PRF:20180806 Anatomy of a Linux DNS Lookup - Part IV.md

@pinewall
This commit is contained in:
Xingyu.Wang 2018-09-27 22:03:12 +08:00
parent d6e5d4bd1d
commit 75f16370ef

View File

@ -16,12 +16,8 @@ Linux DNS 查询剖析(第四部分)
在第四部分中,我将介绍容器如何完成 DNS 查询。你想的没错,也不是那么简单。 在第四部分中,我将介绍容器如何完成 DNS 查询。你想的没错,也不是那么简单。
* * *
### 1) Docker 和 DNS ### 1) Docker 和 DNS
============================================================
在 [Linux DNS 查询剖析(第三部分)][3] 中,我们介绍了 `dnsmasq`,其工作方式如下:将 DNS 查询指向到 localhost 地址 `127.0.0.1`,同时启动一个进程监听 `53` 端口并处理查询请求。 在 [Linux DNS 查询剖析(第三部分)][3] 中,我们介绍了 `dnsmasq`,其工作方式如下:将 DNS 查询指向到 localhost 地址 `127.0.0.1`,同时启动一个进程监听 `53` 端口并处理查询请求。
在按上述方式配置 DNS 的主机上,如果运行了一个 Docker 容器,容器内的 `/etc/resolv.conf` 文件会是怎样的呢? 在按上述方式配置 DNS 的主机上,如果运行了一个 Docker 容器,容器内的 `/etc/resolv.conf` 文件会是怎样的呢?
@ -72,29 +68,29 @@ google.com.             112     IN      A       172.217.23.14
在这个问题上Docker 的解决方案是忽略所有可能的复杂情况,即无论主机中使用什么 DNS 服务器,容器内都使用 Google 的 DNS 服务器 `8.8.8.8` 和 `8.8.4.4` 完成 DNS 查询。 在这个问题上Docker 的解决方案是忽略所有可能的复杂情况,即无论主机中使用什么 DNS 服务器,容器内都使用 Google 的 DNS 服务器 `8.8.8.8` 和 `8.8.4.4` 完成 DNS 查询。
_我的经历在 2013 年,我遇到了使用 Docker 以来的第一个问题,与 Docker 的这种 DNS 解决方案密切相关。我们公司的网络屏蔽了 `8.8.8.8` 和 `8.8.4.4`导致容器无法解析域名。_ _我的经历在 2013 年,我遇到了使用 Docker 以来的第一个问题,与 Docker 的这种 DNS 解决方案密切相关。我们公司的网络屏蔽了 `8.8.8.8` 和 `8.8.4.4`导致容器无法解析域名。_
这就是 Docker 容器的情况,但对于包括 Kubernetes 在内的容器 _<ruby>编排引擎<rt>orchestrators</rt></ruby>_,情况又有些不同。 这就是 Docker 容器的情况,但对于包括 Kubernetes 在内的容器 <ruby>编排引擎<rt>orchestrators</rt></ruby>,情况又有些不同。
### 2) Kubernetes 和 DNS ### 2) Kubernetes 和 DNS
在 Kubernetes 中,最小部署单元是 `pod``pod` 是一组相互协作的容器,共享 IP 地址(和其它资源)。 在 Kubernetes 中,最小部署单元是 pod是一组相互协作的容器,共享 IP 地址(和其它资源)。
Kubernetes 面临的一个额外的挑战是,将 Kubernetes 服务请求(例如,`myservice.kubernetes.io`)通过对应的<ruby>解析器<rt>resolver</rt></ruby>,转发到具体服务地址对应的<ruby>内网地址<rt>private network</rt></ruby>。这里提到的服务地址被称为归属于“<ruby>集群域<rt>cluster domain</rt></ruby>”。集群域可由管理员配置,根据配置可以是 `cluster.local``myorg.badger` 等。 Kubernetes 面临的一个额外的挑战是,将 Kubernetes 服务请求(例如,`myservice.kubernetes.io`)通过对应的<ruby>解析器<rt>resolver</rt></ruby>,转发到具体服务地址对应的<ruby>内网地址<rt>private network</rt></ruby>。这里提到的服务地址被称为归属于“<ruby>集群域<rt>cluster domain</rt></ruby>”。集群域可由管理员配置,根据配置可以是 `cluster.local``myorg.badger` 等。
在 Kubernetes 中,你可以为 `pod` 指定如下四种 `pod` 内 DNS 查询的方式。 在 Kubernetes 中,你可以为 pod 指定如下四种 pod 内 DNS 查询的方式。
* Default **Default**
在这种(名称容易让人误解)的方式中,`pod` 与其所在的主机采用相同的 DNS 查询路径,与前面介绍的主机 DNS 查询一致。我们说这种方式的名称容易让人误解,因为该方式并不是默认选项!`ClusterFirst` 才是默认选项。 在这种名称容易让人误解的方式中pod 与其所在的主机采用相同的 DNS 查询路径,与前面介绍的主机 DNS 查询一致。我们说这种方式的名称容易让人误解,因为该方式并不是默认选项!`ClusterFirst` 才是默认选项。
如果你希望覆盖 `/etc/resolv.conf` 中的条目,你可以添加到 `kubelet` 的配置中。 如果你希望覆盖 `/etc/resolv.conf` 中的条目,你可以添加到 `kubelet` 的配置中。
* ClusterFirst **ClusterFirst**
`ClusterFirst` 方式中,遇到 DNS 查询请求会做有选择的转发。根据配置的不同,有以下两种方式: `ClusterFirst` 方式中,遇到 DNS 查询请求会做有选择的转发。根据配置的不同,有以下两种方式:
