Merge pull request #8479 from wxy/20180111-AI-and-machine-learning-bias-has-dangerous-implications

PRF&PUB:20180111 AI and machine learning bias has dangerous implications
This commit is contained in:
Xingyu.Wang 2018-04-14 22:12:51 +08:00 committed by GitHub
commit bc5b7127bc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,6 +1,8 @@
AI 和机器中暗含的算法偏见是怎样形成的,我们又能通过开源社区做些什么
AI 和机器学习中暗含的算法偏见
======
> 我们又能通过开源社区做些什么?
![](https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/LAW_goodbadugly.png?itok=ZxaimUWU)
图片来源opensource.com
@ -9,21 +11,21 @@ AI 和机器中暗含的算法偏见是怎样形成的,我们又能通过开
很难想像,我们经常忽略的一点是这二者的交集:计算机算法中存在的偏见。
与我们大多数人所认为的相反,科技并不是客观的。 AI 算法和它们的决策程序是由它们的研发者塑造的,他们写入的代码,使用的“[训练][1]”数据还有他们对算法进行[应力测试][2] 的过程,都会影响这些算法今后的选择。这意味着研发者的价值观偏见和人类缺陷都会反映在软件上。如果我只给实验室中的人脸识别算法提供白人的照片,当遇到不是白人照片时,它[不会认为照片中的是人类][3] 。这结论并不意味着 AI 是“愚蠢的”或是“天真的”,它显示的是训练数据的分布偏差:缺乏多种的脸部照片。这会引来非常严重的后果。
与我们大多数人的认知相反,科技并不是客观的。 AI 算法和它们的决策程序是由它们的研发者塑造的,他们写入的代码,使用的“[训练][1]”数据还有他们对算法进行[应力测试][2] 的过程,都会影响这些算法今后的选择。这意味着研发者的价值观偏见和人类缺陷都会反映在软件上。如果我只给实验室中的人脸识别算法提供白人的照片,当遇到不是白人照片时,它[不会认为照片中的是人类][3] 。这结论并不意味着 AI 是“愚蠢的”或是“天真的”,它显示的是训练数据的分布偏差:缺乏多种的脸部照片。这会引来非常严重的后果。
这样的例子并不少。全美范围内的[州法院系统][4] 都使用“黑箱子”对罪犯进行宣判。由于训练数据的问题,[这些算法对黑人有偏见][5] ,他们对黑人罪犯会选择更长的服刑期,因此监狱中的种族差异会一直存在。而这些都发生在科技的客观性伪装下,这是“科学的”选择。
这样的例子并不少。全美范围内的[州法院系统][4] 都使用“黑”对罪犯进行宣判。由于训练数据的问题,[这些算法对黑人有偏见][5] ,他们对黑人罪犯会选择更长的服刑期,因此监狱中的种族差异会一直存在。而这些都发生在科技的客观性伪装下,这是“科学的”选择。
美国联邦政府使用机器学习算法来计算福利性支出和各类政府补贴。[但这些算法中的信息][6],例如它们的创造者和训练信息,都很难找到。这增加了政府工作人员进行不平等补助金分发操作的几率。
算法偏见情况还不止这些。从 Facebook 的新闻算法到医疗系统再到警方使用的相机,我们作为社会的一部分极有可能对这些算法输入各式各样的偏见,性别歧视,仇外思想,社会经济地位歧视,确认偏误等等。这些被输入了偏见的机器会大量生产分配,将种种社会偏见潜藏于科技客观性的面纱之下。
算法偏见情况还不止这些。从 Facebook 的新闻算法到医疗系统再到警用携带相机,我们作为社会的一部分极有可能对这些算法输入各式各样的偏见、性别歧视、仇外思想、社会经济地位歧视、确认偏误等等。这些被输入了偏见的机器会大量生产分配,将种种社会偏见潜藏于科技客观性的面纱之下。
这种状况绝对不能再继续下去了。
在我们对人工智能进行不断开发研究的同时,需要降低它的开发速度,小心仔细地开发。算法偏见的危害已经足够大了。
## 我们能怎样减少算法偏见?
### 我们能怎样减少算法偏见?
最好的方式是从算法训练的数据开始审查,根据 [Microsoft 的研究者][2] 所说,这方法很有效。
最好的方式是从算法训练的数据开始审查,根据 [微软的研究人员][2] 所说,这方法很有效。
数据分布本身就带有一定的偏见性。编程者手中的美国公民数据分布并不均衡,本地居民的数据多于移民者,富人的数据多于穷人,这是极有可能出现的情况。这种数据的不平均会使 AI 对我们是社会组成得出错误的结论。例如机器学习算法仅仅通过统计分析,就得出“大多数美国人都是富有的白人”这个结论。
