mirror of
https://github.com/LCTT/TranslateProject.git
synced 2025-01-13 22:30:37 +08:00
translated
This commit is contained in:
parent
91e0be2337
commit
cc53f711fc
@ -1,144 +0,0 @@
|
|||||||
[#]: collector: (lujun9972)
|
|
||||||
[#]: translator: (geekpi)
|
|
||||||
[#]: reviewer: ( )
|
|
||||||
[#]: publisher: ( )
|
|
||||||
[#]: url: ( )
|
|
||||||
[#]: subject: (Using pandas to plot data in Python)
|
|
||||||
[#]: via: (https://opensource.com/article/20/6/pandas-python)
|
|
||||||
[#]: author: (Shaun Taylor-Morgan https://opensource.com/users/shaun-taylor-morgan)
|
|
||||||
|
|
||||||
Using pandas to plot data in Python
|
|
||||||
======
|
|
||||||
Pandas is a hugely popular Python data manipulation library. Learn how
|
|
||||||
to use its API to plot data.
|
|
||||||
![Two pandas sitting in bamboo][1]
|
|
||||||
|
|
||||||
In this series of articles on Python-based plotting libraries, we're going to have a conceptual look at plots using pandas, the hugely popular Python data manipulation library. Pandas is a standard tool in Python for scalably transforming data, and it has also become a popular way to [import and export from CSV and Excel formats][2].
|
|
||||||
|
|
||||||
On top of all that, it also contains a very nice plotting API. This is extremely convenient—you already have your data in a pandas DataFrame, so why not use the same library to plot it?
|
|
||||||
|
|
||||||
In this series, we'll be making the same multi-bar plot in each library so we can compare how they work. The data we'll use is UK election results from 1966 to 2020:
|
|
||||||
|
|
||||||
![Matplotlib UK election results][3]
|
|
||||||
|
|
||||||
### Data that plots itself
|
|
||||||
|
|
||||||
Before we go further, note that you may need to tune your Python environment to get this code to run, including the following.
|
|
||||||
|
|
||||||
* Running a recent version of Python (instructions for [Linux][4], [Mac][5], and [Windows][6])
|
|
||||||
* Verify you're running a version of Python that works with these libraries
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
The data is available online and can be imported using pandas:
|
|
||||||
|
|
||||||
|
|
||||||
```
|
|
||||||
import pandas as pd
|
|
||||||
df = pd.read_csv('<https://anvil.works/blog/img/plotting-in-python/uk-election-results.csv>')
|
|
||||||
```
|
|
||||||
|
|
||||||
Now we're ready to go. We've seen some impressively simple APIs in this series of articles, but pandas has to take the crown.
|
|
||||||
|
|
||||||
To plot a bar plot with a group for each party and `year` on the x-axis, I simply need to do this:
|
|
||||||
|
|
||||||
|
|
||||||
```
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
|
|
||||||
ax = df.plot.bar(x='year')
|
|
||||||
|
|
||||||
plt.show()
|
|
||||||
```
|
|
||||||
|
|
||||||
Four lines—definitely the tersest multi-bar plot we've created in this series.
|
|
||||||
|
|
||||||
I’m using my data in [wide form][7], meaning there’s one column per political party:
|
|
||||||
|
|
||||||
|
|
||||||
```
|
|
||||||
year conservative labour liberal others
|
|
||||||
0 1966 253 364 12 1
|
|
||||||
1 1970 330 287 6 7
|
|
||||||
2 Feb 1974 297 301 14 18
|
|
||||||
.. ... ... ... ... ...
|
|
||||||
12 2015 330 232 8 80
|
|
||||||
13 2017 317 262 12 59
|
|
||||||
14 2019 365 202 11 72
|
|
||||||
```
|
|
||||||
|
|
||||||
This means pandas automatically knows how I want my bars grouped, and if I wanted them grouped differently, pandas makes it easy to [restructure my DataFrame][8].
|
|
||||||
|
|
||||||
As with [Seaborn][9], pandas' plotting feature is an abstraction on top of Matplotlib, which is why you call Matplotlib's `plt.show()` function to actually produce the plot.
|
|
||||||
|
|
||||||
Here's what it looks like:
|
|
||||||
|
|
||||||
![pandas unstyled data plot][10]
|
|
||||||
|
|
||||||
Looks great, especially considering how easy it was! Let's style it to look just like the [Matplotlib][11] example.
