mirror of
https://github.com/LCTT/TranslateProject.git
synced 2025-01-13 22:30:37 +08:00
finished translation
This commit is contained in:
parent
39798da804
commit
8bc02e0a03
@ -1,120 +0,0 @@
|
||||
translating by szcf-weiya
|
||||
|
||||
|
||||
Getting started with the RStudio IDE
|
||||
======
|
||||
|
||||
![](https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/code_development_programming_screen.png?itok=BgcSm5Pl)
|
||||
|
||||
For as long as I can remember, I've been toying with numbers. As an undergraduate student in the late 1970s, I began taking statistics courses, learning ways to examine and analyze data to uncover some meaning.
|
||||
|
||||
Back then, I had a scientific calculator that made statistical calculations much easier than ever before. In the early '90s, as a graduate student in educational psychology working on t-tests, correlations, and [ANOVA][1], I started doing my calculations by meticulously writing text files that were fed into an IBM mainframe. The mainframe was an improvement over my handheld calculator, but one minor spacing error rendered the whole process null and void, and the process was still somewhat tedious.
|
||||
|
||||
For writing papers and especially my thesis, I needed a way to create charts from my data and embed them in word processing documents. I was fascinated with Microsoft Excel and its number-crunching capabilities and the myriad charts I could create with the computed results. But there were costs at every step of the way. In the 1990s, along with Excel, there were other proprietary packages available like SAS and SPSS+, but the learning curve was a steep task for my already cramped graduate student schedule.
|
||||
|
||||
### Fast forward to the present
|
||||
|
||||
More recently, due to my budding interest in data science, combined with my keen interest in Linux and open source software, I've read a lot of data science articles and listened to a lot of data science speakers talk about their work at Linux conferences. As a result, I became very interested in the programming language R, an open source statistical computing software.
|
||||
|
||||
At first, it was just a spark. That spark grew when I talked to my friend Michael J. Gallagher, PhD, about how he used R in his [dissertation research][2]. Finally, I visited the [R Project][3] website and learned I could easily install [R for Linux][4]. Game on!
|
||||
|
||||
### Installing R
|
||||
|
||||
Installing R varies slightly depending on your operating system or distribution. Refer to the installation guide found at the [Comprehensive R Archive Network][5] (CRAN) website. CRAN offers detailed instructions for installing R on [various Linux distributions][6], [Fedora, RHEL, and derivatives][7], [MacOS][8], and [Windows][9].
|
||||
|
||||
I was using Ubuntu and, as specified at CRAN, added the following line to my `/etc/apt/sources.list` file:
|
||||
```
|
||||
deb https://<my.favorite.cran.mirror>/bin/linux/ubuntu artful/
|
||||
|
||||
```
|
||||
|
||||
Then I ran the following commands in the terminal:
|
||||
```
|
||||
$ sudo apt-get update
|
||||
|
||||
$ sudo apt-get install r-base
|
||||
|
||||
```
|
||||
|
||||
According to CRAN, "Users who need to compile R packages from source [e.g. package maintainers, or anyone installing packages with `install.packages()`] should also install the `r-base-dev` package."
|
||||
|
||||
### Using R and RStudio
|
||||
|
||||
Once I installed R, I was ready to learn more about using this powerful tool. Dr. Gallagher recommended "Start learning R" on [DataCamp][10], and I also found a free course for R newbies on [Code School][11]. Both courses helped me learn R's commands and syntax. I also enrolled in an online course in R programming at [Udemy][12] and purchased the [Book of R][13] from [No Starch Press][14].
|
||||
|
||||
After more reading and watching YouTube videos, I realized I should also install [RStudio][15]. RStudio is an open source IDE for R that's easy to install on [Debian, Ubuntu, Fedora, and RHEL][16]. It can also be installed on MacOS and Windows.
|
||||
|
||||
According to the RStudio website, the IDE can be customized to your preferences by selecting the Tools menu and, from there, Global Options.
|
||||
|
||||
![](https://opensource.com/sites/default/files/styles/panopoly_image_original/public/u128651/r_global-options.png?itok=un6-SvS-)
|
||||
|
||||
R provides some great demonstration examples that can be accessed from the console by entering `demo()` at the prompt. The `demo(plotmath)` and `demo(perspective)` options provide great illustrations of the power of R. I experimented with some simple [vectors][17] and plotting at the command line in the R console, which is shown below.
