mirror of
https://github.com/LCTT/TranslateProject.git
synced 2025-01-25 23:11:02 +08:00
Merge pull request #5691 from ictlyh/master
Translated tech/20170519 Accelerating your C++ on GPU with SYCL.md
This commit is contained in:
commit
b7baa360ca
@ -1,357 +0,0 @@
|
||||
ictlyh Translating
|
||||
Accelerating your C++ on GPU with SYCL
|
||||
============================================================
|
||||
|
||||
|
||||
### WARNING: This is an incomplete draft. There are likely many mistaeks and unfinished sections.
|
||||
|
||||
* * *
|
||||
|
||||
Leveraging the power of graphics cards for compute applications is all the rage right now in fields such as machine learning, computer vision and high-performance computing. Technologies like OpenCL expose this power through a hardware-independent programming model, allowing you to write code which abstracts over different architecture capabilities. The dream of this is “write once, run anywhere”, be it an Intel CPU, AMD discrete GPU, DSP, etc. Unfortunately, for everyday programmers, OpenCL has something of a steep learning curve; a simple Hello World program can be a hundred or so lines of pretty ugly-looking code. However, to ease this pain, the Khronos group have developed a new standard called [SYCL][4], which is a C++ abstraction layer on top of OpenCL. Using SYCL, you can develop these general-purpose GPU (GPGPU) applications in clean, modern C++ without most of the faff associated with OpenCL. Here’s a simple vector multiplication example written in SYCL using the parallel STL implementation:
|
||||
|
||||
```
|
||||
#include <vector>
|
||||
#include <iostream>
|
||||
|
||||
#include <sycl/execution_policy>
|
||||
#include <experimental/algorithm>
|
||||
#include <sycl/helpers/sycl_buffers.hpp>
|
||||
|
||||
using namespace std::experimental::parallel;
|
||||
using namespace sycl::helpers;
|
||||
|
||||
int main() {
|
||||
constexpr size_t array_size = 1024*512;
|
||||
std::array<cl::sycl::cl_int, array_size> a;
|
||||
std::iota(begin(a),end(a),0);
|
||||
|
||||
{
|
||||
cl::sycl::buffer<int> b(a.data(), cl::sycl::range<1>(a.size()));
|
||||
cl::sycl::queue q;
|
||||
sycl::sycl_execution_policy<class Mul> sycl_policy(q);
|
||||
transform(sycl_policy, begin(b), end(b), begin(b),
|
||||
[](int x) { return x*2; });
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
For comparison, here’s a mostly equivalent version written in OpenCL using the C++ API (don’t spend much time reading this, just note that it looks ugly and is really long):
|
||||
|
||||
```
|
||||
#include <iostream>
|
||||
#include <array>
|
||||
#include <numeric>
|
||||
#include <CL/cl.hpp>
|
||||
|
||||
int main(){
|
||||
std::vector<cl::Platform> all_platforms;
|
||||
cl::Platform::get(&all_platforms);
|
||||
if(all_platforms.size()==0){
|
||||
std::cout<<" No platforms found. Check OpenCL installation!\n";
|
||||
exit(1);
|
||||
}
|
||||
cl::Platform default_platform=all_platforms[0];
|
||||
|
||||
std::vector<cl::Device> all_devices;
|
||||
default_platform.getDevices(CL_DEVICE_TYPE_ALL, &all_devices);
|
||||
if(all_devices.size()==0){
|
||||
std::cout<<" No devices found. Check OpenCL installation!\n";
|
||||
exit(1);
|
||||
}
|
||||
|
||||
cl::Device default_device=all_devices[0];
|
||||
cl::Context context({default_device});
|
||||
|
||||
cl::Program::Sources sources;
|
||||
std::string kernel_code=
|
||||
" void kernel mul2(global int* A){"
|
||||
" A[get_global_id(0)]=A[get_global_id(0)]*2;"
|
||||
" }";
|
||||
sources.push_back({kernel_code.c_str(),kernel_code.length()});
|
||||
|
||||
cl::Program program(context,sources);
|
||||
if(program.build({default_device})!=CL_SUCCESS){
|
||||
std::cout<<" Error building: "<<program.getBuildInfo<CL_PROGRAM_BUILD_LOG>(default_device)<<"\n";
|
||||
exit(1);
|
||||
}
|
||||
|
||||
constexpr size_t array_size = 1024*512;
|
||||
std::array<cl_int, array_size> a;
|
||||
std::iota(begin(a),end(a),0);
|
||||
|
||||
cl::Buffer buffer_A(context,CL_MEM_READ_WRITE,sizeof(int)*a.size());
|
||||
cl::CommandQueue queue(context,default_device);
|
||||
|
||||
if (queue.enqueueWriteBuffer(buffer_A,CL_TRUE,0,sizeof(int)*a.size(),a.data()) != CL_SUCCESS) {
|
||||
std::cout << "Failed to write memory;n";
|
||||
exit(1);
|
||||
}
|
||||
|
||||
cl::Kernel kernel_add = cl::Kernel(program,"mul2");
|
||||
kernel_add.setArg(0,buffer_A);
|
||||
|
||||
if (queue.enqueueNDRangeKernel(kernel_add,cl::NullRange,cl::NDRange(a.size()),cl::NullRange) != CL_SUCCESS) {
|
||||
std::cout << "Failed to enqueue kernel\n";
|
||||
exit(1);
|
||||
}
|
||||
|
||||
if (queue.finish() != CL_SUCCESS) {
|
||||
std::cout << "Failed to finish kernel\n";
|
||||
exit(1);
|
||||
}
|
||||
|
||||
if (queue.enqueueReadBuffer(buffer_A,CL_TRUE,0,sizeof(int)*a.size(),a.data()) != CL_SUCCESS) {
|
||||
std::cout << "Failed to read result\n";
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
In this post I’ll give an introduction on using SYCL to accelerate your C++ code on the GPU.
