2
0
mirror of https://github.com/LCTT/TranslateProject.git synced 2025-03-27 02:30:10 +08:00

Update 20190807 Trace code in Fedora with bpftrace.md

This commit is contained in:
YungeGuo 2021-07-26 19:47:26 +08:00 committed by GitHub
parent d637dce4a5
commit 7723bea97a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -12,17 +12,17 @@
![][1]
bpftrace 是一个[基于 eBPF 的新型追踪工具][2],在 Fedora 28 第一次引入。Brendan GreggAlastair Robertson 和 Matheus Marchini 在分散于全网络的黑客团队的帮助下开发了 bpftrace一个允许你分析系统在幕后正在执行的操作的追踪工具告诉你代码中正在被调用的函数、传递给函数的参数、函数的调用次数等。
bpftrace 是一个[基于 eBPF 的新型追踪工具][2],在 Fedora 28 第一次引入。Brendan GreggAlastair Robertson 和 Matheus Marchini 在分散于全网络的黑客团队的帮助下开发了 bpftrace一个允许你分析系统在幕后正在执行的操作的追踪工具告诉你代码中正在被调用的函数、传递给函数的参数、函数的调用次数等。
这篇文章的内容涉及了 bpftrace 的一些基础,以及它是如何工作的,请继续阅读获取更多的信息和一些有用的实例。
### eBPF (extended Berkeley Packet Filter)
[eBPF][3] 是一个微小的虚拟机,更确切的说是一个虚拟 CPU位于 Linux 内核中。eBPF 可以在内核空间以一种安全可控的方式加载和运行体积较小的程序,保证 eBPF 的使用更加安全即使在生产环境系统中。eBPF 虚拟机有自己的指令集( [ISA][4] ),类似于现代处理器架构的一个子集。通过这个 ISA可以很容易将这些程序转化为真实硬件上的代码。内核即时将程序转化为主流处理器架构上的本地代码,从而提升性能。
[eBPF][3] 是一个微虚拟机,更确切的说是一个虚拟 CPU位于 Linux 内核中。eBPF 可以在内核空间以一种安全可控的方式加载和运行体积较小的程序,保证 eBPF 的使用更加安全即使在生产环境系统中。eBPF 虚拟机有自己的指令集([ISA][4]),类似于现代处理器架构的一个子集。通过这个 ISA可以很容易将 eBPF 程序转化为真实硬件上的代码。内核即时将程序转化为主流处理器架构上的本地代码,从而提升性能。
eBPF 虚拟机允许通过编程扩展内核,目前已经有一些内核子系统使用这一新型强大的 Linux Kernel 功能,比如网络,安全计算、追踪等。这些子系统的主要思想是添加 eBPF 程序到特定的代码点,从而扩展原生的内核行为。
虽然 eBPF 机器语言功能强大,由于是一种底层语言,直接用于编写代码很费力, bpftrace 就是为了解决这个问题而生的。eBPF 提供了一种高级语言编写 eBPF 追踪脚本,然后在 clang / LLVM 库的帮助下将这些脚本转化为 eBPF最终添加到特定的代码点。
虽然 eBPF 机器语言功能强大由于是一种底层语言直接用于编写代码很费力bpftrace 就是为了解决这个问题而生的。eBPF 提供了一种高级语言编写 eBPF 追踪脚本,然后在 clang / LLVM 库的帮助下将这些脚本转化为 eBPF最终添加到特定的代码点。
## 安装和快速入门
@ -32,7 +32,7 @@ eBPF 虚拟机允许通过编程扩展内核,目前已经有一些内核子系
$ sudo dnf install bpftrace
```
使用“ hello world ”进行实验:
使用“hello world”进行实验
```
$ sudo bpftrace -e 'BEGIN { printf("hello world\n"); }'
@ -50,7 +50,7 @@ $ sudo bpftrace -e 't:syscalls:sys_enter_execve { printf("%s called %s\n", comm,
这个例子打印系统中正在创建的每个新进程的父进程名 _(comm)_。_t:syscalls:sys_enter_execve_ 是一个内核追踪点,是 _tracepoint:syscalls:sys_enter_execve_ 的简写,两种形式都可以使用。下一部分会向你展示如何列出所有可用的追踪点。
_comm_ 是一个 `bpftrace` 内建指令代表进程名_filename_ 是 _t:syscalls:sys_enter_execve_ 追踪点的一个域,这些域可以通过 _args_ 内建指令访问。
_comm_ 是一个 bpftrace 内建指令代表进程名_filename_ 是 _t:syscalls:sys_enter_execve_ 追踪点的一个域,这些域可以通过 _args_ 内建指令访问。
追踪点的所有可用域可以通过这个命令列出:
@ -98,11 +98,11 @@ $ sudo bpftrace -e 't:syscalls:sys_enter_* { @[probe] = count(); }'
一些探针类型允许使用通配符匹配多个探针,你也可以使用一个逗号隔开的列表为一个操作块指明多个连接点。上面的例子中,操作块连接到了所有名称以 _t:syscalls:sysenter__ 开头的追踪点,即所有可用的系统调用。
bpftrace 的内建函数 _count()_ 统计系统调用被调用的次数_@[]_ 代表一个映射(一个关的数组)。映射的键是另一个内建指令 _probe_,代表完整的探针名。
bpftrace 的内建函数 _count()_ 统计系统调用被调用的次数_@[]_ 代表一个映射(一个关的数组)。映射的键是另一个内建指令 _probe_,代表完整的探针名。
这个例子中,相同的操作块连接到了每个系统调用,之后每次有系统调用被调用时,映射就会被更新,映射中和系统调用对应的项就会增加。程序终止时,自动打印出所有声明的映射。
下面的例子统计所有的系统调用,然后通过 bpftrace 过滤语法使用 _PID_ 过滤出某个特定进程调用的系统调用:
下面的例子统计所有的系统调用,然后通过 bpftrace 过滤语法使用 _PID_ 过滤出某个特定进程调用的系统调用:
```
$ sudo bpftrace -e 't:syscalls:sys_enter_* / pid == 1234 / { @[probe] = count(); }'
@ -175,9 +175,9 @@ $ sudo /usr/share/bpftrace/tools/killsnoop.bt
## 链接
* bpftrace 参考指南——<https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md>
* Linux 2018 `bpftrace` DTrace 2.0)——<http://www.brendangregg.com/blog/2018-10-08/dtrace-for-linux-2018.html>
* Linux 2018 `bpftrace`DTrace 2.0)——<http://www.brendangregg.com/blog/2018-10-08/dtrace-for-linux-2018.html>
* BPF通用的内核虚拟机——<https://lwn.net/Articles/599755/>
* Linux Extended BPFeBPF Tracing Tools——<http://www.brendangregg.com/ebpf.html>
* Linux Extended BPFeBPFTracing Tools——<http://www.brendangregg.com/ebpf.html>
* 深入 BPF一个阅读材料列表—— [https://qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf][6]
@ -193,7 +193,7 @@ via: https://fedoramagazine.org/trace-code-in-fedora-with-bpftrace/
作者:[Augusto Caringi][a]
选题:[lujun9972][b]
译者:[译者ID](https://github.com/译者ID)
译者:[YungeG](https://github.com/YungeG)
校对:[校对者ID](https://github.com/校对者ID)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出