|
|
||||||
|
|
||||||
#### Styling it
|
|
||||||
|
|
||||||
We can easily tweak the styling by accessing the underlying Matplotlib methods.
|
|
||||||
|
|
||||||
Firstly, we can color our bars by passing a Matplotlib colormap into the plotting function:
|
|
||||||
|
|
||||||
|
|
||||||
```
|
|
||||||
from matplotlib.colors import ListedColormap
|
|
||||||
cmap = ListedColormap(['#0343df', '#e50000', '#ffff14', '#929591'])
|
|
||||||
ax = df.plot.bar(x='year', colormap=cmap)
|
|
||||||
```
|
|
||||||
|
|
||||||
And we can set up axis labels and titles using the return value of the plotting function—it's simply a [Matplotlib `Axis` object][12].
|
|
||||||
|
|
||||||
|
|
||||||
```
|
|
||||||
ax.set_xlabel(None)
|
|
||||||
ax.set_ylabel('Seats')
|
|
||||||
ax.set_title('UK election results')
|
|
||||||
```
|
|
||||||
|
|
||||||
Here's what it looks like now:
|
|
||||||
|
|
||||||
![pandas styled plot][13]
|
|
||||||
|
|
||||||
That's pretty much identical to the Matplotlib version shown above but in 8 lines of code rather than 16! My inner [code golfer][14] is very pleased.
|
|
||||||
|
|
||||||
### Abstractions must be escapable
|
|
||||||
|
|
||||||
As with Seaborn, the ability to drop down and access Matplotlib APIs to do the detailed tweaking was really helpful. This is a great example of giving an abstraction [escape hatches][15] to make it powerful as well as simple.
|
|
||||||
|
|
||||||
* * *
|
|
||||||
|
|
||||||
_This article is based on [How to make plots using Pandas][16] on Anvil's blog and is reused with permission._
|
|
||||||
|
|
||||||
--------------------------------------------------------------------------------
|
|
||||||
|
|
||||||
via: https://opensource.com/article/20/6/pandas-python
|
|
||||||
|
|
||||||
作者:[Shaun Taylor-Morgan][a]
|
|
||||||
选题:[lujun9972][b]
|
|
||||||
译者:[译者ID](https://github.com/译者ID)
|
|
||||||
校对:[校对者ID](https://github.com/校对者ID)
|
|
||||||
|
|
||||||
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
|
|
||||||
|
|
||||||
[a]: https://opensource.com/users/shaun-taylor-morgan
|
|
||||||
[b]: https://github.com/lujun9972
|
|
||||||
[1]: https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/panda.png?itok=0lJlct7O (Two pandas sitting in bamboo)
|
|
||||||
[2]: https://anvil.works/docs/data-tables/csv-and-excel
|
|
||||||
[3]: https://opensource.com/sites/default/files/uploads/matplotlib_2.png (Matplotlib UK election results)
|
|
||||||
[4]: https://opensource.com/article/20/4/install-python-linux
|
|
||||||
[5]: https://opensource.com/article/19/5/python-3-default-mac
|
|
||||||
[6]: https://opensource.com/article/19/8/how-install-python-windows
|
|
||||||
[7]: https://anvil.works/blog/tidy-data
|
|
||||||
[8]: https://anvil.works/blog/tidy-data#converting-between-long-and-wide-data-in-pandas
|
|
||||||