@ -37,7 +39,7 @@ AI 和机器中暗含的算法偏见是怎样形成的,我们又能通过开
这些对于 AI 来说是十分复杂的数据,但我们可以通过多项测试对它们进行定义和传达。
## 为什么开源很适合这项任务?
### 为什么开源很适合这项任务?
开源方法和开源技术都有着极大的潜力改变算法偏见。
@ -45,17 +47,17 @@ AI 和机器中暗含的算法偏见是怎样形成的,我们又能通过开
调试工具如哥伦比亚大学和理海大学推出的 [DeepXplore][9],增强了 AI 应力测试的强度,同时提高了其操控性。还有 [麻省理工学院的计算机科学和人工智能实验室][10]完成的项目,它开发出敏捷快速的样机研究软件,这些应该会被开源社区采纳。
开源技术也已经证明了其在审查和分类大组数据方面的能力。最明显的体现在开源工具在数据分析市场的占有率上Weka , Rapid Miner 等等)。应当由开源社区来设计识别数据偏见的工具,已经在网上发布的大量训练数据组比如 [Kaggle][11]也应当使用这种技术进行识别筛选。
开源技术也已经证明了其在审查和分类大组数据方面的能力。最明显的体现在开源工具在数据分析市场的占有率上WekaRapid Miner 等等)。应当由开源社区来设计识别数据偏见的工具,已经在网上发布的大量训练数据组比如 [Kaggle][11] 也应当使用这种技术进行识别筛选。
开源方法本身十分适合消除偏见程序的设计。内部谈话私人软件开发及非民主的决策制定引起了很多问题。开源社区能够进行软件公开的谈话,进行大众化,维持好与大众的关系,这对于处理以上问题是十分重要的。如果线上社团,组织和院校能够接受这些开源特质,那么由开源社区进行消除算法偏见的机器设计也会顺利很多。
开源方法本身十分适合消除偏见程序的设计。内部谈话私人软件开发及非民主的决策制定引起了很多问题。开源社区能够进行软件公开的谈话,进行大众化,维持好与大众的关系,这对于处理以上问题是十分重要的。如果线上社团,组织和院校能够接受这些开源特质,那么由开源社区进行消除算法偏见的机器设计也会顺利很多。
## 我们怎样才能够参与其中?
### 我们怎样才能够参与其中?
教育是一个很重要的环节。我们身边有很多还没意识到算法偏见的人,但算法偏见在立法,社会公正,政策及更多领域产生的影响与他们息息相关。让这些人知道算法偏见是怎样形成的和它们带来的重要影响是很重要的,因为想要改变目前局面,从我们自身做起是唯一的方法。
教育是一个很重要的环节。我们身边有很多还没意识到算法偏见的人,但算法偏见在立法、社会公正、政策及更多领域产生的影响与他们息息相关。让这些人知道算法偏见是怎样形成的和它们带来的重要影响是很重要的,因为想要改变目前局面,从我们自身做起是唯一的方法。
对于我们中间那些与人工智能一起工作的人来说,这种沟通尤其重要。不论是人工智能的研发者警方或是科研人员,当他们为今后设计人工智能时,应当格外意识到现今这种偏见存在的危险性,很明显,想要消除人工智能中存在的偏见,就要从意识到偏见的存在开始。
对于我们中间那些与人工智能一起工作的人来说,这种沟通尤其重要。不论是人工智能的研发者警方或是科研人员,当他们为今后设计人工智能时,应当格外意识到现今这种偏见存在的危险性,很明显,想要消除人工智能中存在的偏见,就要从意识到偏见的存在开始。
最后,我们需要围绕 AI 伦理化建立并加强开源社区。不论是需要建立应力实验训练模型软件工具,或是从千兆字节的训练数据中筛选,现在已经到了我们利用开源方法来应对数字化时代最大的威胁的时间了。
最后,我们需要围绕 AI 伦理化建立并加强开源社区。不论是需要建立应力实验训练模型软件工具,或是从千兆字节的训练数据中筛选,现在已经到了我们利用开源方法来应对数字化时代最大的威胁的时间了。
--------------------------------------------------------------------------------
@ -63,7 +65,7 @@ via: https://opensource.com/article/18/1/how-open-source-can-fight-algorithmic-b
作者:[Justin Sherman][a]
译者:[Valoniakim](https://github.com/Valoniakim)
校对:[校对者ID](https://github.com/校对者ID)
校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出