|
||||
|
||||
![](https://opensource.com/sites/default/files/styles/panopoly_image_original/public/u128651/r_plotting-vectors.png?itok=9T7UV8p2)
|
||||
|
||||
You may want to start learning ways to use R with some sample data, then later apply that knowledge to yield descriptive statistics on your own data. Not having an abundance of data of my own to analyze, I searched for [datasets][18] that I could use; one such source (which I didn't use for this example) is [economic research data][19] provided by the Federal Reserve Bank of St. Louis. I was intrigued by a dataset I found titled "Passenger Miles on Commercial US Airlines, 1937-1960," so I imported it into RStudio to test out the IDE's capabilities. RStudio can accept data in a variety of formats, including CSV, Excel, SPSS, and SAS.
|
||||
|
||||
![](https://opensource.com/sites/default/files/styles/panopoly_image_original/public/u128651/rstudio-import.png?itok=1yJKQei1)
|
||||
|
||||
Once the data is imported, I used the `summary(AirPassengers)` command to get some initial descriptive statistics of the data. After pressing Enter, I got a summary of monthly airline passengers from 1949-1960, as well as other data, including the minimum, maximum, first quarter, third quarter, median, and mean number of air passengers.
|
||||
|
||||
![](https://opensource.com/sites/default/files/styles/panopoly_image_original/public/u128651/r_air-passengers.png?itok=RCJMLIb3)
|
||||
|
||||
I knew from my summary statistics that the mean of this sample of airline passengers is 280.3. Entering `sd(AirPassengers)` at the console yields the standard deviation, seen here in the RStudio console:
|
||||
|
||||
![](https://opensource.com/sites/default/files/styles/panopoly_image_original/public/u128651/r_sd-air-passengers.png?itok=d-25fQoz)
|
||||
|
||||
I next generated a histogram of my data, which shows this dataset graphically, by entering `hist(AirPassengers);` RStudio can export the data as a PNG, PDF, JPEG, TIFF, SVG, EPS, or BMP.
|
||||
|
||||
![](https://opensource.com/sites/default/files/styles/panopoly_image_original/public/u128651/r_histogram-air-passengers.png?itok=0HWsseQE)
|
||||
|
||||
In addition to generating statistics and graphical data, R keeps a history of all my operations. This enables me to return to a previous operation, and I can save this history for future reference.
|
||||
|
||||
![](https://opensource.com/sites/default/files/styles/panopoly_image_original/public/u128651/r_history.png?itok=50jaFPU4)
|
||||
|
||||
In RStudio's script editor, I can write a script of all the commands that I issue, then save that script to run again if my data changes or I want to revisit it.
|
||||
|
||||
![](https://opensource.com/sites/default/files/styles/panopoly_image_original/public/u128651/r_script-editor.png?itok=eiE1_bnX)
|
||||
|
||||
### Getting help
|
||||
|
||||
Help can easily be found by entering `help()` at the R prompt. Specific help information can be found by entering the specific topic you are looking for information about, e.g., `help(sd)` for help with standard deviation. Information on contributors to the R project can be obtained by entering `contributors()` at the prompt. You can find out how to cite R by entering `citation()` at the prompt. License information for R can be easily obtained by entering `license()` at the prompt.
|
||||
|
||||
R is distributed under the terms of the GNU General Public License, either Version 2, June 1991, or Version 3, June 2007. For more information about licensing R, refer to the[R Project website.][20]
|
||||
|
||||
In addition, RStudio provides an excellent Help menu within the GUI. This area includes links to an RStudio cheat sheet (which can be downloaded as a PDF), online learning at [RStudio][21], RStudio documentation, support, and [license information][22].