|
||||
|
||||
* * *
|
||||
|
||||
### Lightning intro to GPGPU
|
||||
|
||||
Before I get started on how to use SYCL, I’ll give a brief outline of why you might want to run compute jobs on the GPU for those who are unfamiliar. I’ve you’ve already used OpenCL, CUDA or similar, feel free to skip ahead.
|
||||
|
||||
The key difference between a GPU and a CPU is that, rather than having a small number of complex, powerful cores (1-8 for common consumer desktop hardware), a GPU has a huge number of small, simple processing elements.
|
||||
|
||||
![CPU architecture](https://blog.tartanllama.xyz/assets/cpu.png)
|
||||
|
||||
Above is a comically simplified diagram of a CPU with four cores. Each core has a set of registers and is attached to various levels of cache (some might be shared, some not), and then main memory.
|
||||
|
||||
![GPU architecture](https://blog.tartanllama.xyz/assets/gpu.png)
|
||||
|
||||
In the GPU, tiny processing elements are grouped into execution units. Each processing element has a bit of memory attached to it, and each execution unit has some memory shared between its processing elements. After that, there’s some GPU-wide memory, then the same main memory which the CPU uses. The elements within an execution unit execute in _lockstep_ , where each element executes the same instruction on a different piece of data.
|
||||
|
||||
There are many aspects of GPGPU programming which make it an entirely different beast to everyday CPU programming. For example, transferring data from main memory to the GPU is _slow_ . _Really_ slow. Like, kill all your performance and get you fired slow. Therefore, the tradeoff with GPU programming is to make as much of the ridiculously high throughput of your accelerator to hide the latency of shipping the data to and from it.
|
||||
|
||||
There are other issues which might not be immediately apparent, like the cost of branching. Since the processing elements in an execution unit work in lockstep, nested branches which cause them to take different paths (divergent control flow) is a real problem. This is often solved by executing all branches for all elements and masking out the unneeded results. That’s a polynomial explosion in complexity based on the level of nesting, which is A Bad Thing ™. Of course, there are optimizations which can aid this, but the idea stands: simple assumptions and knowledge you bring from the CPU world might cause you big problems in the GPU world.
|
||||
|
||||
Before we get back to SYCL, some short pieces of terminology. The _host_ is the main CPU running on your machine which executes and the _device_ is what will be running your OpenCL code. A device could be the same as the host, or it could be some accelerator sitting in your machine, a simulator, whatever. A _kernel_ is a special function which is the entry point to the code which will run on your device. It will often be supplied with buffers for input and output data which have been set up by the host.
|
||||
|
||||
* * *
|
||||
|
||||
### Back to SYCL
|
||||
|
||||
There are currently two implementations of SYCL available; “triSYCL”, an experimental open source version by Xilinx (mostly used as a testbed for the standard), and “ComputeCpp”, an industry-strength implementation by Codeplay[1][2] (currently in open beta). Only ComputeCpp supports execution of kernels on the GPU, so we’ll be using that in this post.
|
||||
|
||||
Step 1 is to get ComputeCpp up and running on your machine. The main components are a runtime library which implements the SYCL API, and a Clang-based compiler which compiles both your host code and your device code. At the time of writing, Intel CPUs and some AMD GPUs are officially supported on Ubuntu and CentOS. It should be pretty easy to get it working on other Linux distributions (I got it running on my Arch system, for instance). Support for more hardware and operating systems is being worked on, so check the [supported platforms document][5] for an up-to-date list. The dependencies and components are listed [here][6]. You might also want to download the [SDK][7], which contains samples, documentation, build system integration files, and more. I’ll be using the [SYCL Parallel STL][8] in this post, so get that if you want to play along at home.
|
||||
|
||||
Once you’re all set up, we can get GPGPUing! As noted in the introduction, my first sample used the SYCL parallel STL implementation. We’ll now take a look at how to write that code with bare SYCL.
|
||||
|
||||
```
|
||||
#include <CL/sycl.hpp>
|
||||
|
||||
#include <array>
|
||||
#include <numeric>
|
||||
#include <iostream>
|
||||
|
||||
int main() {
|
||||
const size_t array_size = 1024*512;
|
||||
std::array<cl::sycl::cl_int, array_size> in,out;
|
||||
std::iota(begin(in),end(in),0);
|
||||
|
||||
cl::sycl::queue device_queue;
|
||||
cl::sycl::range<1> n_items{array_size};
|
||||
cl::sycl::buffer<cl::sycl::cl_int, 1> in_buffer(in.data(), n_items);
|
||||
cl::sycl::buffer<cl::sycl::cl_int, 1> out_buffer(out.data(), n_items);
|
||||
|
||||
device_queue.submit([&](cl::sycl::handler &cgh) {
|
||||
constexpr auto sycl_read = cl::sycl::access::mode::read_write;
|
||||
constexpr auto sycl_write = cl::sycl::access::mode::write;
|
||||
|
||||
auto in_accessor = in_buffer.get_access<sycl_read>(cgh);
|
||||
auto out_accessor = out_buffer.get_access<sycl_write>(cgh);
|
||||
|
||||
cgh.parallel_for<class VecScalMul>(n_items,
|
||||
[=](cl::sycl::id<1> wiID) {
|
||||
out_accessor[wiID] = in_accessor[wiID]*2;
|
||||
});
|
||||
});
|
||||
|
||||
device_queue.wait();
|
||||
}
|
||||
```
|
||||
|
||||
I’ll break this down piece-by-piece.
