mirror of
https://github.com/LCTT/TranslateProject.git
synced 2024-12-26 21:30:55 +08:00
commit
c1030bd044
@ -1,312 +0,0 @@
|
||||
Translating by qhwdw
|
||||
How to apply Machine Learning to IoT using Android Things and TensorFlow
|
||||
============================================================
|
||||
|
||||
This project explores how to apply Machine Learning to IoT. In more details, as IoT platform, we will use **Android Things** and as Machine Learning engine we will use **Google TensorFlow**.
|
||||
|
||||
![Machine Learning with Android Things](https://www.survivingwithandroid.com/wp-content/uploads/2018/03/machine_learning_android_things.png)
|
||||
|
||||
Nowadays, Machine Learning is with Internet of Things one of the most interesting technological topics. To give a simple definition of the Machine Learning, it is possible to the [Wikipedia definition][13]:Machine learning is a field of computer science that gives computer systems the ability to “learn” (i.e. progressively improve performance on a specific task) with data, without being explicitly programmed.
|
||||
|
||||
In other words, after a training step, a system can predict outcomes even if it is not specifically programmed for them. On the other hands, we all know IoT and the concept of connected devices. One of the most promising topics is how to apply Machine Learning to IoT, building expert systems so that it is possible to develop a system that is able to “learn”. Moreover, it uses this knowledge to control and manage physical objects.
|
||||
|
||||
There are several fields where applying Machine Learning and IoT produce an important value, just to mention a few interesting fields, there are:
|
||||
|
||||
* Industrial IoT (IIoT) in the predictive maintenance
|
||||
|
||||
* Consumer IoT where the Machine earning can make the device intelligent so that it can adapt to our habits
|
||||
|
||||
In this tutorial, we want to explore how to apply Machine Learning to IoT using Android Things and TensorFlow. The basic idea that stands behind this Android Things IoT project is exploring how to build a _robot car that is able to recognize some basic shapes (like arrows) and control in this way the robot car directions_ . We have already covered [how to build robot car using Android Things][5], so I suggest you read the tutorial before starting this project.
|
||||
|
||||
This Machine Learning and IoT project cover these main topics:
|
||||
|
||||
* How to set up the TensorFlow environment using Docker
|
||||
|
||||
* How to train the TensorFlow system
|
||||
|
||||
* How to integrate TensorFlow with Android Things
|
||||
|
||||
* How to control the robot car using TensorFlow result
|
||||
|
||||
This project is derived from [Android Things TensorFlow image classifier][6].
|
||||
|
||||
Let us start!
|
||||
|
||||
### How to use Tensorflow image recognition
|
||||
|
||||
Before starting it is necessary to install and configure the TensorFlow environment. I’m not a Machine Learning expert, so I need to find something fast and ready to use so that we can build the TensorFlow image classifier. For this reason, we can use Docker to run an image of TensorFlow. Follow these steps:
|
||||
|
||||
1. Clone the TensorFlow repository:
|
||||
```
|
||||
git clone https://github.com/tensorflow/tensorflow.git
|
||||
cd /tensorflow
|
||||
git checkout v1.5.0
|
||||
```
|
||||
|
||||
2. Create a directory (`/tf-data`) that will hold all the files that we will use during the project.
|
||||
|
||||
3. Run Docker:
|
||||
```
|
||||
docker run -it \
|
||||
--volume /tf-data:/tf-data \
|
||||
--volume /tensorflow:/tensorflow \
|
||||
--workdir /tensorflow tensorflow/tensorflow:1.5.0 bash
|
||||
```
|
||||
|
||||
Using this command, we run an interactive TensorFlow environment and we mount some directories that we will use during the project
|
||||
|
||||
### How to Train TensorFlow to recognize images
|
||||
|
||||
Before the Android Things system is able to recognize images, it is necessary to train the TensorFlow engine so that it can build its model. For this purpose, it is necessary to gather several images. As said before, we want to use arrows to control the Android Things robot car so that we have to collect at least four arrow types:
|
||||
|
||||
* up arrow
|
||||
|
||||
* down arrow
|
||||
|
||||
* left arrow
|
||||
|
||||
* right arrow
|
||||
|
||||
To train the system is necessary to create a “knowledge base” with these four different image categories. Create in `/tf-data` a directory called `images` and under it four sub-directories named:
|
||||
|
||||
* up-arrow
|
||||
|
||||
* down-arrow
|
||||
|
||||
* left-arrow
|
||||
|
||||
* right-arrow
|
||||
|
||||
Now it is time to look for the images. I have used Google Image search but you can use other approaches too. To simplify the image download process, you should install a Chrome plugin that downloads all the images with only one click. Do not forget more images you download better is the training process, even if the time to create the model could increase.