|
||||
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
via: https://opensource.com/article/18/2/getting-started-RStudio-IDE
|
||||
|
||||
作者:[Don Watkins][a]
|
||||
译者:[译者ID](https://github.com/译者ID)
|
||||
校对:[校对者ID](https://github.com/校对者ID)
|
||||
|
||||
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
|
||||
|
||||
[a]:https://opensource.com/users/don-watkins
|
||||
[1]:https://en.wikipedia.org/wiki/Analysis_of_variance
|
||||
[2]:https://www.michael-j-gallagher.com/high-performance-computing
|
||||
[3]:https://www.r-project.org/
|
||||
[4]:https://cran.r-project.org/index.html
|
||||
[5]:https://cran.r-project.org/
|
||||
[6]:https://cran.r-project.org/bin/linux/
|
||||
[7]:https://cran.r-project.org/bin/linux/redhat/README
|
||||
[8]:https://cran.r-project.org/bin/macosx/
|
||||
[9]:https://cran.r-project.org/bin/windows/
|
||||
[10]:https://www.datacamp.com/onboarding/learn?from=home&technology=r
|
||||
[11]:http://tryr.codeschool.com/levels/1/challenges/1
|
||||
[12]:https://www.udemy.com/r-programming
|
||||
[13]:https://nostarch.com/bookofr
|
||||
[14]:https://opensource.com/article/17/10/no-starch
|
||||
[15]:https://www.rstudio.com/
|
||||
[16]:https://www.rstudio.com/products/rstudio/download/
|
||||
[17]:http://www.r-tutor.com/r-introduction/vector
|
||||
[18]:https://vincentarelbundock.github.io/Rdatasets/datasets.html
|
||||
[19]:https://fred.stlouisfed.org/
|
||||
[20]:https://www.r-project.org/Licenses/
|
||||
[21]:https://www.rstudio.com/online-learning/#R
|
||||
[22]:https://support.rstudio.com/hc/en-us/articles/217801078-What-license-is-RStudio-available-under-
|
118
translated/tech/20180213 Getting started with the RStudio IDE.md
Normal file
118
translated/tech/20180213 Getting started with the RStudio IDE.md
Normal file
@ -0,0 +1,118 @@
|
||||
开始使用 RStudio IDE
|
||||
======
|
||||
|
||||
![](https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/code_development_programming_screen.png?itok=BgcSm5Pl)
|
||||
|
||||
从我记事起,我就一直在与数字玩耍。作为 20 世纪 70 年代后期的本科生,我开始上统计学的课程,学习如何检查和分析数据以揭示某些意义。
|
||||
|
||||
那时候,我有一部科学计算器,它让统计计算变得比以前容易很多。在 90 年代早期,作为一名从事 t 检验,相关性以及 [ANOVA][1] 研究的教育心理学研究生,我开始通过精心编写输入 IBM 主机的文本文件来进行计算。这个主机是对我的手持计算器的一个改进,但是一个小的间距错误会使得整个过程无效,而且这个过程仍然有点乏味。
|
||||
|
||||
撰写论文时,尤其是我的毕业论文,我需要一种方法能够根据我的数据来创建图表并将它们嵌入到文字处理文档中。我着迷于 Microsoft Excel 及其数字运算能力以及可以用计算结果创建出的大量图表。但每一步都有成本。在 20 世纪 90 年代,除了 Excel,还有其他专有软件包,比如 SAS 和 SPSS+,但对于我那已经满满的研究生时间表来说,学习曲线是一项艰巨的任务。
|
||||
|
||||
### 快速回到现在
|
||||
|
||||
最近,由于我对数据科学的兴趣浓厚,加上对 Linux 和开源软件的浓厚兴趣,我阅读了大量的数据科学文章,并在 Linux 会议上听了许多数据科学演讲者谈论他们的工作。因此,我开始对编程语言 R(一种开源的统计计算软件)非常感兴趣。
|
||||
|
||||
起初,这只是一个火花。当我和我的朋友 Michael J. Gallagher 博士谈论他如何在他的 [博士论文][2] 研究中使用 R 时,这个火花便增大了。最后,我访问了 [R project][3] 的网站,并了解到我可以轻松地安装 [R for Linux][4]。游戏开始!
