mirror of
https://github.com/LCTT/TranslateProject.git
synced 2025-01-19 22:51:41 +08:00
Translated by cposture
This commit is contained in:
parent
97bdb52dc2
commit
c544898d99
@ -1,228 +0,0 @@
|
||||
使用 Python 创建你自己的 Shell:Part I
|
||||
==========================================
|
||||
|
||||
我很好奇一个 shell (像 bash,csh 等)内部是如何工作的。为了满足自己的好奇心,我使用 Python 实现了一个名为 yosh (Your Own Shell)的 Shell。本文章所介绍的概念也可以应用于其他编程语言。
|
||||
|
||||
(提示:你可以发布于此的博文中找到使用的源代码,代码以 MIT 许可发布)
|
||||
|
||||
让我们开始吧。
|
||||
|
||||
### 步骤 0:项目结构
|
||||
|
||||
对于此项目,我使用了以下的项目结构。
|
||||
|
||||
```
|
||||
yosh_project
|
||||
|-- yosh
|
||||
|-- __init__.py
|
||||
|-- shell.py
|
||||
```
|
||||
|
||||
`yosh_project` 为项目根目录(你也可以把它简单地命名为 `yosh`)。
|
||||
|
||||
`yosh` 为包目录,并且 `__init__.py` 将会使一个包名等同于包目录名字(如果你不写 Python,可以忽略它)
|
||||
|
||||
`shell.py` 是我们的主脚本文件。
|
||||
|
||||
### 步骤 1:Shell 循环
|
||||
|
||||
当你启动一个 shell,它会显示一个命令提示符同时等待用户输入命令。在接收了输入的命令并执行它之后(稍后文章会进行详细解释),你的 shell 会回到循环,等待下一条指令。
|
||||
|
||||
在 `shell.py`,我们会以一个简单的 mian 函数开始,该函数调用了 shell_loop() 函数,如下:
|
||||
|
||||
```
|
||||
def shell_loop():
|
||||
# Start the loop here
|
||||
|
||||
|
||||
def main():
|
||||
shell_loop()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
```
|
||||
|
||||
接着,在 `shell_loop()`,为了指示循环是否继续或停止,我们使用了一个状态标志。在循环的开始,我们的 shell 将显示一个命令提示符,并等待读取命令输入。
|
||||
|
||||
```
|
||||
import sys
|
||||
|
||||
SHELL_STATUS_RUN = 1
|
||||
SHELL_STATUS_STOP = 0
|
||||
|
||||
|
||||
def shell_loop():
|
||||
status = SHELL_STATUS_RUN
|
||||
|
||||
while status == SHELL_STATUS_RUN:
|
||||
# Display a command prompt
|
||||
sys.stdout.write('> ')
|
||||
sys.stdout.flush()
|
||||
|
||||
# Read command input
|
||||
cmd = sys.stdin.readline()
|
||||
```
|
||||
|
||||
之后,我们切分命令输入并进行执行(我们将马上解释命令切分和执行函数)。
|
||||
|
||||
因此,我们的 shell_loop() 会是如下这样:
|
||||
|
||||
```
|
||||
import sys
|
||||
|
||||
SHELL_STATUS_RUN = 1
|
||||
SHELL_STATUS_STOP = 0
|
||||
|
||||
|
||||
def shell_loop():
|
||||
status = SHELL_STATUS_RUN
|
||||
|
||||
while status == SHELL_STATUS_RUN:
|
||||
# Display a command prompt
|
||||
sys.stdout.write('> ')
|
||||
sys.stdout.flush()
|
||||
|
||||
# Read command input
|
||||
cmd = sys.stdin.readline()
|
||||
|
||||
# Tokenize the command input
|
||||
cmd_tokens = tokenize(cmd)
|
||||
|
||||
# Execute the command and retrieve new status
|
||||
status = execute(cmd_tokens)
|
||||
```
|
||||
|
||||
这就是我们整个 shell 循环。如果我们使用 python shell.py 命令启动 shell,它会显示命令提示符。然而如果我们输入命令并按回车,它将会抛出错误,因为我们还没定义命令切分函数。
|
||||
|
||||
为了退出 shell,可以尝试输入 ctrl-c。稍后我将解释如何以优雅的形式退出 shell。
|
||||
|
||||
### 步骤 2:命令切分
|
||||
|
||||
当一个用户在我们的 shell 中输入命令并按下回车键,该命令将会是一个包含命令名称及其参数的很长的字符串。因此,我们必须切分该字符串(分割一个字符串为多个标记)。
|
||||
|
||||
咋一看似乎很简单。我们或许可以使用 cmd.split(),用空格分割输入。它对类似 `ls -a my_folder` 的命令起作用,因为它能够将命令分割为一个列表 `['ls', '-a', 'my_folder']`,这样我们便能轻易处理它们了。
|
||||
|
||||
然而,也有一些类似 `echo "Hello World"` 或 `echo 'Hello World'` 以单引号或双引号引用参数的情况。如果我们使用 cmd.spilt,我们将会得到一个存有 3 个标记的列表 `['echo', '"Hello', 'World"']` 而不是 2 个标记 `['echo', 'Hello World']`。
|
||||
|
||||
幸运的是,Python 提供了一个名为 shlex 的库,能够帮助我们效验如神地分割命令。(提示:我们也可以使用正则表达式,但它不是本文的重点。)
|
||||
|
||||
|
||||
```
|
||||
import sys
|
||||
import shlex
|
||||
|
||||
...