|
||||
|
||||
**You may like also**
|
||||
[How to integrate Android Things using API][2]
|
||||
[How to use Android Things with Firebase][3]
|
||||
|
||||
Open your browser and start looking for the four image categories:
|
||||
|
||||
![TensorFlow image classifier](https://www.survivingwithandroid.com/wp-content/uploads/2018/03/TensorFlow-image-classifier.png)
|
||||
[Save][7]
|
||||
|
||||
I have downloaded 80 images for each category. Do not care about image extension.
|
||||
|
||||
Once all the categories have their images follow these steps (in the Docker interface):
|
||||
|
||||
```
|
||||
python /tensorflow/examples/image_retraining/retrain.py \
|
||||
--bottleneck_dir=tf_files/bottlenecks \
|
||||
--how_many_training_steps=4000 \
|
||||
--output_graph=/tf-data/retrained_graph.pb \
|
||||
--output_labels=/tf-data/retrained_labels.txt \
|
||||
--image_dir=/tf-data/images
|
||||
```
|
||||
|
||||
It could take some time so be patient. At the end, you should have two files in `/tf-data` folder:
|
||||
|
||||
1. retrained_graph.pb
|
||||
|
||||
2. retrained_labels.txt
|
||||
|
||||
The first file contains our model as the result of the TensorFlow training process while the second file contains the labels related to our four image categories.
|
||||
|
||||
### How to test the Tensorflow model
|
||||
|
||||
If you want to test the model to check if everything is working you can use this command:
|
||||
|
||||
```
|
||||
python scripts.label_image \
|
||||
--graph=/tf-data/retrained-graph.pb \
|
||||
--image=/tf-data/images/[category]/[image_name.jpg]
|
||||
```
|
||||
|
||||
### Optimizing the model
|
||||
|
||||
Before we can use this TensorFlow model in the Android Things project it is necessary to optimize it:
|
||||
|
||||
```
|
||||
python /tensorflow/python/tools/optimize_for_inference.py \
|
||||
--input=/tf-data/retrained_graph.pb \
|
||||
--output=/tf-data/opt_graph.pb \
|
||||
--input_names="Mul" \
|
||||
--output_names="final_result"
|
||||
```
|
||||
|
||||
That’s all we have our model. We will use this model to apply Machine Learning to IoT or in more details to integrate Android Things with TensorFlow. The goal is applying to the Android Things app the intelligence to recognize arrow images and react consequently controlling the robot car directions.
|
||||
|
||||
If you want to have more details about TensorFlow and how to generate the model look at the official documentation and to this [tutorial][8].
|
||||
|
||||
### How to apply Machine Learning to IoT using Android Things and TensorFlow
|
||||
|
||||
Once the TensorFlow data model is ready, we can move to the next step: how to integrate Android Things with TensorFlow. To this purpose, we can split this task into two steps:
|
||||
|
||||
1. The hardware part, where we connect motors and other peripherals to the Android Things board
|
||||
|
||||
2. Implementing the app
|
||||
|
||||
### Android Things Schematics
|
||||
|
||||
Before digging into the details about how to connect peripherals, this is the list of components used in this Android Things project:
|
||||
|
||||
1. Android Things board (Raspberry Pi 3)
|
||||
|
||||
2. Raspberry Pi Camera
|
||||
|
||||
3. One LED
|
||||
|
||||
4. LN298N Dual H Bridge (to control the motors)
|
||||
|
||||
5. A robot car chassis with two wheels
|
||||
|
||||
I do not cover again [how to control motors using Android Things][9] because we have already covered in the previous post.
