mirror of
https://github.com/LCTT/TranslateProject.git
synced 2025-01-25 23:11:02 +08:00
commit
7c4340d17e
@ -1,42 +0,0 @@
|
||||
translating---geekpi
|
||||
|
||||
OpenShift on OpenStack: Delivering Applications Better Together
|
||||
============================================================
|
||||
|
||||
Have you ever asked yourself, where should I run OpenShift? The answer is anywhere—it runs great on bare metal, on virtual machines, in a private cloud or in the public cloud. But, there are some reasons why people are moving to private and public clouds related to automation around full stack exposition and consumption of resources. A traditional operating system has always been about [exposition and consumption of hardware resources][2]—hardware provides resources, applications consume them, and the operating system has always been the traffic cop. But a traditional operating system has always been confined to a single machine[1].
|
||||
|
||||
Well, in the cloud-native world, this now means expanding this concept to include multiple operating system instances. That’s where OpenStack and OpenShift come in. In a cloud-native world, virtual machines, storage volumes and network segments all become dynamically provisioned building blocks. We architect our applications from these building blocks. They are typically paid for by the hour or minute and deprovisioned when they are no longer needed. But you need to think of them as dynamically provisioned capacity for applications. OpenStack is really good at dynamically provisioning capacity (exposition), and OpenShift is really good at dynamically provisioning applications (consumption), but how do we glue them together to provide a dynamic, highly programmable, multi-node operating system?
|
||||
|
||||
To understand, let’s take a look at what would happen if we installed OpenShift in a traditional environment— imagine we want to provide developers with dynamic access to create new applications or imagine we want to provide lines of business with access to provision new copies of existing applications to meet contractual obligations. Each application would need access to persistent storage. Persistent storage is not ephemeral, and in a traditional environment, this is provisioned by filing a ticket. That’s OK, we could wire up OpenShift to file a ticket every time it needs storage. A storage admin could log into the enterprise storage array and carve off volumes as needed, then hand them back to OpenShift to satisfy applications. But this would be a horribly slow, manual process—and, you would probably have storage administrators quit.
|
||||
|
||||
![](https://blog.openshift.com/wp-content/uploads/OpenShift-on-OpenStack-Delivering-Applications-Better-Together-Traditional-Storage-1024x615.png)
|
||||
|
||||
In a cloud-native world, we should think about this as a policy-driven, automated process. The storage administrator becomes more strategic, setting policies, quota, and service levels (silver, gold, etc.), but the actual provisioning becomes dynamic.
|
||||
|
||||
![](https://blog.openshift.com/wp-content/uploads/OpenShift-on-OpenStack-Delivering-Applications-Better-Together-Cloud-Storage-1024x655.png)
|
||||
|
||||
A dynamic process scales to multiple applications – this could be lines of business or even new applications being tested by developers. From 10s of applications to 1000s of applications, dynamic provisioning provides a cloud native experience.
|
||||
|
||||
![](https://blog.openshift.com/wp-content/uploads/OpenShift-on-OpenStack-Delivering-Applications-Better-Together-Persistent-Volume-Claims-Persistent-Volumes-Demo-1024x350.png)
|
||||
|
||||
The demo video below, shows how dynamic storage provisioning works with Red Hat OpenStack Platform (Cinder volumes) and Red Hat OpenShift Container Platform – but dynamic provisioning isn’t restricted to storage alone. Imagine an environment where nodes are scaled up automatically as an instance of OpenShift needs more capacity. Imagine carving off network segments for load testing a particular instance of OpenShift before pushing a particularly sensitive application change. The reasons why you need dynamic provisioning of IT building blocks goes on and on. OpenStack is really designed to do this in a programmatic, API driven way. :
|
||||
|
||||
[YOUTUBE VIDEO](https://youtu.be/PfWmAS9Fc7I)
|
||||
|
||||
OpenShift and OpenStack deliver applications better together. OpenStack dynamically provisions resources, while OpenShift dynamically consumes them. Together, they provide a flexible cloud-native solution for all of your container and virtual machine needs.
|
||||
|
||||
[1] High availability clustering and some specialized operating systems bridged this gap to an extent, but was generally an edge case in computing.
