mirror of
https://github.com/LCTT/TranslateProject.git
synced 2025-01-10 22:21:11 +08:00
PRF: 修正空白使用,标题及分割线标记风格
This commit is contained in:
parent
a9298544b0
commit
c0bd9027b1
@ -1,5 +1,5 @@
|
||||
Streams:一个新的 Redis 通用数据结构
|
||||
==================================
|
||||
======
|
||||
|
||||
直到几个月以前,对于我来说,在消息传递的环境中,streams 只是一个有趣且相对简单的概念。这个概念在 Kafka 流行之后,我主要研究它们在 Disque 案例中的效能。Disque 是一个消息队列,它将在 Redis 4.2 中被转换为 Redis 的一个模块。后来我决定用 Disque 来做全部的 AP 消息,也就是说,它将在不需要客户端过多参与的情况下实现容错和保证送达,这样一来,我更加确定地认为 streams 的概念在那种情况下并不适用。
|
||||
|
||||
@ -28,7 +28,7 @@ Streams:一个新的 Redis 通用数据结构
|
||||
|
||||
从 Redis 大会回来后,在那个夏天,我实现了一个称为 “listpack” 的库。这个库是 `ziplist.c` 的继任者,它是表示在单个分配中的字符串元素列表的一个数据结构。它是一个非常专业的序列化格式,其特点在于也能够以逆序(从右到左)进行解析:在所有的案例中是用于代替 ziplists 所做的事情。
|
||||
|
||||
结合 radix 树和 listpacks 的特性,它可以很容易地去构建一个空间高效的日志,并且还是索引化的,这意味着允许通过 ID 和时间进行随机访问。自从这些准备就绪后,我开始去写一些代码以实现流数据结构。我最终完成了该实现,不管怎样,现在,Redis 在 Github 上的 “streams” 分支里面,它已经可以跑的很好了。我并没有声称那个 API 是 100% 的最终版本,但是,这有两个有趣的事实:一是,在那时,只有消费组是不行的,再加上一些不那么重要的命令去操作流,但是,所有的大的方面都已经实现了。二是,一旦各个方面比较稳定了之后 ,决定大概用两个月的时间将所有的流的工作<ruby>回迁<rt>backport</rt></ruby>到 4.0 分支。这意味着 Redis 用户为了使用 streams,不用等到 Redis 4.2 发布,它们在生产环境中马上就可以使用了。这是可能的,因为作为一个新的数据结构,几乎所有的代码改变都出现在新的代码里面。除了阻塞列表操作之外:该代码被重构了,我们对于 streams 和列表阻塞操作共享了相同的代码,从而极大地简化了 Redis 内部。
|
||||
结合 radix 树和 listpacks 的特性,它可以很容易地去构建一个空间高效的日志,并且还是索引化的,这意味着允许通过 ID 和时间进行随机访问。自从这些准备就绪后,我开始去写一些代码以实现流数据结构。我最终完成了该实现,不管怎样,现在,Redis 在 Github 上的 “streams” 分支里面,它已经可以跑的很好了。我并没有声称那个 API 是 100% 的最终版本,但是,这有两个有趣的事实:一是,在那时,只有消费组是不行的,再加上一些不那么重要的命令去操作流,但是,所有的大的方面都已经实现了。二是,一旦各个方面比较稳定了之后,决定大概用两个月的时间将所有的流的工作<ruby>回迁<rt>backport</rt></ruby>到 4.0 分支。这意味着 Redis 用户为了使用 streams,不用等到 Redis 4.2 发布,它们在生产环境中马上就可以使用了。这是可能的,因为作为一个新的数据结构,几乎所有的代码改变都出现在新的代码里面。除了阻塞列表操作之外:该代码被重构了,我们对于 streams 和列表阻塞操作共享了相同的代码,从而极大地简化了 Redis 内部。
|
||||
|
||||
### 教程:欢迎使用 Redis 的 streams
|
||||
|
||||
@ -57,7 +57,7 @@ QUEUED
|
||||
2) 1506872463535.1
|
||||
```
|
||||
|
||||
在上面的示例中,也展示了无需指定任何初始<ruby>模式<rt>schema</rt></ruby>的情况下,对不同的条目使用不同的字段。会发生什么呢?就像前面提到的一样,只有每个块(它通常包含 50 - 150 个消息内容)的第一个信息被使用。并且,相同字段的连续条目都使用了一个标志进行了压缩,这个标志表示与“它们与这个块中的第一个条目的字段相同”。因此,对于使用了相同字段的连续消息可以节省许多内存,即使是字段集随着时间发生缓慢变化的情况下也很节省内存。
|
||||
在上面的示例中,也展示了无需指定任何初始<ruby>模式<rt>schema</rt></ruby>的情况下,对不同的条目使用不同的字段。会发生什么呢?就像前面提到的一样,只有每个块(它通常包含 50-150 个消息内容)的第一个信息被使用。并且,相同字段的连续条目都使用了一个标志进行了压缩,这个标志表示与“它们与这个块中的第一个条目的字段相同”。因此,对于使用了相同字段的连续消息可以节省许多内存,即使是字段集随着时间发生缓慢变化的情况下也很节省内存。
|
||||
|
||||
为了从流中检索数据,这里有两种方法:范围查询,它是通过 `XRANGE` 命令实现的;和<ruby>流播<rt>streaming</rt></ruby>,它是通过 XREAD 命令实现的。`XRANGE` 命令仅取得包括从开始到停止范围内的全部条目。因此,举例来说,如果我知道它的 ID,我可以使用如下的命名取得单个条目:
|
||||
|
||||
@ -151,23 +151,23 @@ QUEUED
|
||||
|
||||
### 消费组(开发中)
|
||||
|
||||