|
||||
|
||||
Below the schematics:
|
||||
|
||||
![Integrating Android Things with IoT](https://www.survivingwithandroid.com/wp-content/uploads/2018/03/tensor_bb.png)
|
||||
[Save][10]
|
||||
|
||||
In the picture above, the camera is not shown. The final result is:
|
||||
|
||||
![Integrating Android Things with TensorFlow](https://www.survivingwithandroid.com/wp-content/uploads/2018/03/android_things_with_tensorflow-min.jpg)
|
||||
[Save][11]
|
||||
|
||||
### Implementing the Android Things app with TensorFlow
|
||||
|
||||
The last step is implementing the Android Things app. To this purpose, we can re-use the example available in Github named [sample TensorFlow image classifier][12]. Before starting, clone the Github repository so that you can modify the source code.
|
||||
|
||||
This Android Things app is different from the original app because:
|
||||
|
||||
1. it does not use the button to start the camera to capture the image
|
||||
|
||||
2. It uses a different model
|
||||
|
||||
3. It uses a blinking led to notify that the camera will take the picture after the LED stops blinking
|
||||
|
||||
4. It controls the motors when TensorFlow detects an image (arrows). Moreover, it turns on the motors for 5 seconds before starting the loop from step 3
|
||||
|
||||
To handle a blinking LED, use the following code:
|
||||
|
||||
```
|
||||
private Handler blinkingHandler = new Handler();
|
||||
private Runnable blinkingLED = new Runnable() {
|
||||
@Override
|
||||
public void run() {
|
||||
try {
|
||||
// If the motor is running the app does not start the cam
|
||||
if (mc.getStatus())
|
||||
return ;
|
||||
|
||||
Log.d(TAG, "Blinking..");
|
||||
mReadyLED.setValue(!mReadyLED.getValue());
|
||||
if (currentValue <= NUM_OF_TIMES) {
|
||||
currentValue++;
|
||||
blinkingHandler.postDelayed(blinkingLED,
|
||||
BLINKING_INTERVAL_MS);
|
||||
}
|
||||
else {
|
||||
mReadyLED.setValue(false);
|
||||
currentValue = 0;
|
||||
mBackgroundHandler.post(mBackgroundClickHandler);
|
||||
}
|
||||
} catch (IOException e) {
|
||||
e.printStackTrace();
|
||||
}
|
||||
}
|
||||
};
|
||||
```
|
||||
|
||||
When the LED stops blinking, the app captures the image.
|
||||
|
||||
Now it is necessary to focus on how to control the motors according to the image detected. Modify the method:
|
||||
|
||||
```
|
||||
@Override
|
||||
public void onImageAvailable(ImageReader reader) {
|
||||
final Bitmap bitmap;
|
||||
try (Image image = reader.acquireNextImage()) {
|
||||
bitmap = mImagePreprocessor.preprocessImage(image);
|
||||
}
|
||||
|
||||
final List<Classifier.Recognition> results =
|
||||
mTensorFlowClassifier.doRecognize(bitmap);
|
||||
|
||||
Log.d(TAG,
|
||||
"Got the following results from Tensorflow: " + results);
|
||||
|
||||
// Check the result
|
||||
if (results == null || results.size() == 0) {
|
||||
Log.d(TAG, "No command..");
|
||||
blinkingHandler.post(blinkingLED);
|
||||
return ;
|
||||
}
|
||||
|
||||
Classifier.Recognition rec = results.get(0);
|
||||
Float confidence = rec.getConfidence();
|
||||
Log.d(TAG, "Confidence " + confidence.floatValue());
|
||||
|
||||
if (confidence.floatValue() < 0.55) {
|
||||
Log.d(TAG, "Confidence too low..");
|
||||
blinkingHandler.post(blinkingLED);
|
||||
return ;
|
||||
}
|
||||
|
||||
String command = rec.getTitle();
|
||||
Log.d(TAG, "Command: " + rec.getTitle());
|
||||
|
||||
if (command.indexOf("down") != -1)
|
||||
mc.backward();
|
||||
else if (command.indexOf("up") != -1)
|
||||
mc.forward();
|
||||
else if (command.indexOf("left") != -1)
|
||||
mc.turnLeft();
|
||||
else if (command.indexOf("right") != -1)
|
||||
mc.turnRight();
|
||||
}
|
||||
```
|
||||
|
||||
In this method, after the TensorFlow returns the possible labels matching the image captured, the app compares the result with the possible directions and controls the motors consequently.
|
||||
|
||||
Finally, it is time to use the model created at the beginning. Copy the `opt_graph.pb` and the `reatrained_labels.txt` under the _assets_ folder replacing the existing files.