|
||||
|
||||
```
|
||||
#include <CL/sycl.hpp>
|
||||
```
|
||||
|
||||
The first thing we do is include the SYCL header file, which will put the SYCL runtime library at our command.
|
||||
|
||||
```
|
||||
const size_t array_size = 1024*512;
|
||||
std::array<cl::sycl::cl_int, array_size> in,out;
|
||||
std::iota(begin(in),end(in),0);
|
||||
```
|
||||
|
||||
Here we construct a large array of integers and initialize it with the numbers from `0` to `array_size-1` (this is what `std::iota` does). Note that we use `cl::sycl::cl_int` to ensure compatibility.
|
||||
|
||||
```
|
||||
cl::sycl::queue device_queue;
|
||||
```
|
||||
|
||||
Now we create our command queue. The command queue is where all work (kernels) will be enqueued before being dispatched to the device. There are many ways to customise the queue, such as providing a device to enqueue on or setting up asynchronous error handlers, but the default constructor will do for this example; it looks for a compatible GPU and falls back on the host CPU if it fails.
|
||||
|
||||
```
|
||||
cl::sycl::range<1> n_items{array_size};
|
||||
```
|
||||
|
||||
Next we create a range, which describes the shape of the data which the kernel will be executing on. In our simple example, it’s a one-dimensional array, so we use `cl::sycl::range<1>`. If the data was two-dimensional we would use `cl::sycl::range<2>` and so on. Alongside `cl::sycl::range`, there is `cl::sycl::ndrange`, which allows you to specify work group sizes as well as an overall range, but we don’t need that for our example.
|
||||
|
||||
```
|
||||
cl::sycl::buffer<cl::sycl::cl_int, 1> in_buffer(in.data(), n_items);
|
||||
cl::sycl::buffer<cl::sycl::cl_int, 1> out_buffer(out.data(), n_items);
|
||||
```
|
||||
|
||||
In order to control data sharing and transfer between the host and devices, SYCL provides a `buffer` class. We create two SYCL buffers to manage our input and output arrays.
|
||||
|
||||
```
|
||||
device_queue.submit([&](cl::sycl::handler &cgh) {/*...*/});
|
||||
```
|
||||
|
||||
After setting up all of our data, we can enqueue our actual work. There are a few ways to do this, but a simple method for setting up a parallel execution is to call the `.submit` function on our queue. To this function we pass a _command group functor_ [2][3] which will be executed when the runtime schedules that task. A command group handler sets up any last resources needed by the kernel and dispatches it.
|
||||
|
||||
```
|
||||
constexpr auto sycl_read = cl::sycl::access::mode::read_write;
|
||||
constexpr auto sycl_write = cl::sycl::access::mode::write;
|
||||
|
||||
auto in_accessor = in_buffer.get_access<sycl_read>(cgh);
|
||||
auto out_accessor = out_buffer.get_access<sycl_write>(cgh);
|
||||
```
|
||||
|
||||
In order to control access to our buffers and to tell the runtime how we will be using the data, we need to create _accessors_ . It should be clear that we are creating one accessor for reading from `in_buffer`, and one accessor for writing to `out_buffer`.
|
||||
|
||||
```
|
||||
cgh.parallel_for<class VecScalMul>(n_items,
|
||||
[=](cl::sycl::id<1> wiID) {
|
||||
out_accessor[wiID] = in_accessor[wiID]*2;
|
||||
});
|
||||
```
|
||||
|
||||
Now that we’ve done all the setup, we can actually do some computation on our device. Here we dispatch a kernel on the command group handler `cgh` over our range `n_items`. The actual kernel itself is a lambda which takes a work-item identifier and carries out our computation. In this case, we are reading from `in_accessor` at the index of our work-item identifier, multiplying it by `2`, then storing the result in the relevant place in `out_accessor`. That `<class VecScalMul>` is an unfortunate byproduct of how SYCL needs to work within the confines of standard C++, so we need to give a unique class name to the kernel for the compiler to be able to do its job.
|
||||
|
||||
```
|
||||
device_queue.wait();
|
||||
```
|
||||
|
||||
Our last line is kind of like calling `.join()` on a `std::thread`; it waits until the queue has executed all work which has been submitted. After this point, we could now access `out` and expect to see the correct results. Queues will also wait implicitly on destruction, so you could alternatively place it in some inner scope and let the synchronisation happen when the scope ends.
|
||||
|
||||
There are quite a few new concepts at play here, but hopefully you can see the power and expressibility we get using these techniques. However, if you just want to toss some code at your GPU and not worry about the customisation, then you can use the SYCL Parallel STL implementation.
|
||||
|
||||
* * *
|
||||
|
||||
### SYCL Parallel STL
|
||||
|
||||
The SYCL Parallel STL is an implementation of the Parallelism TS which dispatches your algorithm function objects as SYCL kernels. We already saw an example of this at the top of the page, so lets run through it quickly.