[9]: https://anvil.works/blog/plotting-in-seaborn
|
|
||||||
[10]: https://opensource.com/sites/default/files/uploads/pandas-unstyled.png (pandas unstyled data plot)
|
|
||||||
[11]: https://opensource.com/article/20/5/matplotlib-python
|
|
||||||
[12]: https://matplotlib.org/api/axis_api.html#axis-objects
|
|
||||||
[13]: https://opensource.com/sites/default/files/uploads/pandas_3.png (pandas styled plot)
|
|
||||||
[14]: https://en.wikipedia.org/wiki/Code_golf
|
|
||||||
[15]: https://anvil.works/blog/escape-hatches-and-ejector-seats
|
|
||||||
[16]: https://anvil.works/blog/plotting-in-pandas
|
|
140
translated/tech/20200602 Using pandas to plot data in Python.md
Normal file
140
translated/tech/20200602 Using pandas to plot data in Python.md
Normal file
@ -0,0 +1,140 @@
|
|||||||
|
[#]: collector: (lujun9972)
|
||||||
|
[#]: translator: (geekpi)
|
||||||
|
[#]: reviewer: ( )
|
||||||
|
[#]: publisher: ( )
|
||||||
|
[#]: url: ( )
|
||||||
|
[#]: subject: (Using pandas to plot data in Python)
|
||||||
|
[#]: via: (https://opensource.com/article/20/6/pandas-python)
|
||||||
|
[#]: author: (Shaun Taylor-Morgan https://opensource.com/users/shaun-taylor-morgan)
|
||||||
|
|
||||||
|
使用 pandas 在 Python 中绘制数据
|
||||||
|
======
|
||||||
|
Pandas 是一个非常流行的 Python 数据操作库。学习怎样使用它的 API 绘制数据。
|
||||||
|
![Two pandas sitting in bamboo][1]
|
||||||
|
|
||||||
|
在有关基于 Python 的绘图库的系列文章中,我们将对使用 pandas(一种非常流行的 Python 数据操作库)绘图进行概念性研究。Pandas 是 Python 中用于可扩展转换数据的标准工具,它也已成为[从 CSV 和 Excel 格式导入和导出数据][2]的流行方法。
|
||||||
|
|
||||||
|
最重要的是,它还包含一个非常好的绘图 API。这非常方便,你已将数据存储在 pandas DataFrame 中,那么为什么不使用相同的库进行绘制呢?
|
||||||
|
|
||||||
|
在本系列中,我们将在每个库中制作相同的多柱状图,以便我们可以比较它们的工作方式。我们将使用的数据是 1966 年至 2020 年的英国大选结果:
|
||||||
|
|
||||||
|
![Matplotlib UK election results][3]
|
||||||
|
|
||||||
|
### 自行绘制的数据
|
||||||
|
|
||||||
|
在继续之前,请注意你可能需要调整 Python 环境来运行此代码,包括:
|
||||||
|
|
||||||
|
* 运行最新版本的 Python([Linux][4]、[Mac][5] 和 [Windows][6] 的说明)
|
||||||
|
* 确认你运行的是与这些库兼容的 Python 版本
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
数据可在线获得,并可使用 pandas 导入:
|
||||||
|
|
||||||
|
```
|
||||||
|
import pandas as pd
|
||||||
|
df = pd.read_csv('<https://anvil.works/blog/img/plotting-in-python/uk-election-results.csv>')
|
||||||
|
```
|
||||||
|
|
||||||
|
完成了。在本系列文章中,我们已经看到了一些令人印象深刻的简单 API,但是 pandas 一定能夺冠。
|
||||||
|
|
||||||
|
要在 x 轴上绘制按`年`和每个党派分组的柱状图,我只需要这样做:
|
||||||
|
|
||||||
|
|
||||||
|
```
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
ax = df.plot.bar(x='year')
|
||||||
|
plt.show()
|
||||||
|
```
|
||||||
|
|
||||||
|
只有四行,这绝对是我们在本系列中创建的最棒的多柱状图。
|
||||||
|
|
||||||
|
我以[宽格式][7]使用数据,这意味着每个党派都有一列:
|
||||||
|
|
||||||
|
|
||||||
|
```
|
||||||
|
year conservative labour liberal others
|
||||||
|
0 1966 253 364 12 1
|
||||||
|
1 1970 330 287 6 7
|
||||||
|
2 Feb 1974 297 301 14 18
|
||||||
|
.. ... ... ... ... ...