|
||||
|
||||
def tokenize(string):
|
||||
return shlex.split(string)
|
||||
|
||||
...
|
||||
```
|
||||
|
||||
然后我们将这些标记发送到执行过程。
|
||||
|
||||
### 步骤 3:执行
|
||||
|
||||
这是 shell 中核心和有趣的一部分。当 shell 执行 mkdir test_dir 时,发生了什么?(提示:midir 是一个带有 test_dir 参数的执行程序,用于创建一个名为 test_dir 的目录。)
|
||||
|
||||
execvp 是涉及这一步的首个函数。在我们解释 execvp 所做的事之前,让我们看看它的实际效果。
|
||||
|
||||
```
|
||||
import os
|
||||
...
|
||||
|
||||
def execute(cmd_tokens):
|
||||
# Execute command
|
||||
os.execvp(cmd_tokens[0], cmd_tokens)
|
||||
|
||||
# Return status indicating to wait for next command in shell_loop
|
||||
return SHELL_STATUS_RUN
|
||||
|
||||
...
|
||||
```
|
||||
|
||||
再次尝试运行我们的 shell,并输入 `mkdir test_dir` 命令,接着按下回车键。
|
||||
|
||||
在我们敲下回车键之后,问题是我们的 shell 会直接退出而不是等待下一个命令。然而,目标正确地被创建。
|
||||
|
||||
因此,execvp 实际上做了什么?
|
||||
|
||||
execvp 是系统调用 exec 的一个变体。第一个参数是程序名字。v 表示第二个参数是一个程序参数列表(可变参数)。p 表示环境变量 PATH 会被用于搜索给定的程序名字。在我们上一次的尝试中,可以在你的 PATH 环境变量查找到 mkdir 程序。
|
||||
|
||||
(还有其他 exec 变体,比如 execv、execvpe、execl、execlp、execlpe;你可以 google 它们获取更多的信息。)
|
||||
|
||||
exec 会用即将运行的新进程替换调用进程的当前内存。在我们的例子中,我们的 shell 进程内存会被替换为 `mkdir` 程序。接着,mkdir 成为主进程并创建 test_dir 目录。最后该进程退出。
|
||||
|
||||
这里的重点在于我们的 shell 进程已经被 mkdir 进程所替换。这就是我们的 shell 消失且不会等待下一条命令的原因。
|
||||
|
||||
因此,我们需要其他的系统调用来解决问题:fork
|
||||
|
||||
fork 会开辟新的内存并拷贝当前进程到一个新的进程。我们称这个新的进程为子进程,调用者进程为父进程。然后,子进程内存会被替换为被执行的程序。因此,我们的 shell,也就是父进程,可以免受内存替换的危险。
|
||||
|
||||
让我们看看已修改的代码。
|
||||
|
||||
```
|
||||
...
|
||||
|
||||
def execute(cmd_tokens):
|
||||
# Fork a child shell process
|
||||
# If the current process is a child process, its `pid` is set to `0`
|
||||
# else the current process is a parent process and the value of `pid`
|
||||
# is the process id of its child process.
|
||||
pid = os.fork()
|
||||
|
||||
if pid == 0:
|
||||
# Child process
|
||||
# Replace the child shell process with the program called with exec
|
||||
os.execvp(cmd_tokens[0], cmd_tokens)
|
||||
elif pid > 0:
|
||||
# Parent process
|
||||
while True:
|
||||
# Wait response status from its child process (identified with pid)
|
||||
wpid, status = os.waitpid(pid, 0)
|
||||
|
||||
# Finish waiting if its child process exits normally
|
||||
# or is terminated by a signal
|
||||
if os.WIFEXITED(status) or os.WIFSIGNALED(status):
|
||||
break
|
||||
|
||||
# Return status indicating to wait for next command in shell_loop
|
||||
return SHELL_STATUS_RUN
|
||||
|
||||
...