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
via: https://blog.openshift.com/openshift-on-openstack-delivering-applications-better-together/
|
||||
|
||||
作者:[SCOTT MCCARTY ][a]
|
||||
译者:[译者ID](https://github.com/译者ID)
|
||||
校对:[校对者ID](https://github.com/校对者ID)
|
||||
|
||||
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
|
||||
|
||||
[a]:https://blog.openshift.com/author/smccartyredhat-com/
|
||||
[1]:https://blog.openshift.com/author/smccartyredhat-com/
|
||||
[2]:https://docs.google.com/presentation/d/139_dxpiYc5JR8yKAP8pl-FcZmOFQCuV8RyDxZqOOcVE/edit
|
@ -0,0 +1,40 @@
|
||||
OpenStack 上的 OpenShift:更好地交付应用程序
|
||||
============================================================
|
||||
|
||||
你有没有问过自己,我应该在哪里运行 OpenShift?答案是任何地方 - 它可以在裸机、虚拟机、私有云或公共云中很好地运行。但是,这里有一些原因为什么人们正迁移到围绕全栈和资源消耗自动化相关的私有云和公有云。传统的操作系统一直是关于[硬件资源的展示和消耗][2] - 硬件提供资源,应用程序消耗它们,操作系统一直是交通警察。但传统的操作系统一直局限于单机[1]。
|
||||
|
||||
那么,在原生云的世界里,现在意味着这个概念扩展到包括多个操作系统实例。这就是 OpenStack 和 OpenShift 所在。在原生云世界、虚拟机、存储卷和网段都成为动态配置的构建块。我们从这些构建块构建我们的应用程序。他们通常按时间或分钟付款,并在不再需要时被取消配置。但是,你需要将它们视为应用程序的动态配置能力。 OpenStack 在动态配置能力(展示)方面非常擅长,OpenShift 在动态配置应用程序(消费)方面很好,但是我们如何将它们结合在一起来提供一个动态的,高度可编程的多节点操作系统?
|
||||
|
||||
要理解这个,让我们来看看如果我们在传统的环境中安装 OpenShift 会发生什么 - 想像我们想要为开发者提供动态访问来创建新的应用程序,或者想象我们想要提供业务线,使其能够访问现有应用程序的新副本以满足合同义务。每个应用程序都需要访问持久存储。持久存储不是临时的,在传统的环境中,这通过提交一张工单实现。没关系,我们可以连到 OpenShift,每次需要存储时都会提交一张工单。存储管理员可以登录企业存储阵列并根据需要删除卷,然后将其移回 OpenShift 以满足应用程序。但这将是一个非常慢的手动过程,而且你可能会遇到存储管理员退出。
|
||||
|
||||
![](https://blog.openshift.com/wp-content/uploads/OpenShift-on-OpenStack-Delivering-Applications-Better-Together-Traditional-Storage-1024x615.png)
|
||||
|
||||
在原生云的世界里,我们应该将其视为一个策略驱动的自动化流程。存储管理员变得更加战略性、设置策略、配额和服务级别(银,黄金等),但实际配置变得动态。
|
||||
|
||||
![](https://blog.openshift.com/wp-content/uploads/OpenShift-on-OpenStack-Delivering-Applications-Better-Together-Cloud-Storage-1024x655.png)
|
||||
|
||||
动态过程可扩展到多个应用程序 - 这可能是开发者测试的业务线甚至新应用程序。从 10 多个应用程序到 1000 个应用程序,动态配置提供原生云体验。
|
||||
|
||||
![](https://blog.openshift.com/wp-content/uploads/OpenShift-on-OpenStack-Delivering-Applications-Better-Together-Persistent-Volume-Claims-Persistent-Volumes-Demo-1024x350.png)
|
||||
|
||||
下面的演示视频展示了动态存储配置如何与 Red Hat OpenStack 平台(Cinder 卷)以及 Red Hat OpenShift 容器平台配合使用,但动态配置并不限于存储。想象一下,随着 OpenShift 的一个实例需要更多的容量,节点自动扩展的环境。想象一下,推送一个敏感的程序更改前,将网段划分为负载测试 OpenShift 的特定实例。这些是你为何需要动态配置 IT 构建块的原因。OpenStack 实际上是以 API 驱动的方式实现的。
|
||||
|
||||
[YOUTUBE VIDEO](https://youtu.be/PfWmAS9Fc7I)
|
||||
|
||||
OpenShift 和 OpenStack 一起更好地交付应用程序。OpenStack 动态提供资源,而 OpenShift 会动态地消耗它们。它们一起为你所有的容器和虚拟机需求提供灵活的原生云解决方案。
|
||||
|
||||
[1]高可用性集群和一些专门的操作系统在一定程度上弥合了这一差距,但在计算中通常是一个边缘情况。
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
via: https://blog.openshift.com/openshift-on-openstack-delivering-applications-better-together/
|
||||
|
||||
作者:[SCOTT MCCARTY ][a]
|
||||
译者:[geekpi](https://github.com/geekpi)
|
||||
校对:[校对者ID](https://github.com/校对者ID)
|
||||
|
||||
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
|
||||
|
||||
[a]:https://blog.openshift.com/author/smccartyredhat-com/
|
||||
[1]:https://blog.openshift.com/author/smccartyredhat-com/
|
||||
[2]:https://docs.google.com/presentation/d/139_dxpiYc5JR8yKAP8pl-FcZmOFQCuV8RyDxZqOOcVE/edit
|
Loading…
Reference in New Issue
Block a user