|
||||
|
||||
Open the `Helper.java` and modify the following lines:
|
||||
|
||||
```
|
||||
public static final int IMAGE_SIZE = 299;
|
||||
private static final int IMAGE_MEAN = 128;
|
||||
private static final float IMAGE_STD = 128;
|
||||
private static final String LABELS_FILE = "retrained_labels.txt";
|
||||
public static final String MODEL_FILE = "file:///android_asset/opt_graph.pb";
|
||||
public static final String INPUT_NAME = "Mul";
|
||||
public static final String OUTPUT_OPERATION = "output";
|
||||
public static final String OUTPUT_NAME = "final_result";
|
||||
```
|
||||
|
||||
Run the app and have fun showing arrows to the camera and check the result. The robot car has to move according to the arrow shown.
|
||||
|
||||
### Summary
|
||||
|
||||
At the end of this tutorial, we have discovered how to apply Machine Learning to IoT using Android Things and TensorFlow. We can control the robot car using images and make it moving according to the image shown.
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
via: https://www.survivingwithandroid.com/2018/03/apply-machine-learning-iot-using-android-things-tensorflow.html
|
||||
|
||||
作者:[Francesco Azzola ][a]
|
||||
译者:[译者ID](https://github.com/译者ID)
|
||||
校对:[校对者ID](https://github.com/校对者ID)
|
||||
|
||||
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
|
||||
|
||||
[a]:https://www.survivingwithandroid.com/author/francesco-azzolagmail-com
|
||||
[1]:https://www.survivingwithandroid.com/author/francesco-azzolagmail-com
|
||||
[2]:https://www.survivingwithandroid.com/2017/11/building-a-restful-api-interface-using-android-things.html
|
||||
[3]:https://www.survivingwithandroid.com/2017/10/synchronize-android-things-with-firebase-real-time-control-firebase-iot.html
|
||||
[4]:http://pinterest.com/pin/create/bookmarklet/?media=&url=https://www.survivingwithandroid.com/2018/03/apply-machine-learning-iot-using-android-things-tensorflow.html&is_video=false&description=Machine%20Learning%20with%20Android%20Things
|
||||
[5]:https://www.survivingwithandroid.com/2017/12/building-a-remote-controlled-car-using-android-things-gpio.html
|
||||
[6]:https://github.com/androidthings/sample-tensorflow-imageclassifier
|
||||
[7]:http://pinterest.com/pin/create/bookmarklet/?media=&url=https://www.survivingwithandroid.com/2018/03/apply-machine-learning-iot-using-android-things-tensorflow.html&is_video=false&description=TensorFlow%20image%20classifier
|
||||
[8]:https://codelabs.developers.google.com/codelabs/tensorflow-for-poets/#0
|
||||
[9]:https://www.survivingwithandroid.com/2017/12/building-a-remote-controlled-car-using-android-things-gpio.html
|
||||
[10]:http://pinterest.com/pin/create/bookmarklet/?media=&url=https://www.survivingwithandroid.com/2018/03/apply-machine-learning-iot-using-android-things-tensorflow.html&is_video=false&description=Integrating%20Android%20Things%20with%20IoT
|
||||