|
||||
```
|
||||
|
||||
当我们的父进程调用 `os.fork()`时,你可以想象所有的源代码被拷贝到了新的子进程。此时此刻,父进程和子进程看到的是相同的代码,并且并行运行着。
|
||||
|
||||
如果运行的代码属于子进程,pid 将为 0。否则,如果运行的代码属于父进程,pid 将会是子进程的进程 id。
|
||||
|
||||
当 os.execvp 在子进程中被调用时,你可以想象子进程的所有源代码被替换为正被调用程序的代码。然而父进程的代码不会被改变。
|
||||
|
||||
当父进程完成等待子进程退出或终止时,它会返回一个状态,指示继续 shell 循环。
|
||||
|
||||
### 运行
|
||||
|
||||
现在,你可以尝试运行我们的 shell 并输入 mkdir test_dir2。它应该可以正确执行。我们的主 shell 进程仍然存在并等待下一条命令。尝试执行 ls,你可以看到已创建的目录。
|
||||
|
||||
但是,这里仍有许多问题。
|
||||
|
||||
第一,尝试执行 cd test_dir2,接着执行 ls。它应该会进入到一个空的 test_dir2 目录。然而,你将会看到目录没有变为 test_dir2。
|
||||
|
||||
第二,我们仍然没有办法优雅地退出我们的 shell。
|
||||
|
||||
我们将会在 [Part 2][1] 解决诸如此类的问题。
|
||||
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
via: https://hackercollider.com/articles/2016/07/05/create-your-own-shell-in-python-part-1/
|
||||
|
||||
作者:[Supasate Choochaisri][a]
|
||||
译者:[译者ID](https://github.com/译者ID)
|
||||
校对:[校对者ID](https://github.com/校对者ID)
|
||||
|
||||
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
|
||||
|
||||
[a]: https://disqus.com/by/supasate_choochaisri/
|
||||
[1]: https://hackercollider.com/articles/2016/07/06/create-your-own-shell-in-python-part-2/
|
@ -0,0 +1,228 @@
|
||||
使用 Python 创建你自己的 Shell:Part I
|
||||
==========================================
|
||||
|
||||
我很想知道一个 shell (像 bash,csh 等)内部是如何工作的。为了满足自己的好奇心,我使用 Python 实现了一个名为 **yosh** (Your Own Shell)的 Shell。本文章所介绍的概念也可以应用于其他编程语言。
|
||||
|
||||
(提示:你可以在[这里](https://github.com/supasate/yosh)查找本博文使用的源代码,代码以 MIT 许可证发布。在 Mac OS X 10.11.5 上,我使用 Python 2.7.10 和 3.4.3 进行了测试。它应该可以运行在其他类 Unix 环境,比如 Linux 和 Windows 上的 Cygwin。)
|
||||
|
||||
让我们开始吧。
|
||||
|
||||
### 步骤 0:项目结构
|
||||
|
||||
对于此项目,我使用了以下的项目结构。
|
||||
|
||||
```
|
||||
yosh_project
|
||||
|-- yosh
|
||||
|-- __init__.py
|
||||
|-- shell.py
|
||||
```
|
||||
|
||||
`yosh_project` 为项目根目录(你也可以把它简单命名为 `yosh`)。
|
||||
|
||||
`yosh` 为包目录,且 `__init__.py` 可以使它成为与包目录名字相同的包(如果你不写 Python,可以忽略它。)
|
||||
|
||||
`shell.py` 是我们主要的脚本文件。
|
||||
|
||||
### 步骤 1:Shell 循环
|
||||
|
||||
当启动一个 shell,它会显示一个命令提示符并等待你的命令输入。在接收了输入的命令并执行它之后(稍后文章会进行详细解释),你的 shell 会重新回到循环,等待下一条指令。
|
||||
|
||||
在 `shell.py`,我们会以一个简单的 mian 函数开始,该函数调用了 shell_loop() 函数,如下:
|
||||
|
||||
```
|
||||
def shell_loop():
|
||||
# Start the loop here
|
||||
|
||||
|
||||
def main():
|
||||
shell_loop()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
```
|
||||
|
||||
接着,在 `shell_loop()`,为了指示循环是否继续或停止,我们使用了一个状态标志。在循环的开始,我们的 shell 将显示一个命令提示符,并等待读取命令输入。
|
||||
|
||||
```
|
||||
import sys
|
||||
|
||||
SHELL_STATUS_RUN = 1
|
||||
SHELL_STATUS_STOP = 0
|
||||
|
||||
|
||||
