Merge pull request #5980 from geekpi/master

translated
This commit is contained in:
geekpi 2017-08-25 08:43:01 +08:00 committed by GitHub
commit bba4575722
2 changed files with 75 additions and 78 deletions

View File

@ -1,78 +0,0 @@
translating-----geekpi
Developer-defined application delivery
============================================================
How load balancers help you manage the complexity of distributed systems.
![Ship with tug](https://d3tdunqjn7n0wj.cloudfront.net/360x240/ship-84139_1400-154e17db40c32ff6fc352fd12b2b32d3.jpg)
Cloud-native applications are designed to draw upon the performance, scalability, and reliability benefits of distributed systems. Unfortunately, distributed systems often come at the cost of added complexity. As individual components of your application are distributed across networks, and those networks have communication gaps or experience degraded performance, your distributed application components need to continue to function independently.
To avoid inconsistencies in application state, distributed systems should be designed with an understanding that components will fail. Nowhere is this more prominent than in the network. Consequently, at their core, distributed systems rely heavily on load balancing—the distribution of requests across two or more systems—in order to be resilient in the face of network disruption and horizontally scale as system load fluctuates.
Get O'Reilly's weekly Systems Engineering and Operations newsletter[
![](https://cdn.oreillystatic.com/oreilly/email/webops-newsletter-20170102.png)
][5]
As distributed systems become more and more prevalent in the design and delivery of cloud-native applications, load balancers saturate infrastructure design at every level of modern application architecture. In their most commonly thought-of configuration, load balancers are deployed in front of the application, handling requests from the outside world. However, the emergence of microservices means that load balancers play a critical role behind the scenes: i.e. managing the flow between  _services_ .
Therefore, when you work with cloud-native applications and distributed systems, your load balancer takes on other role(s):
* As a reverse proxy to provide caching and increased security as it becomes the go-between for external clients.
* As an API gateway by providing protocol translation (e.g. REST to AMQP).
* It may handle security (i.e. running a web application firewall).
* It may take on application management tasks such as rate limiting and HTTP/2 support.
Given their clearly expanded capabilities beyond that of balancing traffic, load balancers can be more broadly referred to as Application Delivery Controllers (ADCs).
### Developers defining infrastructure
Historically, ADCs were purchased, deployed, and managed by IT professionals most commonly to run enterprise-architected applications. For physical load balancer equipment (e.g. F5, Citrix, Brocade, etc.), this largely remains the case. Cloud-native applications with their distributed systems design and ephemeral infrastructure require load balancers to be as dynamic as the infrastructure (e.g. containers) upon which they run. These are often software load balancers (e.g. NGINX and load balancers from public cloud providers). Cloud-native applications are typically developer-led initiatives, which means that developers are creating the application (e.g. microservices) and the infrastructure (Kubernetes and NGINX). Developers are increasingly making or heavily influencing decisions for load balancing (and other) infrastructure.
As a decision maker, the developer of cloud-native applications generally isn't aware of, or influenced by, enterprise infrastructure requirements or existing deployments, both considering that these deployments are often new and often deployments within a public or private cloud environment. Because cloud technologies have abstracted infrastructure into programmable APIs, developers are defining the way that applications are built at each layer of that infrastructure. In the case of the load balancer, developers choose which type to use, how it gets deployed, and which functions to enable. They programmatically encode how the load balancer behaves—how it dynamically responds to the needs of the application as the application grows, shrinks and evolves in functionality over the lifetime of application deployments. Developers are defining infrastructure as code—both infrastructure configuration and its operation as code.