[11]:http://pinterest.com/pin/create/bookmarklet/?media=&url=https://www.survivingwithandroid.com/2018/03/apply-machine-learning-iot-using-android-things-tensorflow.html&is_video=false&description=Integrating%20Android%20Things%20with%20TensorFlow
|
||||
[12]:https://github.com/androidthings/sample-tensorflow-imageclassifier
|
||||
[13]:https://en.wikipedia.org/wiki/Machine_learning
|
@ -0,0 +1,311 @@
|
||||
如何使用 Android Things 和 TensorFlow 在物联网上应用机器学习
|
||||
============================================================
|
||||
|
||||
这个项目探索了如何将机器学习应用到物联网上。具体来说,物联网平台我们将使用 **Android Things**,而机器学习引擎我们将使用 **Google TensorFlow**。
|
||||
|
||||
![Machine Learning with Android Things](https://www.survivingwithandroid.com/wp-content/uploads/2018/03/machine_learning_android_things.png)
|
||||
|
||||
现如今,机器学习是物联网上使用的最热门的主题之一。给机器学习的最简单的定义,可能就是 [维基百科上的定义][13]:机器学习是计算机科学中,让计算机不需要显式编程就能去“学习”(即,逐步提升在特定任务上的性能)使用数据的一个领域。
|
||||
|
||||
换句话说就是,经过训练之后,那怕是它没有针对它们进行特定的编程,这个系统也能够预测结果。另一方面,我们都知道物联网和联网设备的概念。其中一个前景看好的领域就是如何在物联网上应用机器学习,构建专业的系统,这样就能够去开发一个能够“学习”的系统。此外,还可以使用这些知识去控制和管理物理对象。
|
||||
|
||||
这里有几个应用机器学习和物联网产生重要价值的领域,以下仅提到了几个感兴趣的领域,它们是:
|
||||
|
||||
* 在工业物联网(IIoT)中的预见性维护
|
||||
|
||||
* 消费物联网中,机器学习可以让设备更智能,它通过调整使设备更适应我们的习惯
|
||||
|
||||
在本教程中,我们希望去探索如何使用 Android Things 和 TensorFlow 在物联网上应用机器学习。这个 Adnroid Things 物联网项目的基本想法是,探索如何去*构建一个能够识别前方道路上基本形状(比如箭头)的无人驾驶汽车*。我们已经介绍了 [如何使用 Android Things 去构建一个无人驾驶汽车][5],因此,在开始这个项目之前,我们建议你去阅读那个教程。
|
||||
|
||||
这个机器学习和物联网项目包含如下的主题:
|
||||
|
||||
* 如何使用 Docker 配置 TensorFlow 环境
|
||||
|
||||
* 如何训练 TensorFlow 系统
|
||||
|
||||
* 如何使用 Android Things 去集成 TensorFlow
|
||||
|
||||
* 如何使用 TensorFlow 的成果去控制无人驾驶汽车
|
||||
|
||||
这个项目起源于 [Android Things TensorFlow 图像分类器][6]。
|
||||
|
||||
我们开始吧!
|
||||
|
||||
### 如何使用 Tensorflow 图像识别
|
||||
|
||||
在开始之前,需要安装和配置 TensorFlow 环境。我不是机器学习方面的专家,因此,我需要快速找到并且准备去使用一些东西,因此,我们可以构建 TensorFlow 图像识别器。为此,我们使用 Docker 去运行一个 TensorFlow 镜像。以下是操作步骤:
|
||||
|
||||
1. 克隆 TensorFlow 仓库:
|
||||
```
|
||||
git clone https://github.com/tensorflow/tensorflow.git
|
||||
cd /tensorflow
|
||||
git checkout v1.5.0
|
||||
```
|
||||
|
||||
2. 创建一个目录(`/tf-data`),它将用于保存这个项目中使用的所有文件。
|
||||
|
||||
3. 运行 Docker:
|
||||
```
|
||||
docker run -it \
|
||||
--volume /tf-data:/tf-data \
|
||||
--volume /tensorflow:/tensorflow \
|
||||
--workdir /tensorflow tensorflow/tensorflow:1.5.0 bash
|
||||
```
|
||||
|
||||
使用这个命令,我们运行一个交互式 TensorFlow 环境,可以在使用项目期间挂载一些目录。
|
||||
|
||||
### 如何训练 TensorFlow 去识别图像
|
||||
|
||||
在 Android Things 系统能够识别图像之前,我们需要去训练 TensorFlow 引擎,以使它能够构建它的模型。为此,我们需要去收集一些图像。正如前面所言,我们需要使用箭头来控制 Android Things 无人驾驶汽车,因此,我们至少要收集四种类型的箭头:
|
||||
|
||||
* 向上的箭头
|
||||
|
||||
* 向下的箭头
|
||||
|
||||
* 向左的箭头
|
||||
|
||||
* 向右的箭头
|
||||
|
||||
为训练这个系统,需要使用这四类不同的图像去创建一个“知识库”。在 `/tf-data` 目录下创建一个名为 `images` 的目录,然后在它下面创建如下名字的四个子目录:
|
||||
|
||||
* up-arrow
|
||||
|
||||
* down-arrow
|
||||
|
||||
* left-arrow
|
||||
|
||||
* right-arrow
|
||||
|
||||
