mirror of
https://github.com/LCTT/TranslateProject.git
synced 2025-01-25 23:11:02 +08:00
[Translated] Revisiting the Unix philosophy in 2018
This commit is contained in:
parent
e43a5a013b
commit
c9f694e88e
@ -1,106 +0,0 @@
|
||||
Translating by Jamkr
|
||||
|
||||
Revisiting the Unix philosophy in 2018
|
||||
======
|
||||
The old strategy of building small, focused applications is new again in the modern microservices environment.
|
||||
![](https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/brain_data.png?itok=RH6NA32X)
|
||||
|
||||
In 1984, Rob Pike and Brian W. Kernighan published an article called "[Program Design in the Unix Environment][1]" in the AT&T Bell Laboratories Technical Journal, in which they argued the Unix philosophy, using the example of BSD's **cat -v** implementation. In a nutshell that philosophy is: Build small, focused programs—in whatever language—that do only one thing but do this thing well, communicate via **stdin** / **stdout** , and are connected through pipes.
|
||||
|
||||
Sound familiar?
|
||||
|
||||
Yeah, I thought so. That's pretty much the [definition of microservices][2] offered by James Lewis and Martin Fowler:
|
||||
|
||||
> In short, the microservice architectural style is an approach to developing a single application as a suite of small services, each running in its own process and communicating with lightweight mechanisms, often an HTTP resource API.
|
||||
|
||||
While one *nix program or one microservice may be very limited or not even very interesting on its own, it's the combination of such independently working units that reveals their true benefit and, therefore, their power.
|
||||
|
||||
### *nix vs. microservices
|
||||
|
||||
The following table compares programs (such as **cat** or **lsof** ) in a *nix environment against programs in a microservices environment.
|
||||
|
||||
| | *nix | Microservices |
|
||||
| ----------------------------------- | -------------------------- | ----------------------------------- |
|
||||
| Unit of execution | program using stdin/stdout | service with HTTP or gRPC API |
|
||||
| Data flow | Pipes | ? |
|
||||
| Configuration & parameterization | Command-line arguments, | |
|
||||
| environment variables, config files | JSON/YAML docs | |
|
||||
| Discovery | Package manager, man, make | DNS, environment variables, OpenAPI |
|
||||
|
||||
Let's explore each line in slightly greater detail.
|
||||
|
||||
#### Unit of execution
|
||||
|
||||
**stdin** and writes output to **stdout**. A microservices setup deals with a service that exposes one or more communication interfaces, such as HTTP or gRPC APIs. In both cases, you'll find stateless examples (essentially a purely functional behavior) and stateful examples, where, in addition to the input, some internal (persisted) state decides what happens.
|
||||
|
||||
#### Data flow
|
||||
|
||||
The unit of execution in *nix (such as Linux) is an executable file (binary or interpreted script) that, ideally, reads input fromand writes output to. A microservices setup deals with a service that exposes one or more communication interfaces, such as HTTP or gRPC APIs. In both cases, you'll find stateless examples (essentially a purely functional behavior) and stateful examples, where, in addition to the input, some internal (persisted) state decides what happens.
|
||||
|
||||
Traditionally, *nix programs could communicate via pipes. In other words, thanks to [Doug McIlroy][3], you don't need to create temporary files to pass around and each can process virtually endless streams of data between processes. To my knowledge, there is nothing comparable to a pipe standardized in microservices, besides my little [Apache Kafka-based experiment from 2017][4].
|
||||
|
||||
#### Configuration and parameterization
|
||||
|
||||
How do you configure a program or service—either on a permanent or a by-call basis? Well, with *nix programs you essentially have three options: command-line arguments, environment variables, or full-blown config files. In microservices, you typically deal with YAML (or even worse, JSON) documents, defining the layout and configuration of a single microservice as well as dependencies and communication, storage, and runtime settings. Examples include [Kubernetes resource definitions][5], [Nomad job specifications][6], or [Docker Compose][7] files. These may or may not be parameterized; that is, either you have some templating language, such as [Helm][8] in Kubernetes, or you find yourself doing an awful lot of **sed -i** commands.
