mirror of
https://github.com/LCTT/TranslateProject.git
synced 2025-02-28 01:01:09 +08:00
Update 20141203 Undelete Files on Linux Systems.md
准备翻译该篇。
This commit is contained in:
parent
81bb977779
commit
985d674ba6
@ -1,3 +1,5 @@
|
|||||||
|
Translating by FSSlc
|
||||||
|
|
||||||
Undelete Files on Linux Systems
|
Undelete Files on Linux Systems
|
||||||
================================================================================
|
================================================================================
|
||||||
Often times, a computer user will delete a needed file accidentally and not have an easy way to regain or recreate the file. Thankfully, files can be undeleted. When a user deletes a file, it is not gone, only hidden for some time. Here is how it all works. On a filesystem, the system has what is called a file allocation list. This list keeps track of what files are where on the storage unit (hard-drive, MicroSD card, flash-drive, etc.). When a file is deleted, the filesystem will perform one of two tasks on the allocation table. The file's entry on the file allocation table marked as "free space" or the file's entry on the list is erased and then the space is marked as free. Now, if a file needs to be placed on the storage unit, the operating system will put the file in the space marked as empty. After the new file is written to the "empty space", the deleted file is now gone forever. When a deleted file is to be recovered, the user must not manipulate any files because if the "empty space" is used, then the file can never be retrieved.
|
Often times, a computer user will delete a needed file accidentally and not have an easy way to regain or recreate the file. Thankfully, files can be undeleted. When a user deletes a file, it is not gone, only hidden for some time. Here is how it all works. On a filesystem, the system has what is called a file allocation list. This list keeps track of what files are where on the storage unit (hard-drive, MicroSD card, flash-drive, etc.). When a file is deleted, the filesystem will perform one of two tasks on the allocation table. The file's entry on the file allocation table marked as "free space" or the file's entry on the list is erased and then the space is marked as free. Now, if a file needs to be placed on the storage unit, the operating system will put the file in the space marked as empty. After the new file is written to the "empty space", the deleted file is now gone forever. When a deleted file is to be recovered, the user must not manipulate any files because if the "empty space" is used, then the file can never be retrieved.
|
||||||
|
Loading…
Reference in New Issue
Block a user