现在,我们去找图片。我使用的是 Google 图片搜索,你也可以使用其它的方法。为了简化图片下载过程,你可以安装一个 Chrome 下载插件,这样你只需要点击就可以下载选定的图片。别忘了多下载一些图片,这样训练效果更好,当然,这样创建模型的时间也会相应增加。
|
||||
|
||||
**扩展阅读**
|
||||
[如何使用 API 去集成 Android Things][2]
|
||||
[如何与 Firebase 一起使用 Android Things][3]
|
||||
|
||||
打开浏览器,开始去查找四种箭头的图片:
|
||||
|
||||
![TensorFlow image classifier](https://www.survivingwithandroid.com/wp-content/uploads/2018/03/TensorFlow-image-classifier.png)
|
||||
[Save][7]
|
||||
|
||||
每个类别我下载了 80 张图片。不用管图片文件的扩展名。
|
||||
|
||||
为所有类别的图片做一次如下的操作(在 Docker 界面下):
|
||||
|
||||
```
|
||||
python /tensorflow/examples/image_retraining/retrain.py \
|
||||
--bottleneck_dir=tf_files/bottlenecks \
|
||||
--how_many_training_steps=4000 \
|
||||
--output_graph=/tf-data/retrained_graph.pb \
|
||||
--output_labels=/tf-data/retrained_labels.txt \
|
||||
--image_dir=/tf-data/images
|
||||
```
|
||||
|
||||
这个过程你需要耐心等待,它需要花费很长时间。结束之后,你将在 `/tf-data` 目录下发现如下的两个文件:
|
||||
|
||||
1. retrained_graph.pb
|
||||
|
||||
2. retrained_labels.txt
|
||||
|
||||
第一个文件包含了 TensorFlow 训练过程产生的结果模型,而第二个文件包含了我们的四个图片类相关的标签。
|
||||
|
||||
### 如何测试 Tensorflow 模型
|
||||
|
||||
如果你想去测试这个模型,去验证它是否能按预期工作,你可以使用如下的命令:
|
||||
|
||||
```
|
||||
python scripts.label_image \
|
||||
--graph=/tf-data/retrained-graph.pb \
|
||||
--image=/tf-data/images/[category]/[image_name.jpg]
|
||||
```
|
||||
|
||||
### 优化模型
|
||||
|
||||
在 Android Things 项目中使用我们的 TensorFlow 模型之前,需要去优化它:
|
||||
|
||||
```
|
||||
python /tensorflow/python/tools/optimize_for_inference.py \
|
||||
--input=/tf-data/retrained_graph.pb \
|
||||
--output=/tf-data/opt_graph.pb \
|
||||
--input_names="Mul" \
|
||||
--output_names="final_result"
|
||||
```
|
||||
|
||||
那个就是我们全部的模型。我们将使用这个模型,把 TensorFlow 与 Android Things 集成到一起,在物联网或者更多任务上应用机器学习。目标是使用 Android Things 应用程序智能识别箭头图片,并反应到接下来的无人驾驶汽车的方向控制上。
|
||||
|
||||
如果你想去了解关于 TensorFlow 以及如何生成模型的更多细节,请查看官方文档以及这篇 [教程][8]。
|
||||
|
||||
### 如何使用 Android Things 和 TensorFlow 在物联网上应用机器学习
|
||||
|
||||
TensorFlow 的数据模型准备就绪之后,我们继续下一步:如何将 Android Things 与 TensorFlow 集成到一起。为此,我们将这个任务分为两步来完成:
|
||||
|
||||
1. 硬件部分,我们将把电机和其它部件连接到 Android Things 开发板上
|
||||
|
||||
2. 实现这个应用程序
|
||||
|
||||
### Android Things 示意图
|
||||
|
||||
在深入到如何连接外围部件之前,先列出在这个 Android Things 项目中使用到的组件清单:
|
||||
|
||||
1. Android Things 开发板(树莓派 3)
|
||||
|
||||
2. 树莓派摄像头
|
||||
|
||||
3. 一个 LED 灯
|
||||
|
||||
4. LN298N 双 H 桥电机驱动模块(连接控制电机)
|
||||
|
||||
5. 一个带两个轮子的无人驾驶汽车底盘
|
||||
|
||||
我不再重复 [如何使用 Android Things 去控制电机][9] 了,因为在以前的文章中已经讲过了。
|
||||
|
||||
下面是示意图:
|
||||
|
||||
![Integrating Android Things with IoT](https://www.survivingwithandroid.com/wp-content/uploads/2018/03/tensor_bb.png)
|
||||
[Save][10]
|
||||
|
||||
上图中没有展示摄像头。最终成果如下图:
|
||||
|
||||
![Integrating Android Things with TensorFlow](https://www.survivingwithandroid.com/wp-content/uploads/2018/03/android_things_with_tensorflow-min.jpg)
|
||||
[Save][11]
|
||||
|
||||
### 使用 TensorFlow 实现 Android Things 应用程序
|
||||
|
||||