### Why developers are defining infrastructure
The practice of writing this code— _how applications are built and deployed_ —has undergone a fundamental shift, which can be characterized in many ways. Stated pithily, this fundamental shift has been driven by two factors: the time it takes to bring new application functionality to market ( _time to market_ ) and the time it takes for an application user to derive value from the offering ( _time to value_ ). As a result, new applications are written to be continuously delivered (as a service), not downloaded and installed.
Time-to-market and time-to-value pressures arent new, but they are joined by other factors that are increasing the decisioning-making power developers have:
* Cloud: the ability to define infrastructure as code via API.
* Scale: the need to run operations efficiently in large environments.
* Speed: the need to deliver application functionality now; for businesses to be competitive.
* Microservices: abstraction of framework and tool choice, further empowering developers to make infrastructure decisions.
In addition to the above factors, its worth noting the impact of open source. With the prevalence and power of open source software, developers have a plethora of application infrastructure—languages, runtimes, frameworks, databases, load balancers, managed services, etc.—at their fingertips. The rise of microservices has democratized the selection of application infrastructure, allowing developers to choose best-for-purpose tooling. In the case of choice of load balancer, those that tightly integrate with and respond to the dynamic nature of cloud-native applications rise to the top of the heap.
### Conclusion
As you are mulling over your cloud-native application design, join me for a discussion on  _[Load Balancing in the Cloud with NGINX and Kubernetes][8]_ . We'll examine the load balancing capabilities of different public clouds and container platforms and walk through a case study involving a bloat-a-lith—an overstuffed monolithic application. We'll look at how it was broken into smaller, independent services and how capabilities of NGINX and Kubernetes came to its rescue.
--------------------------------------------------------------------------------
作者简介:
Lee Calcote is an innovative thought leader, passionate about developer platforms and management software for clouds, containers, infrastructure and applications. Advanced and emerging technologies have been a consistent focus through Calcotes tenure at SolarWinds, Seagate, Cisco and Pelco. An organizer of technology meetups and conferences, a writer, author, speaker, he is active in the tech community.
----------------------------
via: https://www.oreilly.com/learning/developer-defined-application-delivery
作者:[Lee Calcote][a]
译者:[译者ID](https://github.com/译者ID)
校对:[校对者ID](https://github.com/校对者ID)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]:https://www.oreilly.com/people/7f693-lee-calcote
[1]:https://pixabay.com/en/ship-containers-products-shipping-84139/
[2]:https://conferences.oreilly.com/velocity/vl-ca?intcmp=il-webops-confreg-na-vlca17_new_site_velocity_sj_17_cta
[3]:https://www.oreilly.com/people/7f693-lee-calcote
[4]:http://www.oreilly.com/pub/e/3864?intcmp=il-webops-webcast-reg-webcast_new_site_developer_defined_application_delivery_text_cta
[5]:https://www.oreilly.com/learning/developer-defined-application-delivery?imm_mid=0ee8c5&cmp=em-webops-na-na-newsltr_20170310
[6]:https://conferences.oreilly.com/velocity/vl-ca?intcmp=il-webops-confreg-na-vlca17_new_site_velocity_sj_17_cta
[7]:https://conferences.oreilly.com/velocity/vl-ca?intcmp=il-webops-confreg-na-vlca17_new_site_velocity_sj_17_cta
[8]:http://www.oreilly.com/pub/e/3864?intcmp=il-webops-webcast-reg-webcast_new_site_developer_defined_application_delivery_body_text_cta

