From 404089e6c96226e526aff699ab26408b3476cbae Mon Sep 17 00:00:00 2001 From: Xingyu Wang Date: Mon, 24 Jul 2023 22:34:44 +0800 Subject: [PATCH] ATRP @wxy https://linux.cn/article-16030-1.html --- ...­ï¸ LLaMA 2 vs GPT-4 What are the Differences.md | 113 ++++++++++++++++++ ...­ï¸ LLaMA 2 vs GPT-4 What are the Differences.md | 104 ---------------- 2 files changed, 113 insertions(+), 104 deletions(-) create mode 100644 published/20230721.2 â­ï¸â­ï¸ LLaMA 2 vs GPT-4 What are the Differences.md delete mode 100644 sources/tech/20230721.2 â­ï¸â­ï¸ LLaMA 2 vs GPT-4 What are the Differences.md diff --git a/published/20230721.2 â­ï¸â­ï¸ LLaMA 2 vs GPT-4 What are the Differences.md b/published/20230721.2 â­ï¸â­ï¸ LLaMA 2 vs GPT-4 What are the Differences.md new file mode 100644 index 0000000000..bd2b446bb0 --- /dev/null +++ b/published/20230721.2 â­ï¸â­ï¸ LLaMA 2 vs GPT-4 What are the Differences.md @@ -0,0 +1,113 @@ +[#]: subject: "LLaMA 2 vs GPT-4: What are the Differences?" +[#]: via: "https://www.debugpoint.com/llama-2-vs-gpt-4/" +[#]: author: "Arindam https://www.debugpoint.com/author/admin1/" +[#]: collector: "lkxed" +[#]: translator: "ChatGPT" +[#]: reviewer: "wxy" +[#]: publisher: "wxy" +[#]: url: "https://linux.cn/article-16030-1.html" + +Llama 2 vs GPT-4:有何区别? +====== + +![][0] + +> 了解 Llama 2 å’Œ GPT-4 之间的主è¦åŒºåˆ«ï¼Œå®ƒä»¬æ˜¯è‡ªç„¶è¯­è¨€å¤„ç†çš„领先巨头。æ­ç¤ºå®ƒä»¬çš„优势ã€åŠ£åŠ¿ä»¥åŠå®ƒä»¬å¦‚何塑造语言技术的未æ¥ã€‚ + +在撰写内容时,有两个关键因素至关é‡è¦ï¼Œâ€œå›°æƒ‘度perplexityâ€å’Œâ€œçˆ†å‘性burstinessâ€ã€‚困惑度衡é‡æ–‡æœ¬çš„å¤æ‚程度。而爆å‘性则比较å¥å­çš„å˜åŒ–程度。人类倾å‘于以较大的爆å‘性写作,例如长å¥æˆ–å¤æ‚å¥ä¸ŽçŸ­å¥å¹¶å­˜ã€‚人工智能生æˆçš„å¥å­å¾€å¾€æ›´åŠ å‡ä¸€ã€‚ + +在自然语言处ç†é¢†åŸŸï¼ŒLlama 2 å’Œ GPT-4 是两个æ°å‡ºçš„å‚与者,å¸å¼•äº†ç ”究人员和爱好者的关注。这些大型语言模型展示出独特的功能和特点。 + +虽然 GPT-4 ç”± OpenAI å·²ç»å‘布一段时间,但 Meta 与微软åˆä½œæŽ¨å‡ºäº† Llama 2,这是 LLaMa 扩展语言模型的改进版本。 + +让我们深入探讨这两个模型之间的关键区别,以了解它们的特点之所在。 + + +### Llama 2:简å•æ˜“用 + +Llama 2 是其å‰èº« LLaMa çš„å‡çº§ç‰ˆæœ¬ï¼Œä»¥å…¶ç®€æ´é«˜æ•ˆçš„特点震撼了科技界。尽管它支æŒçš„语言范围较窄,仅包括 20 ç§è¯­è¨€ï¼Œä½†å…¶æ€§èƒ½ä»¤äººå°è±¡æ·±åˆ»ï¼Œå¯ä»¥ä¸Ž GPT-4ã€Claude 或 Bard ç­‰é‡é‡çº§æ¨¡åž‹ç›¸åª²ç¾Žã€‚令人惊讶的是,尽管å‚数比 GPT-3 模型少,但 Llama 2 å¯ä»¥åœ¨å•ä¸ª GPU 上高效è¿è¡Œï¼Œä½¿å…¶æˆä¸ºå„ç§åº”用的更便æ·é€‰æ‹©ã€‚ + +Llama 2 真正的特点是它专门训练于公开å¯èŽ·å¾—çš„æ•°æ®é›†ï¼Œä½¿å…¶å¯¹ç ”究人员和开å‘人员更加å¯ç”¨ã€‚更为引人注目的是,尽管仅在 1,000 个精确æ示的相对较å°æ•°æ®é›†ä¸Šè¿›è¡Œè®­ç»ƒï¼Œå®ƒä¾ç„¶å®žçŽ°äº†æœ‰ç«žäº‰åŠ›çš„结果。 + +### GPT-4 + +在 2023 å¹´ 3 月,OpenAI 自豪地推出了其最新的创作——GPT-4,这一力作轰动了语言模型领域。GPT-4 在许多任务中表现å“越,包括专业医学和法律考试,展示了其多功能和高水平的能力。 + +GPT-4 的一个显著特点是相对于之å‰çš„版本,它能够扩展最大输入长度。这个增强功能使其能够处ç†æ›´åŠ å¹¿æ³›å’Œå¤æ‚的语言数æ®ï¼Œä¸ºè‡ªç„¶è¯­è¨€ç†è§£å’Œç”Ÿæˆå¼€è¾Ÿäº†æ–°çš„å¯èƒ½æ€§ã€‚ + +此外,GPT-4 拥有广泛的语言支æŒï¼Œæ”¯æŒ 26 ç§è¯­è¨€ã€‚è¿™ç§å¤šæ ·çš„语言能力扩大了其在全çƒèŒƒå›´å†…的覆盖和适用性,使其æˆä¸ºå¤šè¯­è¨€é¡¹ç›®å’Œåº”用的首选。 + +### 区别:Llama 2 与 GPT-4 + +在比较 Llama 2 å’Œ GPT-4 时,我们å¯ä»¥çœ‹åˆ°ä¸¤ä¸ªæ¨¡åž‹éƒ½æœ‰å„自独特的优缺点。Llama 2 以其简æ´é«˜æ•ˆçš„特点脱颖而出,尽管其数æ®é›†è¾ƒå°ä¸”语言支æŒæœ‰é™ï¼Œä½†å…¶è¡¨çŽ°å“越。其易用性和有竞争力的结果使其æˆä¸ºæŸäº›åº”用的有力选择。 + +å¦ä¸€æ–¹é¢ï¼ŒGPT-4 在å„ç§ä»»åŠ¡ä¸Šçš„出色表现和广泛的语言支æŒä½¿å…¶æˆä¸ºæ›´å¤æ‚和多样化项目的强大选择。然而,关于其模型架构和训练数æ®é›†çš„详细信æ¯ç¼ºä¹ï¼Œè¿˜æœ‰ä¸€äº›é—®é¢˜å°šå¾…回答。 + +下表显示了两个模型的一些基准分数(以åŠå…¶ä»–热门模型): + +| 基准测试 | 样本数Shot | GPT-3.5 | GPT-4 | PaLM | PaLM-2-L | Llama 2 | +| :- | :- | :- | :- | :- | :- | :- | +| MMLU (5 样本) | 70 | 78.3 | 86.1 | – | – | 86.4 | +| TriviaQA (1 样本) | 69.3 | 33 | 37.5 | – | – | 81.4 | +| Natural Questions (1 样本) | 68.9 | 37.5 | 52.3 | – | – | 85 | +| GSM8K (8 样本) | 85 | 56.5 | 56.8 | – | – | 87 | +| HumanEval (0 样本) | 48.1 | 92 | 56.7 | – | – | 51.2 | +| BIG-Bench Hard (3 样本) | 29.3 | 56.8 | 26.2 | – | – | 29.9 | + +### 常è§é—®é¢˜è§£ç­” + +1ã€Llama 2 å’Œ GPT-4 的主è¦åŒºåˆ«æ˜¯ä»€ä¹ˆï¼Ÿ + +主è¦åŒºåˆ«åœ¨äºŽè®¾è®¡å’Œæ€§èƒ½ã€‚Llama 2 注é‡ç®€æ´é«˜æ•ˆï¼Œè€Œ GPT-4 具有扩展的输入长度和广泛的语言支æŒã€‚ + +2ã€å“ªä¸ªæ¨¡åž‹æ›´é€‚åˆå¤šè¯­è¨€æ¨¡åž‹ï¼Ÿ + +GPT-4 é€‚ç”¨äºŽå¤šè¯­è¨€é¡¹ç›®ï¼Œå› ä¸ºå®ƒæ”¯æŒ 26 ç§è¯­è¨€ï¼Œä¸ºå…¨çƒåº”用æ供了更广泛的范围。 + +3ã€Llama 2 å¯ä»¥è¿è¡Œåœ¨å•ä¸ª GPU 上å—? + +是的,Llama 2 å¯ä»¥åœ¨å•ä¸ª GPU 上有效è¿è¡Œï¼Œä½¿å…¶æˆä¸ºå„ç§åº”用的实用选择。 + +4ã€Llama 2 支æŒå¤šå°‘ç§è¯­è¨€ï¼Ÿ + +Llama 2 æ”¯æŒ 20 ç§è¯­è¨€ï¼Œè™½ç„¶æ¯” GPT-4 ç¨å°‘,但ä»è¦†ç›–了相当广泛的语言范围。 + +5ã€GPT-4 是å¦æœ‰å¯ç”¨çš„基准测试? + +ä¸å¹¸çš„是,没有æåŠ GPT-4 的具体基准测试,因此对其性能还有一些问题没有答案。 + +### 结论 + +Llama 2 å’Œ GPT-4 代表了自然语言处ç†é¢†åŸŸçš„å‰æ²¿è¿›å±•ã€‚尽管数æ®é›†è¾ƒå°ï¼ŒLlama 2 以其简æ´æ€§ã€æ˜“用性和有竞争力的性能令人å°è±¡æ·±åˆ»ã€‚å¦ä¸€æ–¹é¢ï¼ŒGPT-4 的多功能性ã€é«˜æ°´å¹³å’Œå¹¿æ³›çš„语言支æŒä½¿å…¶æˆä¸ºå¤„ç†å¤æ‚项目的æ°å‡ºé€‰æ‹©ã€‚这两个模型对自然语言处ç†çš„å‘展åšå‡ºäº†é‡è¦è´¡çŒ®ï¼Œä¸ºè¯­è¨€æŠ€æœ¯åœ¨æˆ‘们生活中å‘挥更加é‡è¦çš„作用铺平了é“路。 + +基准测试å‚考: + +- MMLU Benchmark (Multi-task Language Understanding): [https://arxiv.org/abs/2009.03300][1] +- Papers With Code: [https://paperswithcode.com/paper/measuring-massive-multitask-language][2] +- GPT-4 Technical Report: [https://arxiv.org/abs/2303.08774][3] +- PaLM: Scaling Language Modeling with Pathways: [https://www.marktechpost.com/2022/04/04/google-ais-latest-540-billion-parameter-model-pathways-language-model-called-palm-unlocks-new-tasks-proportional-to-scale/][4] +- Llama 2: Open Foundation and Fine-Tuned Chat Models: [https://www.youtube.com/watch?v=Xdl_zC1ChRs][5] + + +*(题图:MJ/60e112f7-3399-49fd-9157-c6b03de5efea)* + +-------------------------------------------------------------------------------- + +via: https://www.debugpoint.com/llama-2-vs-gpt-4/ + +作者:[Arindam][a] +选题:[lkxed][b] +译者:ChatGPT +校对:[wxy](https://github.com/wxy) + +本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) è£èª‰æŽ¨å‡º + +[a]: https://www.debugpoint.com/author/admin1/ +[b]: https://github.com/lkxed/ +[1]: https://arxiv.org/abs/2009.03300 +[2]: https://paperswithcode.com/paper/measuring-massive-multitask-language +[3]: https://arxiv.org/abs/2303.08774 +[4]: https://www.marktechpost.com/2022/04/04/google-ais-latest-540-billion-parameter-model-pathways-language-model-called-palm-unlocks-new-tasks-proportional-to-scale/ +[5]: https://www.youtube.com:443/watch?v=Xdl_zC1ChRs +[6]: https://pixabay.com/users/pezibear-526143/ +[0]: https://img.linux.net.cn/data/attachment/album/202307/24/223302fj41272110s7df4c.jpg \ No newline at end of file diff --git a/sources/tech/20230721.2 â­ï¸â­ï¸ LLaMA 2 vs GPT-4 What are the Differences.md b/sources/tech/20230721.2 â­ï¸â­ï¸ LLaMA 2 vs GPT-4 What are the Differences.md deleted file mode 100644 index dff2cebe43..0000000000 --- a/sources/tech/20230721.2 â­ï¸â­ï¸ LLaMA 2 vs GPT-4 What are the Differences.md +++ /dev/null @@ -1,104 +0,0 @@ -[#]: subject: "LLaMA 2 vs GPT-4: What are the Differences?" -[#]: via: "https://www.debugpoint.com/llama-2-vs-gpt-4/" -[#]: author: "Arindam https://www.debugpoint.com/author/admin1/" -[#]: collector: "lkxed" -[#]: translator: " " -[#]: reviewer: " " -[#]: publisher: " " -[#]: url: " " - -LLaMA 2 vs GPT-4: What are the Differences? -====== - -**Discover the key distinctions between LLaMA 2 and GPT-4, the leading giants of natural language processing. Uncover their strengths, weaknesses and how they shape the future of language technology.** - -When it comes to writing content, two factors are crucial, “perplexity†and “burstiness.†Perplexity measures the complexity of the text. Separately, burstiness compares the variations of sentences. Humans tend to write with greater burstiness, for example, with some longer or more complex sentences alongside shorter ones. AI sentences tend to be more uniform. - -In the world of natural language processing, two prominent players, LLaMA 2 and GPT-4, have captured the attention of researchers and enthusiasts alike. These large language models (LLMs) showcase their capabilities in diverse ways, each with unique features and functionalities. - -While GPT-4 is out for a while by OpenAI, in a surprising collaboration with Microsoft, Meta has launched LLaMA 2, an improved version of its expansive language model, LLaMa. - -Let’s delve into the key distinctions between the two models to understand what sets them apart. - -### LLaMA 2: Simple and usuable - -LLaMA 2, an upgraded version of its predecessor LLaMa, has astounded the tech world with its simplicity and efficiency. Although it supports a narrower range of languages, encompassing 20 languages, its performance is nothing short of impressive and can compete with heavyweight models like GPT-4, Claude, or