第一种方式配置相对古老但更简明,即采用一个规则:如果请求的域名不是集群域的子域,那么将其转发到 `pod` 所在的主机。 第一种方式配置相对古老但更简明,即采用一个规则:如果请求的域名不是集群域的子域,那么将其转发到 pod 所在的主机。
第二种方式相对新一些,你可以在内部 DNS 中配置选择性转发。 第二种方式相对新一些,你可以在内部 DNS 中配置选择性转发。
@ -115,27 +111,27 @@ data:
`stubDomains` 条目中,可以为特定域名指定特定的 DNS 服务器;而 `upstreamNameservers` 条目则给出,待查询域名不是集群域子域情况下用到的 DNS 服务器。 `stubDomains` 条目中,可以为特定域名指定特定的 DNS 服务器;而 `upstreamNameservers` 条目则给出,待查询域名不是集群域子域情况下用到的 DNS 服务器。
这是通过在一个 `pod` 中运行我们熟知的 `dnsmasq` 实现的。 这是通过在一个 pod 中运行我们熟知的 `dnsmasq` 实现的。
![kubedns](https://zwischenzugs.files.wordpress.com/2018/08/kubedns.png?w=525) ![kubedns](https://zwischenzugs.files.wordpress.com/2018/08/kubedns.png?w=525)
剩下两种选项都比较小众: 剩下两种选项都比较小众:
* ClusterFirstWithHostNet **ClusterFirstWithHostNet**
适用于 `pod` 使用主机网络的情况,例如绕开 Docker 网络配置,直接使用与 `pod` 对应主机相同的网络。 适用于 pod 使用主机网络的情况,例如绕开 Docker 网络配置,直接使用与 pod 对应主机相同的网络。
* None **None**
`None` 意味着不改变 DNS但强制要求你在 `pod` <ruby>规范文件<rt>specification</rt></ruby>`dnsConfig` 条目中指定 DNS 配置。 `None` 意味着不改变 DNS但强制要求你在 `pod` <ruby>规范文件<rt>specification</rt></ruby>`dnsConfig` 条目中指定 DNS 配置。
### CoreDNS 即将到来 ### CoreDNS 即将到来
除了上面提到的那些,一旦 `CoreDNS` 取代Kubernetes 中的 `kube-dns`,情况还会发生变化。`CoreDNS` 相比 `kube-dns` 具有可配置性更高、效率更高等优势。 除了上面提到的那些,一旦 `CoreDNS` 取代 Kubernetes 中的 `kube-dns`,情况还会发生变化。`CoreDNS` 相比 `kube-dns` 具有可配置性更高、效率更高等优势。
如果想了解更多,参考[这里][5]。 如果想了解更多,参考[这里][5]。
如果你对 OpenShift 的网络感兴趣,我曾写过一篇[文章][6]可供你参考。但文章中 OpenShift 的版本是 `3.6`,可能有些过时。 如果你对 OpenShift 的网络感兴趣,我曾写过一篇[文章][6]可供你参考。但文章中 OpenShift 的版本是 3.6,可能有些过时。
### 第四部分总结 ### 第四部分总结
@ -152,14 +148,14 @@ via: https://zwischenzugs.com/2018/08/06/anatomy-of-a-linux-dns-lookup-part-iv/
作者:[zwischenzugs][a] 作者:[zwischenzugs][a]
译者:[pinewall](https://github.com/pinewall) 译者:[pinewall](https://github.com/pinewall)
校对:[校对者ID](https://github.com/校对者ID) 校对:[wxy](https://github.com/wxy)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出 本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]:https://zwischenzugs.com/ [a]:https://zwischenzugs.com/
[1]:https://zwischenzugs.com/2018/06/08/anatomy-of-a-linux-dns-lookup-part-i/ [1]:https://linux.cn/article-9943-1.html
[2]:https://zwischenzugs.com/2018/06/18/anatomy-of-a-linux-dns-lookup-part-ii/ [2]:https://linux.cn/article-9949-1.html
[3]:https://zwischenzugs.com/2018/07/06/anatomy-of-a-linux-dns-lookup-part-iii/ [3]:https://linux.cn/article-9972-1.html
[4]:https://kubernetes.io/docs/tasks/administer-cluster/dns-custom-nameservers/#impacts-on-pods [4]:https://kubernetes.io/docs/tasks/administer-cluster/dns-custom-nameservers/#impacts-on-pods
[5]:https://coredns.io/ [5]:https://coredns.io/
[6]:https://zwischenzugs.com/2017/10/21/openshift-3-6-dns-in-pictures/ [6]:https://zwischenzugs.com/2017/10/21/openshift-3-6-dns-in-pictures/