diff --git a/sources/tech/20151123 Data Structures in the Linux Kernel.md b/sources/tech/20151123 Data Structures in the Linux Kernel.md deleted file mode 100644 index edc4c1a5a7..0000000000 --- a/sources/tech/20151123 Data Structures in the Linux Kernel.md +++ /dev/null @@ -1,202 +0,0 @@ -【Translating By cposture 2016-02-26】 -Data Structures in the Linux Kernel -================================================================================ - -Radix tree --------------------------------------------------------------------------------- - -As you already know linux kernel provides many different libraries and functions which implement different data structures and algorithms. In this part we will consider one of these data structures - [Radix tree](http://en.wikipedia.org/wiki/Radix_tree). There are two files which are related to `radix tree` implementation and API in the linux kernel: - -* [include/linux/radix-tree.h](https://github.com/torvalds/linux/blob/master/include/linux/radix-tree.h) -* [lib/radix-tree.c](https://github.com/torvalds/linux/blob/master/lib/radix-tree.c) - -Lets talk about what a `radix tree` is. Radix tree is a `compressed trie` where a [trie](http://en.wikipedia.org/wiki/Trie) is a data structure which implements an interface of an associative array and allows to store values as `key-value`. The keys are usually strings, but any data type can be used. A trie is different from an `n-tree` because of its nodes. Nodes of a trie do not store keys; instead, a node of a trie stores single character labels. The key which is related to a given node is derived by traversing from the root of the tree to this node. For example: - - -``` -               +-----------+ -               |           | -               |    " "    | - | | -        +------+-----------+------+ -        |                         | -        |                         | -   +----v------+            +-----v-----+ -   |           |            |           | -   |    g      |            |     c     | - | | | | -   +-----------+            +-----------+ -        |                         | -        |                         | -   +----v------+            +-----v-----+ -   |           |            |           | -   |    o      |            |     a     | - | | | | -   +-----------+            +-----------+ -                                  | -                                  | -                            +-----v-----+ -                            |           | -                            |     t     | - | | -                            +-----------+ -``` - -So in this example, we can see the `trie` with keys, `go` and `cat`. The compressed trie or `radix tree` differs from `trie` in that all intermediates nodes which have only one child are removed. - -Radix tree in linux kernel is the datastructure which maps values to integer keys. It is represented by the following structures from the file [include/linux/radix-tree.h](https://github.com/torvalds/linux/blob/master/include/linux/radix-tree.h): - -```C -struct radix_tree_root { - unsigned int height; - gfp_t gfp_mask; - struct radix_tree_node __rcu *rnode; -}; -``` - -This structure presents the root of a radix tree and contains three fields: - -* `height` - height of the tree; -* `gfp_mask` - tells how memory allocations will be performed; -* `rnode` - pointer to the child node. - -The first field we will discuss is `gfp_mask`: - -Low-level kernel memory allocation functions take a set of flags as - `gfp_mask`, which describes how that allocation is to be performed. These `GFP_` flags which control the allocation