|
||||
|
||||
#### Discovery
|
||||
|
||||
How do you know what programs or services are available and how they are supposed to be used? Well, in *nix, you typically have a package manager as well as good old man; between them, they should be able to answer all the questions you might have. In a microservices setup, there's a bit more automation in finding a service. In addition to bespoke approaches like [Airbnb's SmartStack][9] or [Netflix's Eureka][10], there usually are environment variable-based or DNS-based [approaches][11] that allow you to discover services dynamically. Equally important, [OpenAPI][12] provides a de-facto standard for HTTP API documentation and design, and [gRPC][13] does the same for more tightly coupled high-performance cases. Last but not least, take developer experience (DX) into account, starting with writing good [Makefiles][14] and ending with writing your docs with (or in?) [**style**][15].
|
||||
|
||||
### Pros and cons
|
||||
|
||||
Both *nix and microservices offer a number of challenges and opportunities
|
||||
|
||||
#### Composability
|
||||
|
||||
It's hard to design something that has a clear, sharp focus and can also play well with others. It's even harder to get it right across different versions and to introduce respective error case handling capabilities. In microservices, this could mean retry logic and timeouts—maybe it's a better option to outsource these features into a service mesh? It's hard, but if you get it right, its reusability can be enormous.
|
||||
|
||||
#### Observability
|
||||
|
||||
In a monolith (in 2018) or a big program that tries to do it all (in 1984), it's rather straightforward to find the culprit when things go south. But, in a
|
||||
|
||||
```
|
||||
yes | tr \\n x | head -c 450m | grep n
|
||||
```
|
||||
|
||||
or a request path in a microservices setup that involves, say, 20 services, how do you even start to figure out which one is behaving badly? Luckily we have standards, notably [OpenCensus][16] and [OpenTracing][17]. Observability still might be the biggest single blocker if you are looking to move to microservices.
|
||||
|
||||
#### Global state
|
||||
|
||||
While it may not be such a big issue for *nix programs, in microservices, global state remains something of a discussion. Namely, how to make sure the local (persistent) state is managed effectively and how to make the global state consistent with as little effort as possible.
|
||||
|
||||
### Wrapping up
|
||||
|
||||
In the end, the question remains: Are you using the right tool for a given task? That is, in the same way a specialized *nix program implementing a range of functions might be the better choice for certain use cases or phases, it might be that a monolith [is the best option][18] for your organization or workload. Regardless, I hope this article helps you see the many, strong parallels between the Unix philosophy and microservices—maybe we can learn something from the former to benefit the latter.
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
via: https://opensource.com/article/18/11/revisiting-unix-philosophy-2018
|
||||
|
||||
作者:[Michael Hausenblas][a]
|
||||
选题:[lujun9972][b]
|
||||
译者:[译者ID](https://github.com/译者ID)
|
||||
校对:[校对者ID](https://github.com/校对者ID)
|
||||
|
||||
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
|
||||
|
||||
[a]: https://opensource.com/users/mhausenblas
|
||||
[b]: https://github.com/lujun9972
|
||||
[1]: http://harmful.cat-v.org/cat-v/
|
||||
[2]: https://martinfowler.com/articles/microservices.html
|
||||
[3]: https://en.wikipedia.org/wiki/Douglas_McIlroy
|
||||
[4]: https://speakerdeck.com/mhausenblas/distributed-named-pipes-and-other-inter-services-communication
|
||||
[5]: http://kubernetesbyexample.com/
|
||||
[6]: https://www.nomadproject.io/docs/job-specification/index.html
|
||||
[7]: https://docs.docker.com/compose/overview/
|
||||
[8]: https://helm.sh/
|
||||
[9]: https://github.com/airbnb/smartstack-cookbook
|
||||
[10]: https://github.com/Netflix/eureka
|
||||
[11]: https://kubernetes.io/docs/concepts/services-networking/service/#discovering-services
|
||||
[12]: https://www.openapis.org/
|
||||
[13]: https://grpc.io/
|
||||
[14]: https://suva.sh/posts/well-documented-makefiles/
|
||||
[15]: https://www.linux.com/news/improve-your-writing-gnu-style-checkers
|
||||
[16]: https://opencensus.io/
|
||||
[17]: https://opentracing.io/
|
||||
[18]: https://robertnorthard.com/devops-days-well-architected-monoliths-are-okay/
|
@ -0,0 +1,104 @@
|
||||
2018 重温 Unix 哲学
|
||||
======
|
||||
在现代微服务环境中,构建小型,集中应用程序的旧策略又再一次流行了起来。
|
||||
![](https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/brain_data.png?itok=RH6NA32X)
|
||||
|
||||
1984年,Rob Pike 和 Brian W 在 AT&T 贝尔实验室技术期刊上发表了名为 “[Unix 环境编程][1]” 的文章,其中他们使用 BSD 的 **cat -v** 例子来认证 Unix 哲学。简而言之,Unix 哲学是:构建小型,单一的应用程序——不管用什么语言——只做一件小而美的事情,用 **stdin** / **stdout** 进行通信,并通过管道进行连接。
|
||||
|
||||
听起来是不是有点耳熟?