Bard. Surprisingly, despite having fewer parameters than GPT-3 models, LLaMA 2 can run effectively on a single GPU, making it a more accessible choice for various applications. - -What truly sets LLaMA 2 apart is its exclusive training on openly accessible datasets, making it more available to researchers and developers. Even more remarkably, it achieves competitive results despite being trained on a relatively modest dataset of only 1,000 precise prompts. - -### GPT-4 - -In March 2023, OpenAI proudly introduced its latest creation, GPT-4, which took the world of language models by storm. The GPT-4 excels in a multitude of tasks, including professional medical and law exams, showcasing its versatility and proficiency. - -One of the defining features of GPT-4 is its ability to expand on the maximum input length compared to its predecessors. This enhancement allows it to process even more extensive and complex language data, opening new avenues for natural language understanding and generation. - -Furthermore, GPT-4 boasts extensive language support, accommodating 26 languages. This diverse linguistic capability broadens its global reach and applicability, making it a preferred choice for multilingual projects and applications. - -### Differences: LLaMA 2 vs GPT-4 - -As we compare LLaMA 2 and GPT-4, it becomes evident that both models have their unique strengths and weaknesses. LLaMA 2 stands out with its simplicity and efficiency, performing remarkably well despite its smaller dataset and limited language support. Its accessibility and competitive results make it a compelling option for certain applications. - -On the other hand, GPT-4’s impressive performance across various tasks and vast language support make it a formidable choice for more complex and diverse projects. However, the lack of detailed information on its model architecture and training datasets leaves some questions unanswered. - -Here are some of the benchmark scores of both models (alongside other popular ones): - -| **Benchmark** | **Shots** | **GPT-3.5** | **GPT-4** | **PaLM** | **PaLM-2-L** | **Llama 2** | -| :- | :- | :- | :- | :- | :- | :- | -| MMLU (5-shot) | 70 | 78.3 | 86.1 | – | – | 86.4 | -| TriviaQA (1-shot) | 69.3 | 33 | 37.5 | – | – | 81.4 | -| Natural Questions (1-shot) | 68.9 | 37.5 | 52.3 | – | – | 85 | -| GSM8K (8-shot) | 85 | 56.5 | 56.8 | – | – | 87 | -| HumanEval (0-shot) | 48.1 | 92 | 56.7 | – | – | 51.2 | -| BIG-Bench Hard (3-shot) | 29.3 | 56.8 | 26.2 | – | – | 29.9 | - -### FAQs - -- The main difference lies in their design and performance. LLaMA 2 focuses on simplicity and efficiency, while GPT-4 boasts expanded input length and extensive language support. - -- GPT-4 is more suitable for multilingual