|
||||
|
||||
### 安装 R
|
||||
|
||||
根据你的操作系统和分布情况,安装 R 会稍有不同。请参阅 [Comprehensive R Archive Network][5] (CRAN) 网站上的安装指南。CRAN 提供了在 [各种 Linux 发行版][6],[Fedora,RHEL,及其衍生版][7],[MacOS][8] 和 [Windows][9] 上的安装指示。
|
||||
|
||||
我在使用 Ubuntu,则按照 CRAN 的指示,将以下行加入到我的 `/etc/apt/sources.list` 文件中:
|
||||
|
||||
```
|
||||
deb https://<my.favorite.cran.mirror>/bin/linux/ubuntu artful/
|
||||
|
||||
```
|
||||
|
||||
接着我在终端运行下面命令:
|
||||
|
||||
```
|
||||
$ sudo apt-get update
|
||||
|
||||
$ sudo apt-get install r-base
|
||||
|
||||
```
|
||||
|
||||
根据 CRAN,“需要从源码编译 R 的用户【如包的维护者,或者任何通过 `install.packages()` 安装包的用户】也应该安装 `r-base-dev` 的包。”
|
||||
|
||||
### 使用 R 和 Rstudio
|
||||
|
||||
安装好了 R,我就准备了解更多关于使用这个强大的工具的信息。Gallagher 博士推荐了 [DataCamp][10] 上的 “Start learning R”,并且我也找到了适用于 R 新手的免费课程。两门课程都帮助我学习 R 的命令和语法。我还参加了 [Udemy][12] 上的 R 在线编程课程,并从 [No Starch Press][14] 上购买了 [Book of R][13]。
|
||||
|
||||
在阅读更多内容并观看 YouTube 视频后,我意识到我还应该安装 [RStudio][15]。Rstudio 是 R 的开源 IDE,易于在 [Debian, Ubuntu, Fedora, 和 RHEL][16] 上安装。它也可以安装在 MacOS 和 Windows 上。
|
||||
|
||||
根据 Rstudio 网站的说明,可以根据你的偏好对 IDE 进行自定义,具体方法是选择工具菜单,然后从中选择全局选项。
|
||||
|
||||
![](https://opensource.com/sites/default/files/styles/panopoly_image_original/public/u128651/r_global-options.png?itok=un6-SvS-)
|
||||
|
||||
R 提供了一些很棒的演示例子,可以通过在提示符处输入 `demo()` 从控制台访问。`demo(plotmath)` 和 `demo(perspective)` 选项为 R 强大的功能提供了很好的例证。我尝试过一些简单的 [vectors][17] 并在 R 控制台的命令行中绘制,如下所示。
|
||||
|
||||
![](https://opensource.com/sites/default/files/styles/panopoly_image_original/public/u128651/r_plotting-vectors.png?itok=9T7UV8p2)
|
||||
|
||||
你可能想要开始学习如何将 R 和一些样本数据结合起来使用,然后将这些知识应用到自己的数据上得到描述性统计。我自己没有丰富的数据来分析,但我搜索了可以使用的数据集 [datasets][18];这样一个数据集(我并没有用这个例子)是由圣路易斯联邦储备银行提供的 [经济研究数据][19]。我对一个题为“美国商业航空公司的乘客里程(1937-1960)”很感兴趣,因此我将它导入 RStudio 以测试 IDE 的功能。Rstudio 可以接受各种格式的数据,包括 CSV,Excel,SPSS 和 SAS。
|
||||
|
||||
![](https://opensource.com/sites/default/files/styles/panopoly_image_original/public/u128651/rstudio-import.png?itok=1yJKQei1)
|
||||
|
||||
数据导入后,我使用 `summary(AirPassengers)` 命令获取数据的一些初始描述性统计信息。按回车键后,我得到了 1949-1960 年的每月航空公司旅客的摘要以及其他数据,包括飞机乘客数量的最小值,最大值,第一四分位数,第三四分位数。中位数以及平均数。
|
||||
|
||||
![](https://opensource.com/sites/default/files/styles/panopoly_image_original/public/u128651/r_air-passengers.png?itok=RCJMLIb3)
|
||||
|
||||
我从摘要统计信息中知道航空乘客样本的均值为 280.3。在命令行中输入 `sd(AirPassengers)` 会得到标准偏差,在 RStudio 控制台中可以看到:
|
||||
|
||||
![](https://opensource.com/sites/default/files/styles/panopoly_image_original/public/u128651/r_sd-air-passengers.png?itok=d-25fQoz)
|
||||
|
||||
接下来,我生成了一个数据直方图,通过输入 `hist(AirPassengers);` 得到,这以图形的方式显示此数据集;Rstudio 可以将数据导出为 PNG,PDF,JPEG,TIFF,SVG,EPS 或 BMP。
|
||||
|
||||