|
||||
|
||||
```
|
||||
#include <vector>
|
||||
#include <iostream>
|
||||
|
||||
#include <sycl/execution_policy>
|
||||
#include <experimental/algorithm>
|
||||
#include <sycl/helpers/sycl_buffers.hpp>
|
||||
|
||||
using namespace std::experimental::parallel;
|
||||
using namespace sycl::helpers;
|
||||
|
||||
int main() {
|
||||
constexpr size_t array_size = 1024*512;
|
||||
std::array<cl::sycl::cl_int, array_size> in,out;
|
||||
std::iota(begin(in),end(in),0);
|
||||
|
||||
{
|
||||
cl::sycl::buffer<int> in_buffer(in.data(), cl::sycl::range<1>(in.size()));
|
||||
cl::sycl::buffer<int> out_buffer(out.data(), cl::sycl::range<1>(out.size()));
|
||||
cl::sycl::queue q;
|
||||
sycl::sycl_execution_policy<class Mul> sycl_policy(q);
|
||||
transform(sycl_policy, begin(in_buffer), end(in_buffer), begin(out_buffer),
|
||||
[](int x) { return x*2; });
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
```
|
||||
constexpr size_t array_size = 1024*512;
|
||||
std::array<cl::sycl::cl_int, array_size> in, out;
|
||||
std::iota(begin(in),end(out),0);
|
||||
```
|
||||
|
||||
So far, so similar. Again we’re creating a couple of arrays to hold our input and output data.
|
||||
|
||||
```
|
||||
cl::sycl::buffer<int> in_buffer(in.data(), cl::sycl::range<1>(in.size()));
|
||||
cl::sycl::buffer<int> out_buffer(out.data(), cl::sycl::range<1>(out.size()));
|
||||
cl::sycl::queue q;
|
||||
```
|
||||
|
||||
Here we are creating our buffers and our queue like in the last example.
|
||||
|
||||
```
|
||||
sycl::sycl_execution_policy<class Mul> sycl_policy(q);
|
||||
```
|
||||
|
||||
Here’s where things get interesting. We create a `sycl_execution_policy` from our queue and give it a name to use for the kernel. This execution policy can then be used like `std::execution::par` or `std::execution::seq`.
|
||||
|
||||
```
|
||||
transform(sycl_policy, begin(in_buffer), end(in_buffer), begin(out_buffer),
|
||||
[](int x) { return x*2; });
|
||||
```
|
||||
|
||||
Now our kernel dispatch looks like a call to `std::transform` with an execution policy provided. That closure we pass in will be compiled for and executed on the device without us having to do any more complex set up.
|
||||
|
||||
Of course, you can do more than just `transform`. At the time of writing, the SYCL Parallel STL supports these algorithms:
|
||||
|
||||
* `sort`
|
||||
|
||||
* `transform`
|
||||
|
||||
* `for_each`
|
||||
|
||||
* `for_each_n`
|
||||
|
||||
* `count_if`
|
||||
|
||||
* `reduce`
|
||||
|
||||
* `inner_product`
|
||||
|
||||
* `transform_reduce`
|
||||
|
||||
* * *
|
||||
|
||||
That covers things for this short introduction. If you want to keep up to date with developments in SYCL, be sure to check out [sycl.tech][9]. Notable recent developments have been porting [Eigen][10] and [Tensorflow][11] to SYCL to bring expressive artificial intelligence programming to OpenCL devices. Personally, I’m excited to see how the high-level programming models can be exploited for automatic optimization of heterogeneous programs, and how they can support even higher-level technologies like [HPX][12] or [SkelCL][13].
|
||||
|
||||
1. I work for Codeplay, but this post was written in my own time with no suggestion from my employer. [↩][1]
|
||||
|
||||
2. Hey, “functor” is in the spec, don’t @ me.
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
via: https://blog.tartanllama.xyz/c++/2017/05/19/sycl/
|
||||
|
||||
作者:[TartanLlama ][a]
|
||||
译者:[译者ID](https://github.com/译者ID)
|
||||
校对:[校对者ID](https://github.com/校对者ID)
|
||||
|