projects due to its support for 26 languages, offering a broader scope for global applications. - -- Yes, LLaMA 2 can effectively run on a single GPU, making it a practical choice for various applications. - -- LLaMA 2 supports 20 languages, which, although narrower than GPT-4, still covers a substantial linguistic range. - -- Unfortunately, specific benchmarks for GPT-4 have not been mentioned, leaving some questions about its performance unanswered. - -- What is the main difference between LLaMA 2 and GPT-4? -- Which model is more suitable for multilingual projects? -- Can LLaMA 2 run on a single GPU? -- How many languages does LLaMA 2 support? -- Are there any benchmarks available for GPT-4? - -### Conclusion - -LLaMA 2 and GPT-4 represent cutting-edge advancements in the field of natural language processing. LLaMA 2 impresses with its simplicity, accessibility, and competitive performance despite its smaller dataset. On the other hand, GPT-4’s versatility, proficiency, and expansive language support make it an exceptional choice for complex projects. Both models contribute significantly to the evolution of NLP, paving the way for a future where language technology plays an even more integral role in our lives. - -_References for benchmark scores:_ - -- MMLU Benchmark (Multi-task Language Understanding): [https://arxiv.org/abs/2009.03300][1] -- Papers With Code: [https://paperswithcode.com/paper/measuring-massive-multitask-language][2] -- GPT-4 Technical Report: [https://arxiv.org/abs/2303.08774][3] -- PaLM: Scaling Language Modeling with Pathways: [https://www.marktechpost.com/2022/04/04/google-ais-latest-540-billion-parameter-model-pathways-language-model-called-palm-unlocks-new-tasks-proportional-to-scale/][4] -- Llama 2: Open Foundation and Fine-Tuned Chat Models: [https://www.youtube.com/watch?v=Xdl_zC1ChRs][5] - -_Feature image by [Petra][6] from Pixabay._ - --------------------------------------------------------------------------------- - -via: https://www.debugpoint.com/llama-2-vs-gpt-4/ - -作者:[Arindam][a] -选题:[lkxed][b] -译者:[译者ID](https://github.com/译者ID) -校对:[校对者ID](https://github.com/校对者ID) - -本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) è£èª‰æŽ¨å‡º - -[a]: https://www.debugpoint.com/author/admin1/ -[b]: https://github.com/lkxed/ -[1]: https://arxiv.org/abs/2009.03300 -[2]: https://paperswithcode.com/paper/measuring-massive-multitask-language -[3]: https://arxiv.org/abs/2303.08774 -[4]: https://www.marktechpost.com/2022/04/04/google-ais-latest-540-billion-parameter-model-pathways-language-model-called-palm-unlocks-new-tasks-proportional-to-scale/ -[5]: https://www.youtube.com:443/watch?v=Xdl_zC1ChRs -[6]: https://pixabay.com/users/pezibear-526143/