|
||||
|
||||
是的,我也这么认为。这就是 James Lewis 和 Martin Fowler 给出的 [微服务的定义][2] 。
|
||||
|
||||
> 简单来说,微服务架构的风格是将应用程序开发为一套单一,小型服务的方法,每个服务都运行在它的进程中,并用轻量级机制进行通信,通常是 HTTP 资源 API 。
|
||||
|
||||
虽然一个 *nix 程序或者是一个微服务本身可能非常局限甚至不是很有趣,但是当这些独立工作的单元组合在一起的时候就显示出了它们真正的好处和强大。
|
||||
|
||||
### *nix程序 vs 微服务
|
||||
|
||||
下面的表格对比了 *nix 环境中的程序(例如 **cat** 或 **lsof**)与微服务环境中的程序。
|
||||
|
||||
| | *nix 程序 | 微服务 |
|
||||
| ----------------------------------- | -------------------------- | ---------------------------------- |
|
||||
| 执行单元 | 程序使用 `stdin/stdout` | 使用 HTTP 或 gRPC API |
|
||||
| 数据流 | 管道 | ? |
|
||||
| 可配置和参数化 | 命令行参数 | |
|
||||
| 环境变量和配置文件 | JSON/YAML 文档 | |
|
||||
| 发现 | 包管理器, man, make | DNS, 环境变量, OpenAPI |
|
||||
|
||||
让我们详细的看看每一行。
|
||||
|
||||
#### 执行单元
|
||||
|
||||
*nix 系统(像 Linux)中的执行单元是一个可执行的文件(二进制或者是脚本),理想情况下,它们从 `stdin` 读取输入并将输出写入 `stdout`。而微服务通过暴露一个或多个通信接口来提供服务,比如 HTTP 和 gRPC APIs。在这两种情况下,你都会发现无状态示例(本质上是纯函数行为)和有状态示例,除了输入之外,还有一些内部(持久)状态决定发生了什么。
|
||||
|
||||
#### 数据流
|
||||
|
||||
传统的,*nix 程序能够通过管道进行通信。换名话说,我们要感谢 [Doug McIlroy][3],你不需要创建临时文件来传递,而可以在每个进程之间处理无穷无尽的数据流。据我所知,除了 [2017 年做的基于 `Apache Kafka` 小实验][4],没有什么能比得上管道化的微服务了。
|
||||
|
||||
#### 可配置和参数化
|
||||
|
||||
你是如何配置程序或者服务的,无论是永久性的服务还是即时的服务?是的,在 *nix 系统上,你通常有三种方法:命令行参数,环境变量,或全面化的配置文件。在微服务架构中,典型的做法是用 YAML ( 或者甚至是worse,JSON ) 文档,定制好一个服务的布局和配置以及依赖的组件和通信,存储,和运行时配置。例如 [ Kubernetes 资源定义][5],[Nomad 工作规范][6],或 [Docker 组件][7] 文档。这些可能参数化也可能不参数化;也就是说,除非你知道一些模板语言,像 Kubernetes 中的 [Helm][8],否则你会发现你使用了很多 **sed -i** 这样的命令。
|
||||
|
||||
#### 发现
|
||||
|
||||
你怎么知道有哪些程序和服务可用,以及如何使用它们?在 *nix 系统中通常都有一个包管理器和一个很好用的 man 页面;使用他们,应该能够回答你所有的问题。在微服务的设置中,在寻找一个服务的时候会相对更自动化一些。除了像 [Airbnb 的 SmartStack][9] 或 [Netflix 的 Eureka][10] 等可以定制以外,通常还有基于环境变量或基于 DNS 的[方法][11],允许您动态的发现服务。同样重要的是,事实上 [OpenAPI][12] 为 HTTP API 提供了一套标准文档和设计模式,[gRPC][13] 为一些耦合性强的高性能项目也做了同样的事情。最后非常重要的一点是,考虑到开发人员的经验(DX),应该从写一份好的 [Makefiles][14] 开始,并以编写符合 [**风格**][15] 的文档结束。
|
||||
|
||||
### 优点和缺点
|
||||
|
||||
*nix 系统和微服务都提供了许多挑战和机遇
|
||||
|
||||
#### 模块性
|
||||
|
||||
设计一个简洁,有清晰的目的并且能够很好的和其它模块配合是很困难的。甚至是在不同版本中实现并引入相应的异常处理流程都很困难的。在微服务中,这意味着重试逻辑和超时机制,或者将这些功能外包到服务网格( service mesh )是不是一个更好的选择呢?这确实比较难,可如果你做好了,那它的可重用性是巨大的。
|
||||
|
||||
#### Observability
|
||||
|
||||