||||
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
|
||||
|
||||
[a]:https://www.twitter.com/TartanLlama
|
||||
[1]:https://blog.tartanllama.xyz/c++/2017/05/19/sycl/#fnref:1
|
||||
[2]:https://blog.tartanllama.xyz/c++/2017/05/19/sycl/#fn:1
|
||||
[3]:https://blog.tartanllama.xyz/c++/2017/05/19/sycl/#fn:2
|
||||
[4]:https://www.khronos.org/sycl
|
||||
[5]:https://www.codeplay.com/products/computesuite/computecpp/reference/platform-support-notes
|
||||
[6]:https://www.codeplay.com/products/computesuite/computecpp/reference/release-notes/
|
||||
[7]:https://github.com/codeplaysoftware/computecpp-sdk
|
||||
[8]:https://github.com/KhronosGroup/SyclParallelSTL
|
||||
[9]:http://sycl.tech/
|
||||
[10]:https://github.com/ville-k/sycl_starter
|
||||
[11]:http://deep-beta.co.uk/setting-up-tensorflow-with-opencl-using-sycl/
|
||||
[12]:https://github.com/STEllAR-GROUP/hpx
|
||||
[13]:https://github.com/skelcl/skelcl
|
@ -0,0 +1,356 @@
|
||||
通过 SYCL 在 GPU 上加速 C++
|
||||
============================================================
|
||||
|
||||
|
||||
### 警告:这是一个不完整的草稿。这里可能有很多错误和还没有完成的章节。
|
||||
|
||||
* * *
|
||||
|
||||
在机器学习、计算机视觉以及高性能计算领域,充分利用显卡计算应用程序的能力已成为当前的热门。类似 OpenCL 的技术通过硬件无关的编程模型展现了这种能力,使得你可以编写抽象于不同体系架构的代码。它的目标是“一次编写,到处运行”,不管它是 Intel CPU、AMD 独立显卡还是 DSP,等等。不幸的是,对于日常程序员,OpenCL 有陡峭的学习曲线;一个简单的 Hello World 程序可能就需要上百行晦涩难懂的代码。因此,为了减轻这种痛苦,Khronos 团队已经开发了一个称为 [SYCL][4] 的新标准,这是一个在 OpenCL 之上的 C++ 抽象层。通过 SYCL,你可以使用干净、现代的 C++ 开发出这些通用 GPU(GPGPU)应用程序,而无需拘泥于 OpenCL。下面是一个使用 SYCL 开发,通过并行 STL 实现的向量乘法事例:
|
||||
|
||||
```
|
||||
#include <vector>
|
||||
#include <iostream>
|
||||
|
||||
#include <sycl/execution_policy>
|
||||
#include <experimental/algorithm>
|
||||
#include <sycl/helpers/sycl_buffers.hpp>
|
||||
|
||||
using namespace std::experimental::parallel;
|
||||
using namespace sycl::helpers;
|
||||
|
||||
int main() {
|
||||
constexpr size_t array_size = 1024*512;
|
||||
std::array<cl::sycl::cl_int, array_size> a;
|
||||
std::iota(begin(a),end(a),0);
|
||||
|
||||
{
|
||||
cl::sycl::buffer<int> b(a.data(), cl::sycl::range<1>(a.size()));
|
||||
cl::sycl::queue q;
|
||||
sycl::sycl_execution_policy<class Mul> sycl_policy(q);
|
||||
transform(sycl_policy, begin(b), end(b), begin(b),
|
||||
[](int x) { return x*2; });
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
为了作为对比,下面是一个通过 C++ API 使用 OpenCL 编写的大概对应版本(无需花过多时间阅读,只需注意到它看起来难看而且冗长)。
|
||||
|
||||
```
|
||||
#include <iostream>
|
||||
#include <array>
|
||||
#include <numeric>
|
||||
#include <CL/cl.hpp>
|
||||
|
||||
int main(){
|
||||
std::vector<cl::Platform> all_platforms;
|
||||
cl::Platform::get(&all_platforms);
|
||||
if(all_platforms.size()==0){
|
||||
std::cout<<" No platforms found. Check OpenCL installation!\n";
|
||||
exit(1);
|
||||
}
|
||||
cl::Platform default_platform=all_platforms[0];
|
||||
|
||||
std::vector<cl::Device> all_devices;
|
||||
default_platform.getDevices(CL_DEVICE_TYPE_ALL, &all_devices);
|
||||
if(all_devices.size()==0){
|
||||
std::cout<<" No devices found. Check OpenCL installation!\n";
|
||||
exit(1);
|
||||
}
|
||||
|
||||
cl::Device default_device=all_devices[0];
|
||||
cl::Context context({default_device});
|
||||
|
||||
cl::Program::Sources sources;
|
||||
std::string kernel_code=
|
||||
" void kernel mul2(global int* A){"
|
||||
" A[get_global_id(0)]=A[get_global_id(0)]*2;"
|
||||
" }";
|
||||
sources.push_back({kernel_code.c_str(),kernel_code.length()});
|
||||
|
||||
cl::Program program(context,sources);
|
||||
if(program.build({default_device})!=CL_SUCCESS){
|
||||