|
||||||
|
12 2015 330 232 8 80
|
||||||
|
13 2017 317 262 12 59
|
||||||
|
14 2019 365 202 11 72
|
||||||
|
```
|
||||||
|
|
||||||
|
这意味着 pandas 会自动知道我希望如何分组,如果我希望进行不同的分组,pandas 可以很容易地[重组 DataFrame][8]。
|
||||||
|
|
||||||
|
与 [Seaborn][9] 一样,pandas 的绘图功能是 Matplotlib 之上的抽象,这就是为什么要调用 Matplotlib 的 `plt.show()` 函数来实际生成绘图的原因。
|
||||||
|
|
||||||
|
看起来是这样的:
|
||||||
|
|
||||||
|
![pandas unstyled data plot][10]
|
||||||
|
|
||||||
|
看起来很棒,特别是它又这么简单!让我们对它进行样式设置,使其看起来像 [Matplotlib][11] 的例子。
|
||||||
|
|
||||||
|
#### 调整样式
|
||||||
|
|
||||||
|
我们可以通过访问底层的 Matplotlib 方法轻松地调整样式。
|
||||||
|
|
||||||
|
首先,我们可以通过将 Matplotlib 颜色表传递到绘图函数来为柱状图着色:
|
||||||
|
|
||||||
|
|
||||||
|
```
|
||||||
|
from matplotlib.colors import ListedColormap
|
||||||
|
cmap = ListedColormap(['#0343df', '#e50000', '#ffff14', '#929591'])
|
||||||
|
ax = df.plot.bar(x='year', colormap=cmap)
|
||||||
|
```
|
||||||
|
|
||||||
|
我们可以使用绘图函数的返回值设置坐标轴标签和标题,它只是一个 [Matplotlib `Axis` 对象][12]。
|
||||||
|
|
||||||
|
|
||||||
|
```
|
||||||
|
ax.set_xlabel(None)
|
||||||
|
ax.set_ylabel('Seats')
|
||||||
|
ax.set_title('UK election results')
|
||||||
|
```
|
||||||
|
|
||||||
|
这是现在的样子:
|
||||||
|
|
||||||
|
![pandas styled plot][13]
|
||||||
|
|
||||||
|
这与上面的 Matplotlib 版本几乎相同,但是只用了 8 行代码而不是 16 行!我内心的[代码高尔夫选手][14]非常高兴。
|
||||||
|
|
||||||
|
### 抽象必须是可转义的
|
||||||
|
|
||||||
|
与 Seaborn 一样,向下访问 Matplotlib API 进行细节调整的能力确实很有帮助。这是给出抽象[紧急出口][15]使其既强大又简单的一个很好的例子。
|
||||||
|
|
||||||
|
* * *
|
||||||
|
|
||||||
|
_本文基于 Anvil 博客上的[如何使用 Pandas 绘图][16],并获许可以重复使用。_
|
||||||
|
|
||||||
|
--------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
via: https://opensource.com/article/20/6/pandas-python
|
||||||
|
|
||||||
|
作者:[Shaun Taylor-Morgan][a]
|
||||||
|
选题:[lujun9972][b]
|
||||||
|
译者:[geekpi](https://github.com/geekpi)
|
||||||
|
校对:[校对者ID](https://github.com/校对者ID)
|
||||||
|
|
||||||
|
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
|
||||||
|
|
||||||
|
[a]: https://opensource.com/users/shaun-taylor-morgan
|
||||||
|
[b]: https://github.com/lujun9972
|
||||||
|
[1]: https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/panda.png?itok=0lJlct7O (Two pandas sitting in bamboo)
|
||||||
|
[2]: https://anvil.works/docs/data-tables/csv-and-excel
|
||||||
|
[3]: https://opensource.com/sites/default/files/uploads/matplotlib_2.png (Matplotlib UK election results)
|
||||||
|
[4]: https://opensource.com/article/20/4/install-python-linux
|
||||||
|
[5]: https://opensource.com/article/19/5/python-3-default-mac
|
||||||
|
[6]: https://opensource.com/article/19/8/how-install-python-windows
|
||||||
|
[7]: https://anvil.works/blog/tidy-data
|
||||||
|
[8]: https://anvil.works/blog/tidy-data#converting-between-long-and-wide-data-in-pandas
|
||||||
|
[9]: https://anvil.works/blog/plotting-in-seaborn
|
||||||
|
[10]: https://opensource.com/sites/default/files/uploads/pandas-unstyled.png (pandas unstyled data plot)
|
||||||
|
[11]: https://opensource.com/article/20/5/matplotlib-python
|
||||||
|
[12]: https://matplotlib.org/api/axis_api.html#axis-objects
|
||||||
|
[13]: https://opensource.com/sites/default/files/uploads/pandas_3.png (pandas styled plot)
|
||||||
|
[14]: https://en.wikipedia.org/wiki/Code_golf
|
||||||
|
[15]: https://anvil.works/blog/escape-hatches-and-ejector-seats
|
||||||
|
[16]: https://anvil.works/blog/plotting-in-pandas
|
Loading…
Reference in New Issue
Block a user