def shell_loop():
|
||||
status = SHELL_STATUS_RUN
|
||||
|
||||
while status == SHELL_STATUS_RUN:
|
||||
# Display a command prompt
|
||||
sys.stdout.write('> ')
|
||||
sys.stdout.flush()
|
||||
|
||||
# Read command input
|
||||
cmd = sys.stdin.readline()
|
||||
```
|
||||
|
||||
之后,我们切分命令输入并进行执行(我们即将实现`命令切分`和`执行`函数)。
|
||||
|
||||
因此,我们的 shell_loop() 会是如下这样:
|
||||
|
||||
```
|
||||
import sys
|
||||
|
||||
SHELL_STATUS_RUN = 1
|
||||
SHELL_STATUS_STOP = 0
|
||||
|
||||
|
||||
def shell_loop():
|
||||
status = SHELL_STATUS_RUN
|
||||
|
||||
while status == SHELL_STATUS_RUN:
|
||||
# Display a command prompt
|
||||
sys.stdout.write('> ')
|
||||
sys.stdout.flush()
|
||||
|
||||
# Read command input
|
||||
cmd = sys.stdin.readline()
|
||||
|
||||
# Tokenize the command input
|
||||
cmd_tokens = tokenize(cmd)
|
||||
|
||||
# Execute the command and retrieve new status
|
||||
status = execute(cmd_tokens)
|
||||
```
|
||||
|
||||
这就是我们整个 shell 循环。如果我们使用 `python shell.py` 启动我们的 shell,它会显示命令提示符。然而如果我们输入命令并按回车,它会抛出错误,因为我们还没定义`命令切分`函数。
|
||||
|
||||
为了退出 shell,可以尝试输入 ctrl-c。稍后我将解释如何以优雅的形式退出 shell。
|
||||
|
||||
### 步骤 2:命令切分
|
||||
|
||||
当用户在我们的 shell 中输入命令并按下回车键,该命令将会是一个包含命令名称及其参数的很长的字符串。因此,我们必须切分该字符串(分割一个字符串为多个标记)。
|
||||
|
||||
咋一看似乎很简单。我们或许可以使用 `cmd.split()`,以空格分割输入。它对类似 `ls -a my_folder` 的命令起作用,因为它能够将命令分割为一个列表 `['ls', '-a', 'my_folder']`,这样我们便能轻易处理它们了。
|
||||
|
||||
然而,也有一些类似 `echo "Hello World"` 或 `echo 'Hello World'` 以单引号或双引号引用参数的情况。如果我们使用 cmd.spilt,我们将会得到一个存有 3 个标记的列表 `['echo', '"Hello', 'World"']` 而不是 2 个标记的列表 `['echo', 'Hello World']`。
|
||||
|
||||
幸运的是,Python 提供了一个名为 `shlex` 的库,它能够帮助我们效验如神地分割命令。(提示:我们也可以使用正则表达式,但它不是本文的重点。)
|
||||
|
||||
|
||||
```
|
||||
import sys
|
||||
import shlex
|
||||
|
||||
...
|
||||
|
||||
def tokenize(string):
|
||||
return shlex.split(string)
|
||||
|
||||
...
|
||||
```
|
||||
|
||||
然后我们将这些标记发送到执行进程。
|
||||
|
||||
### 步骤 3:执行
|
||||
|
||||
这是 shell 中核心和有趣的一部分。当 shell 执行 `mkdir test_dir` 时,到底发生了什么?(提示: `mkdir` 是一个带有 `test_dir` 参数的执行程序,用于创建一个名为 `test_dir` 的目录。)
|
||||
|
||||
`execvp` 是涉及这一步的首个函数。在我们解释 `execvp` 所做的事之前,让我们看看它的实际效果。
|
||||
|
||||
```
|
||||
import os
|
||||
...
|
||||
|
||||
def execute(cmd_tokens):
|
||||
# Execute command
|
||||
os.execvp(cmd_tokens[0], cmd_tokens)
|
||||
|
||||
# Return status indicating to wait for next command in shell_loop
|
||||
return SHELL_STATUS_RUN
|
||||
|
||||
...
|
||||
```
|
||||
|
||||
再次尝试运行我们的 shell,并输入 `mkdir test_dir` 命令,接着按下回车键。
|
||||
|
||||
在我们敲下回车键之后,问题是我们的 shell 会直接退出而不是等待下一个命令。然而,目标正确地被创建。
|
||||
|
||||
因此,`execvp` 实际上做了什么?