std::cout<<" Error building: "<<program.getBuildInfo<CL_PROGRAM_BUILD_LOG>(default_device)<<"\n";
|
||||
exit(1);
|
||||
}
|
||||
|
||||
constexpr size_t array_size = 1024*512;
|
||||
std::array<cl_int, array_size> a;
|
||||
std::iota(begin(a),end(a),0);
|
||||
|
||||
cl::Buffer buffer_A(context,CL_MEM_READ_WRITE,sizeof(int)*a.size());
|
||||
cl::CommandQueue queue(context,default_device);
|
||||
|
||||
if (queue.enqueueWriteBuffer(buffer_A,CL_TRUE,0,sizeof(int)*a.size(),a.data()) != CL_SUCCESS) {
|
||||
std::cout << "Failed to write memory;n";
|
||||
exit(1);
|
||||
}
|
||||
|
||||
cl::Kernel kernel_add = cl::Kernel(program,"mul2");
|
||||
kernel_add.setArg(0,buffer_A);
|
||||
|
||||
if (queue.enqueueNDRangeKernel(kernel_add,cl::NullRange,cl::NDRange(a.size()),cl::NullRange) != CL_SUCCESS) {
|
||||
std::cout << "Failed to enqueue kernel\n";
|
||||
exit(1);
|
||||
}
|
||||
|
||||
if (queue.finish() != CL_SUCCESS) {
|
||||
std::cout << "Failed to finish kernel\n";
|
||||
exit(1);
|
||||
}
|
||||
|
||||
if (queue.enqueueReadBuffer(buffer_A,CL_TRUE,0,sizeof(int)*a.size(),a.data()) != CL_SUCCESS) {
|
||||
std::cout << "Failed to read result\n";
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
在这篇博文中我会介绍使用 SYCL 加速你 GPU 上的 C++ 代码。
|
||||
|
||||
* * *
|
||||
|
||||
### GPGPU 简介
|
||||
|
||||
在我开始介绍如何使用 SYCL 之前,我首先给那些不熟悉的人简要介绍一下为什么你可能想要在 GPU 上运行计算任务。我假设你已经使用过 OpenCL、CUDA 或类似的库,如果没有也没关系。
|
||||
|
||||
GPU 和 CPU 的一个关键不同就是 GPU 有大量小的、简单的处理单元,而不是少量(对于普通消费者桌面硬件通常是 1-8)复杂而强大的核。
|
||||
|
||||
![CPU 架构](https://blog.tartanllama.xyz/assets/cpu.png)
|
||||
|
||||
上面是一个 4 核 CPU 的简单漫画示意图。每个核都有一组寄存器以及不同等级的缓存(有些是共享缓存、有些不是),然后是主内存。
|
||||
|
||||
![GPU 架构](https://blog.tartanllama.xyz/assets/gpu.png)
|
||||
|
||||
在 GPU 上,多个小处理单元被组成一个执行单元。每个小处理单元都有少量内存,每个执行单元都有一些共享内存用于它的处理单元。除此之外,还有一些 GPU 范围的内存,然后也是 CPU 使用的主内存。执行单元内部的单元是 _lockstep_ ,每个单元都在不同的数据片上执行相同的指令。
|
||||
|
||||
GPGPU 编程有很多方面,这使得它和日常的 CPU 编程完全不同。例如,从主内存传输数据到 GPU 是_很慢的_。_真的_很慢。就像杀掉你的所有性能使你慢下来。因此,GPU 编程的权衡是尽可能多地利用加速器的高吞吐量来掩盖从中或者传输数据到其中的延迟。
|
||||
|
||||
这里还有一些一开始不那么明显的问题,例如分支的开销。由于执行单元内的处理单元按照 lockstep 工作,使它们执行不同路径(不同的控制流)的嵌套分支就是个真正的问题。这通常通过在所有单元上执行所有分支并标记出无用结果来解决。这是一个基于嵌套级别的指数爆炸复杂度,这当然是坏事情。当然,有一些优化方法可以拯救该问题,但需要注意:你从 CPU 领域带来的简单假设和知识在 GPU 领域可能导致大问题。
|
||||
|
||||
在我们回到 SYCL 之前,需要介绍一些术语。主机_host_ 是主 CPU 运行的机器,设备_device_ 是会运行你 OpenCL 代码的地方。一个设备可能和主机相同,也可能是你机器上的一些加速器、模拟器,等。内核_kernel_是一个特殊函数,它是在你设备上运行代码的入口点。通常还会提供一些主机设置好的缓存给它用于输入和输出数据。
|
||||
|
||||
* * *
|
||||
|
||||
### 回到 SYCL
|
||||
|
||||
这里有两个可用的 SYCL 实现;“triSYCL”,由 Xilinx 开发的实验性开源版本(通常作为标准的试验台使用),以及 “ComputeCpp”,由 Codeplay[1][2] 开发的工业级实现(当前处于开发测试版)。只有 ComputeCpp 支持在 GPU 上执行内核,因此在这篇文章中我们会使用它。
|
||||
|
||||
第一步是在你的机器上配置以及运行 ComputeCpp。主要组件是一个实现了 SYCL API 的运行时库,以及一个基于 Clang 的编译器,它负责编译你的主机代码和设备代码。开发的时候,已经在 Ubuntu 和 CentOS 上官方支持 Intel CPU 以及 AMD GPU。在其它 Linux 发行版上让它工作也非常简单(例如,我让它在我的 Arch 系统上运行)。已经有工作正在支持更多的硬件和操作系统,查看[支持平台文档][5]获取最新列表。[这里][6]列出了依赖和组件。你也可能想要下载 [SDK][7],其中包括了事例、文档、构建系统集成文件,以及其它。在这篇文章中我会使用 [SYCL 并行 STL][8],如果你想要自己在家学习的话也要下载。
|
||||
|
||||
一旦你设置好了一切,我们就可以开始通用 GPU 编程了!正如简介中提到的,我的使用 SYCL 并行 STL 实现的第一个事例。我们现在来看看如何使用纯 SYCL 编写代码。
|
||||
|
||||
```
|
||||
#include <CL/sycl.hpp>
|
||||
|
||||
#include <array>
|
||||
#include <numeric>
|
||||
#include <iostream>
|
||||
|
||||
int main() {
|
||||
const size_t array_size = 1024*512;
|
||||
std::array<cl::sycl::cl_int, array_size> in,out;
|
||||
std::iota(begin(in),end(in),0);
|
||||
|
||||
cl::sycl::queue device_queue;
|
||||
cl::sycl::range<1> n_items{array_size};
|
||||
cl::sycl::buffer<cl::sycl::cl_int, 1> in_buffer(in.data(), n_items);
|
||||