![](https://opensource.com/sites/default/files/styles/panopoly_image_original/public/u128651/r_histogram-air-passengers.png?itok=0HWsseQE)
|
||||
|
||||
除了生成统计数据和图形数据外,R 还记录了我所有的历史操作。这使得我能够返回先前的操作,并且我可以保存此历史记录以供将来参考。
|
||||
|
||||
![](https://opensource.com/sites/default/files/styles/panopoly_image_original/public/u128651/r_history.png?itok=50jaFPU4)
|
||||
|
||||
在 RStudio 的脚本编辑器中,我可以编写我发出的所有命令的脚本,然后保存该脚本以便在我的数据更改后能再次运行,或者想重新访问它。
|
||||
|
||||
![](https://opensource.com/sites/default/files/styles/panopoly_image_original/public/u128651/r_script-editor.png?itok=eiE1_bnX)
|
||||
|
||||
### 获得帮助
|
||||
|
||||
在 R 提示符下输入 `help()` 可以很容易找到帮助信息。输入你正在寻找的信息的特定主题可以找到具体的帮助信息,例如 `help(sd)` 可以获得有关标准差的帮助。通过在提示符处输入 `contributors()` 可以获得有关 R 项目贡献者的信息。您可以通过在提示符处输入 `citation()` 来了解如何引用 R。通过在提示符出输入 `license()` 可以很容易地获得 R 的许可证信息。
|
||||
|
||||
R 是在 GNU General Public License(1991 年 6 月的版本 2,或者 2007 年 6 月的版本 3)的条款下发布的。有关 R 许可证的更多信息,请参考 [R Project website][20]。
|
||||
|
||||
另外,RStudio 在 GUI 中提供了完美的帮助菜单。该区域包括 RStudio 备忘单(可作为 PDF 下载),[RStudio][21]的在线学习,RStudio 文档,支持和 [许可证信息][22]。
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
via: https://opensource.com/article/18/2/getting-started-RStudio-IDE
|
||||
|
||||
作者:[Don Watkins][a]
|
||||
译者:[szcf-weiya](https://github.com/szcf-weiya)
|
||||
校对:[校对者ID](https://github.com/校对者ID)
|
||||
|
||||
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
|
||||
|
||||
[a]:https://opensource.com/users/don-watkins
|
||||
[1]:https://en.wikipedia.org/wiki/Analysis_of_variance
|
||||
[2]:https://www.michael-j-gallagher.com/high-performance-computing
|
||||
[3]:https://www.r-project.org/
|
||||
[4]:https://cran.r-project.org/index.html
|
||||
[5]:https://cran.r-project.org/
|
||||
[6]:https://cran.r-project.org/bin/linux/
|
||||
[7]:https://cran.r-project.org/bin/linux/redhat/README
|
||||
[8]:https://cran.r-project.org/bin/macosx/
|
||||
[9]:https://cran.r-project.org/bin/windows/
|
||||
[10]:https://www.datacamp.com/onboarding/learn?from=home&technology=r
|
||||
[11]:http://tryr.codeschool.com/levels/1/challenges/1
|
||||
[12]:https://www.udemy.com/r-programming
|
||||
[13]:https://nostarch.com/bookofr
|
||||
[14]:https://opensource.com/article/17/10/no-starch
|
||||
[15]:https://www.rstudio.com/
|
||||
[16]:https://www.rstudio.com/products/rstudio/download/
|
||||
[17]:http://www.r-tutor.com/r-introduction/vector
|
||||
[18]:https://vincentarelbundock.github.io/Rdatasets/datasets.html
|
||||
[19]:https://fred.stlouisfed.org/
|
||||
[20]:https://www.r-project.org/Licenses/
|
||||
[21]:https://www.rstudio.com/online-learning/#R
|
||||
[22]:https://support.rstudio.com/hc/en-us/articles/217801078-What-license-is-RStudio-available-under-
|
Loading…
Reference in New Issue
Block a user