#### 预测
|
||||
|
||||
在一个巨型(2018年)或是一个试图做任何事情的大型程序(1984)年,当事情开始变坏的时候,应当能够直接的找到问题的根源。但是在一个
|
||||
|
||||
```
|
||||
yes | tr \\n x | head -c 450m | grep n
|
||||
```
|
||||
|
||||
或者在一个微服务设置中请求一个路径,例如,涉及20个服务,你怎么弄清楚是哪个服务的问题?幸运的是,我们有很多标准,特别是 [OpenCensus][16] 和 [OpenTracing][17]。如果您希望转向微服务,可预测性仍然可能是最大的问题。
|
||||
|
||||
#### 全局状态
|
||||
|
||||
对于 *nix 程序来说可能不是一个大问题,但在微服务中,全局状态仍然是一个需要讨论的问题。也就是说,如何确保有效的管理本地化(持久性)的状态以及尽可能在少做变更的情况下使全局保持一致。
|
||||
|
||||
### 总结一下
|
||||
|
||||
最后,问题仍然是:你是否在使用合适的工具来完成特定的工作?也就是说,以同样的方式实现一个特定的 *nix 程序在某些时候或者阶段会是一个更好的选择,它是可能在你的组织或工作过程中的一个[最好的选择][18]。无论如何,我希望这篇文章可以让你看到 Unix 哲学和微服务之间许多强有力的相似之处。也许我们可以从前者那里学到一些东西使后者受益。
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
via: https://opensource.com/article/18/11/revisiting-unix-philosophy-2018
|
||||
|
||||
作者:[Michael Hausenblas][a]
|
||||
选题:[lujun9972][b]
|
||||
译者:[Jamkr](https://github.com/Jamkr)
|
||||
校对:[校对者ID](https://github.com/校对者ID)
|
||||
|
||||
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
|
||||
|
||||
[a]: https://opensource.com/users/mhausenblas
|
||||
[b]: https://github.com/lujun9972
|
||||
[1]: http://harmful.cat-v.org/cat-v/
|
||||
[2]: https://martinfowler.com/articles/microservices.html
|
||||
[3]: https://en.wikipedia.org/wiki/Douglas_McIlroy
|
||||
[4]: https://speakerdeck.com/mhausenblas/distributed-named-pipes-and-other-inter-services-communication
|
||||
[5]: http://kubernetesbyexample.com/
|
||||
[6]: https://www.nomadproject.io/docs/job-specification/index.html
|
||||
[7]: https://docs.docker.com/compose/overview/
|
||||
[8]: https://helm.sh/
|
||||
[9]: https://github.com/airbnb/smartstack-cookbook
|
||||
[10]: https://github.com/Netflix/eureka
|
||||
[11]: https://kubernetes.io/docs/concepts/services-networking/service/#discovering-services
|
||||
[12]: https://www.openapis.org/
|
||||
[13]: https://grpc.io/
|
||||
[14]: https://suva.sh/posts/well-documented-makefiles/
|
||||
[15]: https://www.linux.com/news/improve-your-writing-gnu-style-checkers
|
||||
[16]: https://opencensus.io/
|
||||
[17]: https://opentracing.io/
|
||||
[18]: https://robertnorthard.com/devops-days-well-architected-monoliths-are-okay/
|
Loading…
Reference in New Issue
Block a user