cl::sycl::buffer<cl::sycl::cl_int, 1> out_buffer(out.data(), n_items);
|
||||
|
||||
device_queue.submit([&](cl::sycl::handler &cgh) {
|
||||
constexpr auto sycl_read = cl::sycl::access::mode::read_write;
|
||||
constexpr auto sycl_write = cl::sycl::access::mode::write;
|
||||
|
||||
auto in_accessor = in_buffer.get_access<sycl_read>(cgh);
|
||||
auto out_accessor = out_buffer.get_access<sycl_write>(cgh);
|
||||
|
||||
cgh.parallel_for<class VecScalMul>(n_items,
|
||||
[=](cl::sycl::id<1> wiID) {
|
||||
out_accessor[wiID] = in_accessor[wiID]*2;
|
||||
});
|
||||
});
|
||||
|
||||
device_queue.wait();
|
||||
}
|
||||
```
|
||||
|
||||
我会把它划分为一个个片段。
|
||||
|
||||
```
|
||||
#include <CL/sycl.hpp>
|
||||
```
|
||||
|
||||
我们做的第一件事就是包含 SYCL 头文件,它会在我们的命令中添加 SYCL 运行时库。
|
||||
|
||||
```
|
||||
const size_t array_size = 1024*512;
|
||||
std::array<cl::sycl::cl_int, array_size> in,out;
|
||||
std::iota(begin(in),end(in),0);
|
||||
```
|
||||
|
||||
这里我们构造了一个很大的整型数组并用数字 `0` 到 `array_size-1` 初始化(这就是 `std::iota` 所做的)。注意我们使用 `cl::sycl::cl_int` 确保兼容性。
|
||||
|
||||
```
|
||||
cl::sycl::queue device_queue;
|
||||
```
|
||||
|
||||
现在我们创建我们的命令队列。命令队列是所有工作(内核)在分发到设备之前需要入队的地方。有很多方法可以定制队列,例如说提供设备用于入队或者设置异步错误处理器,但默认构造器对于这个例子就可以了;它会查找兼容的 GPU,如果失败的话会退回到主机 CPU。
|
||||
|
||||
```
|
||||
cl::sycl::range<1> n_items{array_size};
|
||||
```
|
||||
|
||||
接下来我们创建一个范围,它描述了内核在上面执行的数据的形状。在我们简单的例子中,是一个一维数组,因此我们使用 `cl::sycl::range<1>`。如果数据是二维的,我们就会使用 `cl::sycl::range<2>`,以此类推。除了 `cl::sycl::range`,还有 `cl::sycl::ndrange`,它允许你指定工作组大小以及越界范围,但在我们的例子中我们不需要使用它。
|
||||
|
||||
```
|
||||
cl::sycl::buffer<cl::sycl::cl_int, 1> in_buffer(in.data(), n_items);
|
||||
cl::sycl::buffer<cl::sycl::cl_int, 1> out_buffer(out.data(), n_items);
|
||||
```
|
||||
|
||||
为了控制主机和设备之间的数据共享和传输,SYCL 提供了一个 `buffer` 类。我们创建了两个 SYCL 缓存用于管理我们的输入和输出数组。
|
||||
|
||||
```
|
||||
device_queue.submit([&](cl::sycl::handler &cgh) {/*...*/});
|
||||
```
|
||||
|
||||
设置好了我们所有数据之后,我们就可以入队真正的工作。有多种方法可以做到,但设置并行执行的一个简单方法是在我们的队列中调用 `.submit` 函数。对于这个函数我们传递了一个运行时调度该任务时会被执行的 _command group functor_ 。一个命令组处理器设置任何内核需要的余下资源并分发它。
|
||||
|
||||
```
|
||||
constexpr auto sycl_read = cl::sycl::access::mode::read_write;
|
||||
constexpr auto sycl_write = cl::sycl::access::mode::write;
|
||||
|
||||
auto in_accessor = in_buffer.get_access<sycl_read>(cgh);
|
||||
auto out_accessor = out_buffer.get_access<sycl_write>(cgh);
|
||||
```
|
||||
|
||||
为了控制到我们缓存的访问并告诉运行时我们会如何使用数据,我们需要创建 _accessors_。应该清楚我们创建了一个访问器用于从 `in_buffer` 读入,一个访问器用于写到 `out_buffer`。
|
||||
|
||||
```
|
||||
cgh.parallel_for<class VecScalMul>(n_items,
|
||||
[=](cl::sycl::id<1> wiID) {
|
||||
out_accessor[wiID] = in_accessor[wiID]*2;
|
||||
});
|
||||
```
|
||||
|
||||
现在我们已经完成了所有设置,我们可以真正的在我们的设备上做一些计算了。这里我们根据范围 `n_items` 在命令组处理器 `cgh` 之上分发一个内核。实际内核自身是一个使用 work-item 标识符作为输入、输出我们计算结果的 lamda 表达式。在这种情况下,我们从 `in_accessor` 使用 work-item 标识符作为索引读入,将其乘以 `2`,然后将结果保存到 `out_accessor` 相应的位置。`<class VecScalMul>` 是一个为了在标准 C++ 范围内工作不幸的副产品,因此我们需要给内核一个唯一的类名以便编译器能完成它的工作。
|
||||
|
||||
```
|
||||
device_queue.wait();
|
||||
```
|
||||
|
||||
我们最后一行类似于在 `std::thread` 上调用 `.join()`;它等待直到所有已经提交的工作被执行完。在此之后,我们现在可以访问 `out` 并期望看到正确的结果。队列也会隐式地等待销毁,因此你也可以把它放到某个内部范围内,让同步在范围结束时发生。
|
||||
|
||||
这里有相当多的新概念在起作用,但使用这些技术你已经可以看到我们获得的能力和表达能力。当然,如果你只是想在你的 GPU 上执行一些代码而不关心定制化,那么你就可以使用 SYCL 并行 STL 实现。
|
||||
|
||||
* * *
|
||||
|
||||
### SYCL 并行 STL
|
||||
|
||||
SYCL 并行 STL 是一个 TS 的并行化实现,它分发你的算法函数对象作为 SYCL 内核。在这个页面前面我们已经看过这样的例子,让我们来快速过一遍。
|
||||
|
||||
```
|
||||
#include <vector>
|
||||
#include <iostream>
|
||||
|
||||
#include <sycl/execution_policy>
|
||||
#include <experimental/algorithm>