最后一步是实现 Android Things 应用程序。为此,我们可以复用 Github 上名为 [TensorFlow 图片分类器示例][12] 的示例代码。开始之前,先克隆 Github 仓库,这样你就可以修改源代码。
|
||||
|
||||
这个 Android Things 应用程序与原始的应用程序是不一样的,因为:
|
||||
|
||||
1. 它不使用按钮去开启摄像头图像捕获
|
||||
|
||||
2. 它使用了不同的模型
|
||||
|
||||
3. 它使用一个闪烁的 LED 灯来提示,摄像头将在 LED 停止闪烁后拍照
|
||||
|
||||
4. 当 TensorFlow 检测到图像时(箭头)它将控制电机。此外,在第 3 步的循环开始之前,它将打开电机 5 秒钟。
|
||||
|
||||
为了让 LED 闪烁,使用如下的代码:
|
||||
|
||||
```
|
||||
private Handler blinkingHandler = new Handler();
|
||||
private Runnable blinkingLED = new Runnable() {
|
||||
@Override
|
||||
public void run() {
|
||||
try {
|
||||
// If the motor is running the app does not start the cam
|
||||
if (mc.getStatus())
|
||||
return ;
|
||||
|
||||
Log.d(TAG, "Blinking..");
|
||||
mReadyLED.setValue(!mReadyLED.getValue());
|
||||
if (currentValue <= NUM_OF_TIMES) {
|
||||
currentValue++;
|
||||
blinkingHandler.postDelayed(blinkingLED,
|
||||
BLINKING_INTERVAL_MS);
|
||||
}
|
||||
else {
|
||||
mReadyLED.setValue(false);
|
||||
currentValue = 0;
|
||||
mBackgroundHandler.post(mBackgroundClickHandler);
|
||||
}
|
||||
} catch (IOException e) {
|
||||
e.printStackTrace();
|
||||
}
|
||||
}
|
||||
};
|
||||
```
|
||||
|
||||
当 LED 停止闪烁后,应用程序将捕获图片。
|
||||
|
||||
现在需要去关心如何根据检测到的图片去控制电机。修改这个方法:
|
||||
|
||||
```
|
||||
@Override
|
||||
public void onImageAvailable(ImageReader reader) {
|
||||
final Bitmap bitmap;
|
||||
try (Image image = reader.acquireNextImage()) {
|
||||
bitmap = mImagePreprocessor.preprocessImage(image);
|
||||
}
|
||||
|
||||
final List<Classifier.Recognition> results =
|
||||
mTensorFlowClassifier.doRecognize(bitmap);
|
||||
|
||||
Log.d(TAG,
|
||||
"Got the following results from Tensorflow: " + results);
|
||||
|
||||
// Check the result
|
||||
if (results == null || results.size() == 0) {
|
||||
Log.d(TAG, "No command..");
|
||||
blinkingHandler.post(blinkingLED);
|
||||
return ;
|
||||
}
|
||||
|
||||
Classifier.Recognition rec = results.get(0);
|
||||
Float confidence = rec.getConfidence();
|
||||
Log.d(TAG, "Confidence " + confidence.floatValue());
|
||||
|
||||
if (confidence.floatValue() < 0.55) {
|
||||
Log.d(TAG, "Confidence too low..");
|
||||
blinkingHandler.post(blinkingLED);
|
||||
return ;
|
||||
}
|
||||
|
||||
String command = rec.getTitle();
|
||||
Log.d(TAG, "Command: " + rec.getTitle());
|
||||
|
||||
if (command.indexOf("down") != -1)
|
||||
mc.backward();
|
||||
else if (command.indexOf("up") != -1)
|
||||
mc.forward();
|
||||
else if (command.indexOf("left") != -1)
|
||||
mc.turnLeft();
|
||||
else if (command.indexOf("right") != -1)
|
||||
mc.turnRight();
|
||||
}
|
||||
```
|
||||
|
||||
在这个方法中,当 TensorFlow 返回捕获的图片匹配到的可能的标签之后,应用程序将比较这个结果与可能的方向,并因此来控制电机。
|
||||
|
||||
最后,将去使用前面创建的模型了。拷贝 _assets_ 文件夹下的 `opt_graph.pb` 和 `reatrained_labels.txt` 去替换现在的文件。
|
||||
|
||||
打开 `Helper.java` 并修改如下的行:
|
||||
|
||||
```
|
||||
public static final int IMAGE_SIZE = 299;
|
||||
private static final int IMAGE_MEAN = 128;
|
||||