View File

@ -0,0 +1,75 @@
开发者定义的应用交付
============================================================
负载均衡器如何帮助你管理分布式系统的复杂性。
![Ship with tug](https://d3tdunqjn7n0wj.cloudfront.net/360x240/ship-84139_1400-154e17db40c32ff6fc352fd12b2b32d3.jpg)
原生云应用旨在利用分布式系统的性能、可扩展性和可靠性优势。不幸的是,分布式系统往往以额外的复杂性为代价。由于你程序的各个组件分布在网络中,并且这些网络有通信障碍或者性能降级,因此你的分布式程序组件需要继续独立运行。
为了避免程序状态的不一致,分布式系统设计应该有一个共识,即组件会失效。没有什么比网络更突出。因此,在其核心,分布式系统在很大程度上依赖于负载平衡-跨两个或多个系统的请求分布,以便在面临网络中断和在系统负载波动时水平缩放时具有弹性。
Get O'Reilly's weekly Systems Engineering and Operations newsletter[
![](https://cdn.oreillystatic.com/oreilly/email/webops-newsletter-20170102.png)
][5]
随着分布式系统在原生云程序的设计和交付中越来越普及负载平衡器在现代应用程序体系结构的各个层次都浸透了基础结构设计。在常见配置中负载平衡器部署在应用程序前面处理来自外部世界的请求。然而微服务的出现意味着负载平衡器在幕后发挥关键作用即管理_服务_之间的流。
因此,当你使用原生云程序和分布式系统时,负载均衡器将承担其他角色:
* 作为提供缓存和增加安全性的反向代理,因为它成为外部客户端的中间件。
* 作为通过提供协议转换(例如 REST 到 AMQP的 API 网关。
* 它可以处理安全性(即运行 Web 应用程序防火墙)。
* 它可能承担应用程序管理任务,如速率限制和 HTTP/2 支持。
鉴于它们的扩展能力远大于平衡流量负载平衡器可以更广泛地称为应用交付控制器ADC
### 开发人员定义基础设施
从历史上看ADC 是由 IT 专业人员购买、部署和管理的,最常见的是运行企业架构的应用程序。对于物理负载平衡器设备(如 F5、Citrix、Brocade等这种情况在很大程度上仍然存在。具有分布式系统设计和临时基础结构的云原生应用要求负载平衡器与它们运行时的基础结构 (如容器) 一样具有动态特性。这些通常是软件负载均衡器(例如来自公共云提供商的 NGINX 和负载平衡器。云原生应用通常是开发人员主导的计划这意味着开发人员正在创建应用程序例如微服务器和基础设施Kubernetes 和 NGINX。开发人员越来越多地对负载平衡 (和其他) 基础结构的决策做出或产生大量影响。
作为决策者,云原生应用的开发人员通常不会意识到企业基础架构要求或现有部署的影响,同时考虑到这些部署通常是新的,并且经常在公共或私有云环境中进行部署。云技术将基础设施抽象为可编程 API开发人员正在定义应用程序在该基础架构的每一层构建的方式。在有负载平衡器的情况下开发人员会选择要使用的类型部署方式以及启用哪些功能。它们以编程方式对负载平衡器的行为进行编码 - 随着程序在部署的生存期内增长、收缩和功能上进化时,它如何动态响应应用程序的需要。开发人员将基础结构定义为代码-包括基础结构配置和代码操作。
### 开发者为什么定义基础架构?
编写这个代码-_如何构建和部署应用程序_-的实践已经发生了根本性的转变它体现在很多方面。令人遗憾的是这种根本性的转变是由两个因素驱动的将新的应用功能推向市场_上市时间_所需的时间以及应用用户从产品_时间到价值_中获得价值所需的时间。因此新的程序写出来被持续地交付作为服务没有下载和安装。
上市时间和时间价值的压力并不是新的,但由于其他因素的加剧,这些因素正在加强开发者的决策权力:
* 云:通过 API 定义基础架构作为代码的能力。
* 伸缩:需要在大型环境中高效运行操作。
* 速度:马上需要交付应用功能,为企业争取竞争力。
* 微服务:抽象框架和工具选择,进一步赋予开发人员基础架构决策权力。
除了上述因素外,值得注意的是开源的影响。随着开源软件的普及和发展,开发人员掌握了许多应用程序基础设施 - 语言、运行时、框架、数据库、负载均衡器、托管服务等。微服务的兴起使应用程序基础设施的选择民主化,允许开发人员选择最佳的工具。在选择负载平衡器的情况下,与云原生应用的动态性质紧密集成并响应的那些应用程序将上升到最高。
### 总结
当你在仔细考虑你的云原生应用设计时请与我一起讨论_[在云中使用 NGINX 和 Kubernetes 进行负载平衡][8]_。我们将检测不同公共云和容器平台的负载平衡功能并通过一个宏应用的案例研究。我们将看看它是如何被变成成较小的独立的服务以及 NGINX 和 Kubernetes 的能力如何拯救它的。
--------------------------------------------------------------------------------
作者简介:
Lee Calcote 是一位创新的思想领袖,对开发者平台和云、容器、基础设施和应用的管理软件充满热情。先进的和新兴的技术一直是 Calcote 在 SolarWinds、Seagate、Cisco 和 Pelco 时的关注重点。技术会议和聚会的组织者、写作者、作家、演讲者,他活跃在技术社区。
----------------------------
via: https://www.oreilly.com/learning/developer-defined-application-delivery
作者:[Lee Calcote][a]
译者:[geekpi](https://github.com/geekpi)
校对:[校对者ID](https://github.com/校对者ID)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]:https://www.oreilly.com/people/7f693-lee-calcote
[1]:https://pixabay.com/en/ship-containers-products-shipping-84139/
[2]:https://conferences.oreilly.com/velocity/vl-ca?intcmp=il-webops-confreg-na-vlca17_new_site_velocity_sj_17_cta
[3]:https://www.oreilly.com/people/7f693-lee-calcote
[4]:http://www.oreilly.com/pub/e/3864?intcmp=il-webops-webcast-reg-webcast_new_site_developer_defined_application_delivery_text_cta
[5]:https://www.oreilly.com/learning/developer-defined-application-delivery?imm_mid=0ee8c5&cmp=em-webops-na-na-newsltr_20170310
[6]:https://conferences.oreilly.com/velocity/vl-ca?intcmp=il-webops-confreg-na-vlca17_new_site_velocity_sj_17_cta
[7]:https://conferences.oreilly.com/velocity/vl-ca?intcmp=il-webops-confreg-na-vlca17_new_site_velocity_sj_17_cta
[8]:http://www.oreilly.com/pub/e/3864?intcmp=il-webops-webcast-reg-webcast_new_site_developer_defined_application_delivery_body_text_cta