|
||||
#include <sycl/helpers/sycl_buffers.hpp>
|
||||
|
||||
using namespace std::experimental::parallel;
|
||||
using namespace sycl::helpers;
|
||||
|
||||
int main() {
|
||||
constexpr size_t array_size = 1024*512;
|
||||
std::array<cl::sycl::cl_int, array_size> in,out;
|
||||
std::iota(begin(in),end(in),0);
|
||||
|
||||
{
|
||||
cl::sycl::buffer<int> in_buffer(in.data(), cl::sycl::range<1>(in.size()));
|
||||
cl::sycl::buffer<int> out_buffer(out.data(), cl::sycl::range<1>(out.size()));
|
||||
cl::sycl::queue q;
|
||||
sycl::sycl_execution_policy<class Mul> sycl_policy(q);
|
||||
transform(sycl_policy, begin(in_buffer), end(in_buffer), begin(out_buffer),
|
||||
[](int x) { return x*2; });
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
```
|
||||
constexpr size_t array_size = 1024*512;
|
||||
std::array<cl::sycl::cl_int, array_size> in, out;
|
||||
std::iota(begin(in),end(out),0);
|
||||
```
|
||||
|
||||
到现在为止一切如此相似。我们再一次创建一组数组用于保存我们的输入输出数据。
|
||||
|
||||
```
|
||||
cl::sycl::buffer<int> in_buffer(in.data(), cl::sycl::range<1>(in.size()));
|
||||
cl::sycl::buffer<int> out_buffer(out.data(), cl::sycl::range<1>(out.size()));
|
||||
cl::sycl::queue q;
|
||||
```
|
||||
|
||||
这里我们创建类似上个例子的缓存和队列。
|
||||
|
||||
```
|
||||
sycl::sycl_execution_policy<class Mul> sycl_policy(q);
|
||||
```
|
||||
|
||||
这就是有趣的部分。我们从我们的队列中创建 `sycl_execution_policy`,给它一个名称让内核使用。这个执行策略然后可以像 `std::execution::par` 或 `std::execution::seq` 那样使用。
|
||||
|
||||
```
|
||||
transform(sycl_policy, begin(in_buffer), end(in_buffer), begin(out_buffer),
|
||||
[](int x) { return x*2; });
|
||||
```
|
||||
|
||||
现在我们的内核分发看起来像提供了一个执行策略的 `std::transform` 调用。我们传递的闭包会被编译并在设备上执行,而不需要我们做其它更加复杂的设置。
|
||||
|
||||
当然,除了 `transform` 你可以做更多。开发的时候,SYCL 并行 STL 支持以下算法:
|
||||
|
||||
* `sort`
|
||||
|
||||
* `transform`
|
||||
|
||||
* `for_each`
|
||||
|
||||
* `for_each_n`
|
||||
|
||||
* `count_if`
|
||||
|
||||
* `reduce`
|
||||
|
||||
* `inner_product`
|
||||
|
||||
* `transform_reduce`
|
||||
|
||||
* * *
|
||||
|
||||
这就是这篇短文需要介绍的东西。如果你想和 SYCL 的开发保持同步,那就要看 [sycl.tech][9]。最近重要的开发就是移植 [Eigen][10] 和 [Tensorflow][11] 到 SYCL 为 OpenCL 设备带来表达人工智能编程。对我个人而言,我很高兴看到高级编程模型可以用于异构程序自动优化,以及它们如何可以支持类似 [HPX][12] 或 [SkelCL][13] 等更高级的技术。
|
||||
|
||||
1. 我在 Codeplay 工作,但这篇文章是在没有我雇主建议的情况下使用我自己时间编写的。[↩][1]
|
||||
|
||||
2. 有趣就行了,别 @ 我。
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
via: https://blog.tartanllama.xyz/c++/2017/05/19/sycl/
|
||||
|
||||
作者:[TartanLlama][a]
|
||||
译者:[ictlyh](https://github.com/ictlyh)
|
||||
校对:[校对者ID](https://github.com/校对者ID)
|
||||
|
||||
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
|
||||
|
||||
[a]:https://www.twitter.com/TartanLlama
|
||||
[1]:https://blog.tartanllama.xyz/c++/2017/05/19/sycl/#fnref:1
|
||||
[2]:https://blog.tartanllama.xyz/c++/2017/05/19/sycl/#fn:1
|
||||
[3]:https://blog.tartanllama.xyz/c++/2017/05/19/sycl/#fn:2
|
||||
[4]:https://www.khronos.org/sycl
|
||||
[5]:https://www.codeplay.com/products/computesuite/computecpp/reference/platform-support-notes
|
||||
[6]:https://www.codeplay.com/products/computesuite/computecpp/reference/release-notes/
|
||||
[7]:https://github.com/codeplaysoftware/computecpp-sdk
|
||||
[8]:https://github.com/KhronosGroup/SyclParallelSTL
|
||||
[9]:http://sycl.tech/
|
||||
[10]:https://github.com/ville-k/sycl_starter
|
||||
[11]:http://deep-beta.co.uk/setting-up-tensorflow-with-opencl-using-sycl/
|
||||
[12]:https://github.com/STEllAR-GROUP/hpx
|
||||
[13]:https://github.com/skelcl/skelcl
|
Loading…
Reference in New Issue
Block a user