|
||||
|
||||
`execvp` 是系统调用 `exec` 的一个变体。第一个参数是程序名字。`v` 表示第二个参数是一个程序参数列表(可变参数)。`p` 表示环境变量 `PATH` 会被用于搜索给定的程序名字。在我们上一次的尝试中,它将会基于我们的 `PATH` 环境变量查找`mkdir` 程序。
|
||||
|
||||
(还有其他 `exec` 变体,比如 execv、execvpe、execl、execlp、execlpe;你可以 google 它们获取更多的信息。)
|
||||
|
||||
`exec` 会用即将运行的新进程替换调用进程的当前内存。在我们的例子中,我们的 shell 进程内存会被替换为 `mkdir` 程序。接着,`mkdir` 成为主进程并创建 `test_dir` 目录。最后该进程退出。
|
||||
|
||||
这里的重点在于**我们的 shell 进程已经被 `mkdir` 进程所替换**。这就是我们的 shell 消失且不会等待下一条命令的原因。
|
||||
|
||||
因此,我们需要其他的系统调用来解决问题:`fork`。
|
||||
|
||||
`fork` 会开辟新的内存并拷贝当前进程到一个新的进程。我们称这个新的进程为**子进程**,调用者进程为**父进程**。然后,子进程内存会被替换为被执行的程序。因此,我们的 shell,也就是父进程,可以免受内存替换的危险。
|
||||
|
||||
让我们看看修改的代码。
|
||||
|
||||
```
|
||||
...
|
||||
|
||||
def execute(cmd_tokens):
|
||||
# Fork a child shell process
|
||||
# If the current process is a child process, its `pid` is set to `0`
|
||||
# else the current process is a parent process and the value of `pid`
|
||||
# is the process id of its child process.
|
||||
pid = os.fork()
|
||||
|
||||
if pid == 0:
|
||||
# Child process
|
||||
# Replace the child shell process with the program called with exec
|
||||
os.execvp(cmd_tokens[0], cmd_tokens)
|
||||
elif pid > 0:
|
||||
# Parent process
|
||||
while True:
|
||||
# Wait response status from its child process (identified with pid)
|
||||
wpid, status = os.waitpid(pid, 0)
|
||||
|
||||
# Finish waiting if its child process exits normally
|
||||
# or is terminated by a signal
|
||||
if os.WIFEXITED(status) or os.WIFSIGNALED(status):
|
||||
break
|
||||
|
||||
# Return status indicating to wait for next command in shell_loop
|
||||
return SHELL_STATUS_RUN
|
||||
|
||||
...
|
||||
```
|
||||
|
||||
当我们的父进程调用 `os.fork()`时,你可以想象所有的源代码被拷贝到了新的子进程。此时此刻,父进程和子进程看到的是相同的代码,且并行运行着。
|
||||
|
||||
如果运行的代码属于子进程,`pid` 将为 `0`。否则,如果运行的代码属于父进程,`pid` 将会是子进程的进程 id。
|
||||
|
||||
当 `os.execvp` 在子进程中被调用时,你可以想象子进程的所有源代码被替换为正被调用程序的代码。然而父进程的代码不会被改变。
|
||||
|
||||
当父进程完成等待子进程退出或终止时,它会返回一个状态,指示继续 shell 循环。
|
||||
|
||||
### 运行
|
||||
|
||||
现在,你可以尝试运行我们的 shell 并输入 `mkdir test_dir2`。它应该可以正确执行。我们的主 shell 进程仍然存在并等待下一条命令。尝试执行 `ls`,你可以看到已创建的目录。
|
||||
|
||||
但是,这里仍有许多问题。
|
||||
|
||||
第一,尝试执行 `cd test_dir2`,接着执行 `ls`。它应该会进入到一个空的 `test_dir2` 目录。然而,你将会看到目录并没有变为 `test_dir2`。
|
||||
|
||||
第二,我们仍然没有办法优雅地退出我们的 shell。
|
||||
|
||||
我们将会在 [Part 2][1] 解决诸如此类的问题。
|
||||
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
via: https://hackercollider.com/articles/2016/07/05/create-your-own-shell-in-python-part-1/
|
||||
|
||||
作者:[Supasate Choochaisri][a]
|
||||
译者:[译者ID](https://github.com/译者ID)
|
||||
校对:[校对者ID](https://github.com/校对者ID)
|
||||
|
||||
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
|
||||
|
||||
[a]: https://disqus.com/by/supasate_choochaisri/
|
||||
[1]: https://hackercollider.com/articles/2016/07/06/create-your-own-shell-in-python-part-2/
|
Loading…
Reference in New Issue
Block a user