process can have following values: (`GF_NOIO` flag) means sleep and wait for memory, (`__GFP_HIGHMEM` flag) means high memory can be used, (`GFP_ATOMIC` flag) means the allocation process has high-priority and can't sleep etc. - -* `GFP_NOIO` - can sleep and wait for memory; -* `__GFP_HIGHMEM` - high memory can be used; -* `GFP_ATOMIC` - allocation process is high-priority and can't sleep; - -etc. - -The next field is `rnode`: - -```C -struct radix_tree_node { - unsigned int path; - unsigned int count; - union { - struct { - struct radix_tree_node *parent; - void *private_data; - }; - struct rcu_head rcu_head; - }; - /* For tree user */ - struct list_head private_list; - void __rcu *slots[RADIX_TREE_MAP_SIZE]; - unsigned long tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS]; -}; -``` - -This structure contains information about the offset in a parent and height from the bottom, count of the child nodes and fields for accessing and freeing a node. This fields are described below: - -* `path` - offset in parent & height from the bottom; -* `count` - count of the child nodes; -* `parent` - pointer to the parent node; -* `private_data` - used by the user of a tree; -* `rcu_head` - used for freeing a node; -* `private_list` - used by the user of a tree; - -The two last fields of the `radix_tree_node` - `tags` and `slots` are important and interesting. Every node can contains a set of slots which are store pointers to the data. Empty slots in the linux kernel radix tree implementation store `NULL`. Radix trees in the linux kernel also supports tags which are associated with the `tags` fields in the `radix_tree_node` structure. Tags allow individual bits to be set on records which are stored in the radix tree. - -Now that we know about radix tree structure, it is time to look on its API. - -Linux kernel radix tree API ---------------------------------------------------------------------------------- - -We start from the datastructure initialization. There are two ways to initialize a new radix tree. The first is to use `RADIX_TREE` macro: - -```C -RADIX_TREE(name, gfp_mask); -```` - -As you can see we pass the `name` parameter, so with the `RADIX_TREE` macro we can define and initialize radix tree with the given name. Implementation of the `RADIX_TREE` is easy: - -```C -#define RADIX_TREE(name, mask) \ - struct radix_tree_root name = RADIX_TREE_INIT(mask) - -#define RADIX_TREE_INIT(mask) { \ - .height = 0, \ - .gfp_mask = (mask), \ - .rnode = NULL, \ -} -``` - -At the beginning of the `RADIX_TREE` macro we define instance of the `radix_tree_root` structure with the given name and call `RADIX_TREE_INIT` macro with the given mask. The `RADIX_TREE_INIT` macro just initializes `radix_tree_root` structure with the default values and the given mask. - -The second way is to define `radix_tree_root` structure by hand and pass it with mask to the `INIT_RADIX_TREE` macro: - -```C -struct radix_tree_root my_radix_tree; -INIT_RADIX_TREE(my_tree, gfp_mask_for_my_radix_tree); -``` - -where: - -```C -#define INIT_RADIX_TREE(root, mask) \ -do { \ - (root)->height = 0; \ - (root)->gfp_mask = (mask); \ - (root)->rnode = NULL; \ -} while (0) -``` - -makes the same initialziation with default values as it does `RADIX_TREE_INIT` macro. - -The next are two functions for inserting and deleting records to/from a radix tree: - -* `radix_tree_insert`; -* `radix_tree_delete`; - -The first `radix_tree_insert` function takes three parameters: - -* root of a radix tree; -* index key; -* data to insert; - -The `radix_tree_delete` function takes the same set of parameters as the `radix_tree_insert`, but without data. - -The search in a radix tree implemented in two ways: - -* `radix_tree_lookup`; -* `radix_tree_gang_lookup`; -* `radix_tree_lookup_slot`. - -The first `radix_tree_lookup` function takes two parameters: - -* root of a radix tree; -* index key; - -This function tries to find the given key in the tree and return the record associated with this key. The second `radix_tree_gang_lookup` function have the following signature - -```C -unsigned int radix_tree_gang_lookup(struct radix_tree_root *root, - void **results, - unsigned long first_index, - unsigned int max_items); -``` - -and returns number of records, sorted by the keys, starting from the first index. Number of the returned records will not be greater than `max_items` value. - -And the last `radix_tree_lookup_slot` function will return the slot which will contain the data. - -Links ---------------------------------------------------------------------------------- - -* [Radix tree](http://en.wikipedia.org/wiki/Radix_tree) -* [Trie](http://en.wikipedia.org/wiki/Trie) - --------------------------------------------------------------------------------- - -via: https://github.com/0xAX/linux-insides/edit/master/DataStructures/radix-tree.md - -作者:[0xAX] -译者:[译者ID](https://github.com/译者ID) -校对:[校对者ID](https://github.com/校对者ID) - -本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创翻译,[Linux中国](http://linux.cn/) 荣誉推出 - diff --git a/translated/tech/20151123 Data Structures in the Linux Kernel.md b/translated/tech/20151123 Data Structures in the Linux Kernel.md new file mode 100644 index 0000000000..78526e6d94 --- /dev/null +++ b/translated/tech/20151123 Data Structures in the Linux Kernel.md @@ -0,0 +1,198 @@ +Linux内核数据结构 +================================================================================ + +基数树 Radix tree +-------------------------------------------------------------------------------- +正如你所知道的,Linux内核提供了许多不同的库和函数,它们实现了不同的数据结构和算法。在这部分,我们将研究其中一种数据结构——[基数树 Radix tree](http://en.wikipedia.org/wiki/Radix_tree)。在Linux内核中,有两个与基数树实现和API相关的文件: + +* [include/linux/radix-tree.h](https://github.com/torvalds/linux/blob/master/include/linux/radix-tree.h) +* [lib/radix-tree.c](https://github.com/torvalds/linux/blob/master/lib/radix-tree.c) + +让我们讨论什么是`基数树`吧。基数树是一种`压缩的字典树`,而[字典树](http://en.wikipedia.org/wiki/Trie)是实现了关联数组接口并允许以`键值对`方式存储值的一种数据结构。该键通常是字符串,但能够使用任何数据类型。字典树因为它的节点而与`n叉树`不同。字典树的节点不存储键;相反,字典树的一个节点存储单个字符的标签。与一个给定节点关联的键可以通过从根遍历到该节点获得。举个例子: + +``` +               +-----------+ +               |           | +               |    " "    | + | | +        +------+-----------+------+ +        |                         | +        |                         | +   +----v------+            +-----v-----+ +   |           |            |           | +   |    g      |            |     c     | + | | | | +   +-----------+            +-----------+ +        |                         | +        |                         | +   +----v------+            +-----v-----+ +   |           |            |           | +   |    o      |            |     a     | + | | | | +   +-----------+            +-----------+ +                                  | +                                  | +                            +-----v-----+ +                            |           | +                            |     t     | + | | +                            +-----------+ +``` + +因此在这个例子中,我们可以看到一个有着两个键`go`和`cat`的`字典树`。压缩的字典树或者`基数树`和`字典树`不同于所有只有一个孩子的中间节点都被删除。 + +Linu内核中的基数树是映射值到整形键的一种数据结构。