Epoch 25/25
271/271 [====] - 128s 473ms/step - loss: 0.0792 - accuracy: 0.9729 - val_loss: 0.1127 - val_accuracy: 0.9641
```
这看起来是我们的最好的模型。它给了我们近乎 96.5% 的验证精确率,基于训练精度,它看起来不像我们的第一个模型那样过拟合。这可以通过下列的学习曲线验证。
![Learning curves for fine-tuned pre-trained CNN][27]
*微调过的预训练 CNN 的学习曲线*
让我们保存这个模型,因此我们能够在测试集上使用。
```
model.save('vgg_finetuned.h5')
```
这就完成了我们的模型训练阶段。现在我们准备好了在测试集上测试我们模型的性能。
### 深度学习模型性能评估
我们将通过在我们的测试集上做预测来评估我们在训练阶段构建的三个模型,因为仅仅验证是不够的!我们同样构建了一个检测工具模块叫做 `model_evaluation_utils`,我们可以使用相关分类指标用来评估使用我们深度学习模型的性能。第一步是扩展我们的数据集。
```
test_imgs_scaled = test_data / 255.
test_imgs_scaled.shape, test_labels.shape
# Output
((8268, 125, 125, 3), (8268,))
```
下一步包括载入我们保存的深度学习模型,在测试集上预测。
```
# Load Saved Deep Learning Models
basic_cnn = tf.keras.models.load_model('./basic_cnn.h5')
vgg_frz = tf.keras.models.load_model('./vgg_frozen.h5')
vgg_ft = tf.keras.models.load_model('./vgg_finetuned.h5')
# Make Predictions on Test Data
basic_cnn_preds = basic_cnn.predict(test_imgs_scaled, batch_size=512)
vgg_frz_preds = vgg_frz.predict(test_imgs_scaled, batch_size=512)
vgg_ft_preds = vgg_ft.predict(test_imgs_scaled, batch_size=512)
basic_cnn_pred_labels = le.inverse_transform([1 if pred > 0.5 else 0
for pred in basic_cnn_preds.ravel()])
vgg_frz_pred_labels = le.inverse_transform([1 if pred > 0.5 else 0
for pred in vgg_frz_preds.ravel()])
vgg_ft_pred_labels = le.inverse_transform([1 if pred > 0.5 else 0
for pred in vgg_ft_preds.ravel()])
```
下一步是应用我们的 `model_evaluation_utils` 模块根据相应分类指标来检查每个模块的性能。
```
import model_evaluation_utils as meu
import pandas as pd
basic_cnn_metrics = meu.get_metrics(true_labels=test_labels, predicted_labels=basic_cnn_pred_labels)
vgg_frz_metrics = meu.get_metrics(true_labels=test_labels, predicted_labels=vgg_frz_pred_labels)
vgg_ft_metrics = meu.get_metrics(true_labels=test_labels, predicted_labels=vgg_ft_pred_labels)
pd.DataFrame([basic_cnn_metrics, vgg_frz_metrics, vgg_ft_metrics],
index=['Basic CNN', 'VGG-19 Frozen', 'VGG-19 Fine-tuned'])
```
![Model accuracy][28]
看起来我们的第三个模型在我们的测试集上执行的最好,给出了一个模型精确性为 96% 的 F1 得分,这非常好,与我们之前提到的研究论文和文章中的更复杂的模型相当。
### 总结
疟疾检测不是一个简单的过程,全球的合格人员的不足在病例诊断和治疗当中是一个严重的问题。我们研究了一个关于疟疾的有趣的真实世界的医学影像案例。利用 AI 的、易于构建的、开源的技术在检测疟疾方面可以为我们提供最先进的精确性,因此使 AI 具有社会效益。
我鼓励你查看这篇文章中提到的文章和研究论文,没有它们,我就不能形成概念并写出来。如果你对运行和采纳这些技术感兴趣,本篇文章所有的代码都可以在[我的 GitHub 仓库][24]获得。记得从[官方网站][11]下载数据。
让我们希望在健康医疗方面更多的采纳开源的 AI 能力,使它在世界范围内变得更便宜、更易用。
--------------------------------------------------------------------------------
via: https://opensource.com/article/19/4/detecting-malaria-deep-learning
作者:[Dipanjan (DJ) Sarkar][a]
选题:[lujun9972][b]
译者:[warmfrog](https://github.com/warmfrog)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://opensource.com/users/djsarkar
[b]: https://github.com/lujun9972
[1]: https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/osdc_520x292_opensourcedoctor.png?itok=fk79NwpC
[2]: https://opensource.com/sites/default/files/uploads/malaria1_python-tensorflow.png (Python and TensorFlow)
[3]: https://opensource.com/sites/default/files/uploads/malaria2_malaria-heat-map.png (Malaria heat map)
[4]: https://www.who.int/features/factfiles/malaria/en/
[5]: https://peerj.com/articles/4568/
[6]: https://blog.insightdatascience.com/https-blog-insightdatascience-com-malaria-hero-a47d3d5fc4bb
[7]: https://www.pyimagesearch.com/2018/12/03/deep-learning-and-medical-image-analysis-with-keras/
[8]: https://opensource.com/sites/default/files/uploads/malaria3_blood-smear.png (Blood smear workflow for Malaria detection)
[9]: http://cs231n.github.io/convolutional-networks/
[10]: https://opensource.com/sites/default/files/uploads/malaria4_cnn-architecture.png (A typical CNN architecture)
[11]: https://ceb.nlm.nih.gov/repositories/malaria-datasets/
[12]: https://www.ncbi.nlm.nih.gov/pubmed/29360430
[13]: https://opensource.com/sites/default/files/uploads/malaria5_dependencies.png (Installing dependencies)
[14]: https://opensource.com/sites/default/files/uploads/malaria6_tree-dependency.png (Installing the tree dependency)
[15]: https://opensource.com/sites/default/files/uploads/malaria7_dataset.png (Datasets)
[16]: https://opensource.com/sites/default/files/uploads/malaria8_cell-samples.png (Malaria cell samples)
[17]: https://opensource.com/sites/default/files/uploads/malaria9_learningcurves.png (Learning curves for basic CNN)
[18]: https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a
[19]: https://github.com/dipanjanS/hands-on-transfer-learning-with-python
[20]: https://opensource.com/sites/default/files/uploads/malaria10_transferideas.png (Ideas for deep transfer learning)
[21]: http://image-net.org/index
[22]: https://arxiv.org/pdf/1409.1556.pdf
[23]: https://opensource.com/sites/default/files/uploads/malaria11_vgg-19-model-architecture.png (VGG-19 Model Architecture)
[24]: https://nbviewer.jupyter.org/github/dipanjanS/data_science_for_all/tree/master/os_malaria_detection/
[25]: https://opensource.com/sites/default/files/uploads/malaria12_learningcurves.png (Learning curves for frozen pre-trained CNN)
[26]: https://opensource.com/sites/default/files/uploads/malaria13_sampleimages.png (Sample augmented images)
[27]: https://opensource.com/sites/default/files/uploads/malaria14_learningcurves.png (Learning curves for fine-tuned pre-trained CNN)
[28]: https://opensource.com/sites/default/files/uploads/malaria15_modelaccuracy.png (Model accuracy)

Some files were not shown because too many files have changed in this diff Show More