这是第一个 Redis 中尚未实现而在开发中的特性。它也是来自 Kafka 的灵感,尽管在这里以不同的方式去实现的。重点是使用了 `XREAD`,客户端也可以增加一个 `GROUP <name>` 选项。 在相同组的所有客户端,将自动地得到*不同的*消息。当然,同一个流可以被多个组读取。在这种情况下,所有的组将收到流中到达的消息的相同副本。但是,在每个组内,消息是不会重复的。
|
||||
这是第一个 Redis 中尚未实现而在开发中的特性。它也是来自 Kafka 的灵感,尽管在这里以不同的方式去实现的。重点是使用了 `XREAD`,客户端也可以增加一个 `GROUP <name>` 选项。在相同组的所有客户端,将自动地得到*不同的*消息。当然,同一个流可以被多个组读取。在这种情况下,所有的组将收到流中到达的消息的相同副本。但是,在每个组内,消息是不会重复的。
|
||||
|
||||
当指定组时,能够指定一个 “RETRY <milliseconds>” 选项去扩展组:在这种情况下,如果消息没有使用 XACK 去进行确认,它将在指定的毫秒数后进行再次投递。这将为消息投递提供更佳的可靠性,这种情况下,客户端没有私有的方法将消息标记为已处理。这一部分也正在开发中。
|
||||
|
||||
### 内存使用和加载时间节省
|
||||
|
||||
因为设计用来建模 Redis 的 streams,内存使用是非常低的。这取决于它们的字段、值的数量和它们的长度,对于简单的消息,每使用 100 MB 内存可以有几百万条消息,此外,格式设想为需要极少的序列化:listpack 块以 radix 树节点方式存储,在磁盘上和内存中都以相同方式表示的,因此,它们可以很轻松地存储和读取。例如,Redis 可以在 0.3 秒内从 RDB 文件中读取 500 万个条目。这使得 streams 的复制和持久存储非常高效。
|
||||
因为设计用来建模 Redis 的 streams,内存使用是非常低的。这取决于它们的字段、值的数量和它们的长度,对于简单的消息,每使用 100MB 内存可以有几百万条消息,此外,格式设想为需要极少的序列化:listpack 块以 radix 树节点方式存储,在磁盘上和内存中都以相同方式表示的,因此,它们可以很轻松地存储和读取。例如,Redis 可以在 0.3 秒内从 RDB 文件中读取 500 万个条目。这使得 streams 的复制和持久存储非常高效。
|
||||
|
||||
也计划允许从条目中间进行部分删除。现在仅实现了一部分,策略是在条目在标记中标识为已删除条目,并且,当已删除条目占全部条目的比率达到给定值时,这个块将被回收重写,并且,如果需要,它将被连到相邻的另一个块上,以避免碎片化。
|
||||
|
||||
### 关于最终发布时间的结论
|
||||
|
||||
Redis 的 streams 将包含在年底前(LCTT 译注:本文原文发布于 2017 年 10 月)推出的 Redis 4.0 系列的稳定版中。我认为这个通用的数据结构将为 Redis 提供一个巨大的补丁,以用于解决很多现在很难去解决的情况:那意味着你(之前)需要创造性地滥用当前提供的数据结构去解决那些问题。一个非常重要的使用案例是时间序列,但是,我的感觉是,对于其它用例来说,通过 `TREAD` 来流播消息将是非常有趣的,因为对于那些需要更高可靠性的应用程序,可以使用发布/订阅模式来替换“即用即弃”,还有其它全新的使用案例。现在,如果你想在你的有问题环境中评估新数据结构的能力,可以在 GitHub 上去获得 “streams” 分支,开始去玩吧。欢迎向我们报告所有的 bug 。 :-)
|
||||
Redis 的 streams 将包含在年底前(LCTT 译注:本文原文发布于 2017 年 10 月)推出的 Redis 4.0 系列的稳定版中。我认为这个通用的数据结构将为 Redis 提供一个巨大的补丁,以用于解决很多现在很难去解决的情况:那意味着你(之前)需要创造性地滥用当前提供的数据结构去解决那些问题。一个非常重要的使用案例是时间序列,但是,我的感觉是,对于其它用例来说,通过 `TREAD` 来流播消息将是非常有趣的,因为对于那些需要更高可靠性的应用程序,可以使用发布/订阅模式来替换“即用即弃”,还有其它全新的使用案例。现在,如果你想在你的有问题环境中评估新数据结构的能力,可以在 GitHub 上去获得 “streams” 分支,开始去玩吧。欢迎向我们报告所有的 bug。:-)
|
||||
|
||||
如果你喜欢这个视频,展示这个 streams 的实时会话在这里: https://www.youtube.com/watch?v=ELDzy9lCFHQ
|
||||
如果你喜欢这个视频,展示这个 streams 的实时会话在这里:https://www.youtube.com/watch?v=ELDzy9lCFHQ
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
---
|
||||
|
||||
via: http://antirez.com/news/114
|
||||
|
||||
@ -177,7 +177,7 @@ via: http://antirez.com/news/114
|
||||
|
||||
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
|
||||
|
||||
[a]:http://antirez.com/
|
||||
[1]:http://antirez.com/news/114
|
||||
[2]:http://antirez.com/user/antirez
|
||||
[3]:https://www.youtube.com/watch?v=ELDzy9lCFHQ
|
||||
[a]: http://antirez.com/
|
||||
[1]: http://antirez.com/news/114
|
||||
[2]: http://antirez.com/user/antirez
|
||||
[3]: https://www.youtube.com/watch?v=ELDzy9lCFHQ
|
||||
|
Loading…
Reference in New Issue
Block a user