private static final float IMAGE_STD = 128;
|
||||
private static final String LABELS_FILE = "retrained_labels.txt";
|
||||
public static final String MODEL_FILE = "file:///android_asset/opt_graph.pb";
|
||||
public static final String INPUT_NAME = "Mul";
|
||||
public static final String OUTPUT_OPERATION = "output";
|
||||
public static final String OUTPUT_NAME = "final_result";
|
||||
```
|
||||
|
||||
运行这个应用程序,并给摄像头展示几种箭头,以检查它的反应。无人驾驶汽车将根据展示的箭头进行移动。
|
||||
|
||||
### 总结
|
||||
|
||||
教程到此结束,我们讲解了如何使用 Android Things 和 TensorFlow 在物联网上应用机器学习。我们使用图片去控制无人驾驶汽车的移动。
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
via: https://www.survivingwithandroid.com/2018/03/apply-machine-learning-iot-using-android-things-tensorflow.html
|
||||
|
||||
作者:[Francesco Azzola ][a]
|
||||
译者:[qhwdw](https://github.com/qhwdw)
|
||||
校对:[校对者ID](https://github.com/校对者ID)
|
||||
|
||||
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
|
||||
|
||||
[a]:https://www.survivingwithandroid.com/author/francesco-azzolagmail-com
|
||||
[1]:https://www.survivingwithandroid.com/author/francesco-azzolagmail-com
|
||||
[2]:https://www.survivingwithandroid.com/2017/11/building-a-restful-api-interface-using-android-things.html
|
||||
[3]:https://www.survivingwithandroid.com/2017/10/synchronize-android-things-with-firebase-real-time-control-firebase-iot.html
|
||||
[4]:http://pinterest.com/pin/create/bookmarklet/?media=&url=https://www.survivingwithandroid.com/2018/03/apply-machine-learning-iot-using-android-things-tensorflow.html&is_video=false&description=Machine%20Learning%20with%20Android%20Things
|
||||
[5]:https://www.survivingwithandroid.com/2017/12/building-a-remote-controlled-car-using-android-things-gpio.html
|
||||
[6]:https://github.com/androidthings/sample-tensorflow-imageclassifier
|
||||
[7]:http://pinterest.com/pin/create/bookmarklet/?media=&url=https://www.survivingwithandroid.com/2018/03/apply-machine-learning-iot-using-android-things-tensorflow.html&is_video=false&description=TensorFlow%20image%20classifier
|
||||
[8]:https://codelabs.developers.google.com/codelabs/tensorflow-for-poets/#0
|
||||
[9]:https://www.survivingwithandroid.com/2017/12/building-a-remote-controlled-car-using-android-things-gpio.html
|
||||
[10]:http://pinterest.com/pin/create/bookmarklet/?media=&url=https://www.survivingwithandroid.com/2018/03/apply-machine-learning-iot-using-android-things-tensorflow.html&is_video=false&description=Integrating%20Android%20Things%20with%20IoT
|
||||
[11]:http://pinterest.com/pin/create/bookmarklet/?media=&url=https://www.survivingwithandroid.com/2018/03/apply-machine-learning-iot-using-android-things-tensorflow.html&is_video=false&description=Integrating%20Android%20Things%20with%20TensorFlow
|
||||
[12]:https://github.com/androidthings/sample-tensorflow-imageclassifier
|
||||
[13]:https://en.wikipedia.org/wiki/Machine_learning
|
Loading…
Reference in New Issue
Block a user