[include/linux/radix-tree.h](https://github.com/torvalds/linux/blob/master/include/linux/radix-tree.h)文件中的以下结构体表示了基数树: + +```C +struct radix_tree_root { + unsigned int height; + gfp_t gfp_mask; + struct radix_tree_node __rcu *rnode; +}; +``` + +这个结构体表示了一个基数树的根,并包含了3个域成员: + +* `height` - 树的高度; +* `gfp_mask` - 告诉如何执行动态内存分配; +* `rnode` - 孩子节点指针. + +我们第一个要讨论的域是`gfp_mask`: + +底层内核内存动态分配函数以一组标志作为` gfp_mask `,用于描述如何执行动态内存分配。这些控制分配进程的`GFP_`标志拥有以下值:(`GF_NOIO`标志)意味着睡眠等待内存,(`__GFP_HIGHMEM`标志)意味着高端内存能够被使用,(`GFP_ATOMIC`标志)意味着分配进程拥有高优先级并不能睡眠等等。 + +* `GFP_NOIO` - 睡眠等待内存 +* `__GFP_HIGHMEM` - 高端内存能够被使用; +* `GFP_ATOMIC` - 分配进程拥有高优先级并且不能睡眠; + +等等。 + +下一个域是`rnode`: + +```C +struct radix_tree_node { + unsigned int path; + unsigned int count; + union { + struct { + struct radix_tree_node *parent; + void *private_data; + }; + struct rcu_head rcu_head; + }; + /* For tree user */ + struct list_head private_list; + void __rcu *slots[RADIX_TREE_MAP_SIZE]; + unsigned long tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS]; +}; +``` +这个结构体包含的信息有父节点中的偏移以及到底端(叶节点)的高度、孩子节点的个数以及用于访问和释放节点的域成员。这些域成员描述如下: + +* `path` - 父节点中的偏移和到底端(叶节点)的高度 +* `count` - 孩子节点的个数; +* `parent` - 父节点指针; +* `private_data` - 由树的用户使用; +* `rcu_head` - 用于释放节点; +* `private_list` - 由树的用户使用; + +`radix_tree_node`的最后两个成员——`tags`和`slots`非常重要且令人关注。Linux内核基数树的每个节点都包含一组存储指向数据指针的slots。Linux内核基数树实现的空slots存储`NULL`值。Linux内核中的基数树也支持与`radix_tree_node`结构体的`tags`域相关联的标签。标签允许在基数树存储的记录中设置各个位。 + +既然我们了解了基数树的结构,那么该是时候看一下它的API了。 + +Linux内核基数树API +--------------------------------------------------------------------------------- + +我们从结构体的初始化开始。有两种方法初始化一个新的基数树。第一种是使用`RADIX_TREE`宏: + +```C +RADIX_TREE(name, gfp_mask); +```` + +正如你所看到的,我们传递`name`参数,所以使用`RADIX_TREE`宏,我们能够定义和初始化基数树为给定的名字。`RADIX_TREE`的实现是简单的: + +```C +#define RADIX_TREE(name, mask) \ + struct radix_tree_root name = RADIX_TREE_INIT(mask) + +#define RADIX_TREE_INIT(mask) { \ + .height = 0, \ + .gfp_mask = (mask), \ + .rnode = NULL, \ +} +``` + +在`RADIX_TREE`宏的开始,我们使用给定的名字定义`radix_tree_root`结构体实例,并使用给定的mask调用`RADIX_TREE_INIT`宏。`RADIX_TREE_INIT`宏只是初始化`radix_tree_root`结构体为默认值和给定的mask而已。 + +第二种方法是亲手定义`radix_tree_root`结构体,并且将它和mask传给`INIT_RADIX_TREE`宏: + +```C +struct radix_tree_root my_radix_tree; +INIT_RADIX_TREE(my_tree, gfp_mask_for_my_radix_tree); +``` + +where: + +```C +#define INIT_RADIX_TREE(root, mask) \ +do { \ + (root)->height = 0; \ + (root)->gfp_mask = (mask); \ + (root)->rnode = NULL; \ +} while (0) +``` + +和`RADIX_TREE_INIT`宏所做的初始化一样,初始化为默认值。 + +接下来是用于从基数树插入和删除数据的两个函数: + +* `radix_tree_insert`; +* `radix_tree_delete`; + +第一个函数`radix_tree_insert`需要3个参数: + +* 基数树的根; +* 索引键; +* 插入的数据; + +`radix_tree_delete`函数需要和`radix_tree_insert`一样的一组参数,但是没有data。 + +基数树的搜索以两种方法实现: + +* `radix_tree_lookup`; +* `radix_tree_gang_lookup`; +* `radix_tree_lookup_slot`. + +第一个函数`radix_tree_lookup`需要两个参数: + +* 基数树的根; +* 索引键; + +这个函数尝试在树中查找给定的键,并返回和该键相关联的记录。第二个函数`radix_tree_gang_lookup`有以下的函数签名: + +```C +unsigned int radix_tree_gang_lookup(struct radix_tree_root *root, + void **results, + unsigned long first_index, + unsigned int max_items); +``` + +和返回记录的个数,(results指向的数据)按键排序并从第一个索引开始。返回的记录个数将不会超过`max_items`。 + +最后一个函数`radix_tree_lookup_slot`将会返回包含数据的slot。 + +链接 +--------------------------------------------------------------------------------- + +* [Radix tree](http://en.wikipedia.org/wiki/Radix_tree) +* [Trie](http://en.wikipedia.org/wiki/Trie) + +-------------------------------------------------------------------------------- + +via: https://github.com/0xAX/linux-insides/edit/master/DataStructures/radix-tree.md + +作者:[0xAX] +译者:[cposture](https://github.com/cposture) +校对:[校对者ID](https://github.com/校对者ID) + +本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创翻译,[Linux中国](http://linux.cn/) 荣誉推出 +