Merge pull request #5556 from ictlyh/master

Translated tech/20170101 GraphQL In Use Building a Blogging Engine AP…
This commit is contained in:
Yuanhao Luo 2017-05-12 15:28:57 +08:00 committed by GitHub
commit 7443bac1e0
2 changed files with 402 additions and 403 deletions

View File

@ -1,403 +0,0 @@
ictlyh Translating
GraphQL In Use: Building a Blogging Engine API with Golang and PostgreSQL
============================================================
### Abstract
GraphQL appears hard to use in production: the graph interface is flexible in its modeling capabilities but is a poor match for relational storage, both in terms of implementation and performance.
In this document, we will design and write a simple blogging engine API, with the following specification:
* three types of resources (users, posts and comments) supporting a varied set of functionality (create a user, create a post, add a comment to a post, follow posts and comments from another user, etc.)
* use PostgreSQL as the backing data store (chosen because its a popular relational DB)
* write the API implementation in Golang (a popular language for writing APIs).
We will compare a simple GraphQL implementation with a pure REST alternative in terms of implementation complexity and efficiency for a common scenario: rendering a blog post page.
### Introduction
GraphQL is an IDL (Interface Definition Language), designers define data types and model information as a graph. Each vertex is an instance of a data type, while edges represent relationships between nodes. This approach is flexible and can accommodate any business domain. However, the problem is that the design process is more complex and traditional data stores dont map well to the graph model. See _Appendix 1_ for more details on this topic.
GraphQL has been first proposed in 2014 by the Facebook Engineering Team. Although interesting and compelling in its advantages and features, it hasnt seen mass adoption. Developers have to trade RESTs simplicity of design, familiarity and rich tooling for GraphQLs flexibility of not being limited to just CRUD and network efficiency (it optimizes for round-trips to the server).
Most walkthroughs and tutorials on GraphQL avoid the problem of fetching data from the data store to resolve queries. That is, how to design a database using general-purpose, popular storage solutions (like relational databases) to support efficient data retrieval for a GraphQL API.
This document goes through building a blog engine GraphQL API. It is moderately complex in its functionality. It is scoped to a familiar business domain to facilitate comparisons with a REST based approach.
The structure of this document is the following:
* in the first part we will design a GraphQL schema and explain some of features of the language that are used.
* next is the design of the PostgreSQL database in section two.
* part three covers the Golang implementation of the GraphQL schema designed in part one.
* in part four we compare the task of rendering a blog post page from the perspective of fetching the needed data from the backend.
### Related
* The excellent [GraphQL introduction document][1].
* The complete and working code for this project is on [github.com/topliceanu/graphql-go-example][2].
### Modeling a blog engine in GraphQL
_Listing 1_ contains the entire schema for the blog engine API. It shows the data types of the vertices composing the graph. The relationships between vertices, ie. the edges, are modeled as attributes of a given type.
```
type User {
id: ID
email: String!
post(id: ID!): Post
posts: [Post!]!
follower(id: ID!): User
followers: [User!]!
followee(id: ID!): User
followees: [User!]!
}
type Post {
id: ID
user: User!
title: String!
body: String!
comment(id: ID!): Comment
comments: [Comment!]!
}
type Comment {
id: ID
user: User!
post: Post!
title: String
body: String!
}
type Query {
user(id: ID!): User
}
type Mutation {
createUser(email: String!): User
removeUser(id: ID!): Boolean
follow(follower: ID!, followee: ID!): Boolean
unfollow(follower: ID!, followee: ID!): Boolean
createPost(user: ID!, title: String!, body: String!): Post
removePost(id: ID!): Boolean
createComment(user: ID!, post: ID!, title: String!, body: String!): Comment
removeComment(id: ID!): Boolean
}
```
_Listing 1_
The schema is written in the GraphQL DSL, which is used for defining custom data types, such as `User`, `Post` and `Comment`. A set of primitive data types is also provided by the language, such as `String`, `Boolean` and `ID` (which is an alias of `String` with the additional semantics of being the unique identifier of a vertex).
`Query` and `Mutation` are optional types recognized by the parser and used in querying the graph. Reading data from a GraphQL API is equivalent to traversing the graph. As such a starting vertex needs to be provided; this role is fulfilled by the `Query` type. In this case, all queries to the graph must start with a user specified by id `user(id:ID!)`. For writing data, the `Mutation` vertex type is defined. This exposes a set of operations, modeled as parameterized attributes which traverse (and return) the newly created vertex types. See _Listing 2_ for examples of how these queries might look.
Vertex attributes can be parameterized, ie. accept arguments. In the context of graph traversal, if a post vertex has multiple comment vertices, you can traverse just one of them by specifying `comment(id: ID)`. All this is by design, the designer can choose not to provide direct paths to individual vertices.
The `!` character is a type post-fix, works for both primitive or user-defined types and has two semantics:
* when used for the type of a param in a parametriezed attribute, it means that the param is required.
* when used for the return type of an attribute it means that the attribute will not be null when the vertex is retrieved.
* combinations are possible, for instance `[Comment!]!` represents a list of non-null Comment vertices, where `[]`, `[Comment]` are valid, but `null, [null], [Comment, null]` are not.
_Listing 2_ contains a list of _curl_ commands against the blogging API which will populate the graph using mutations and then query it to retrieve data. To run them, follow the instructions in the [topliceanu/graphql-go-example][3] repo to build and run the service.
```
# Mutations to create users 1,2 and 3\. Mutations also work as queries, in these cases we retrieve the ids and emails of the newly created users.
curl -XPOST http://vm:8080/graphql -d 'mutation {createUser(email:"user1@x.co"){id, email}}'
curl -XPOST http://vm:8080/graphql -d 'mutation {createUser(email:"user2@x.co"){id, email}}'
curl -XPOST http://vm:8080/graphql -d 'mutation {createUser(email:"user3@x.co"){id, email}}'
# Mutations to add posts for the users. We retrieve their ids to comply with the schema, otherwise we will get an error.
curl -XPOST http://vm:8080/graphql -d 'mutation {createPost(user:1,title:"post1",body:"body1"){id}}'
curl -XPOST http://vm:8080/graphql -d 'mutation {createPost(user:1,title:"post2",body:"body2"){id}}'
curl -XPOST http://vm:8080/graphql -d 'mutation {createPost(user:2,title:"post3",body:"body3"){id}}'
# Mutations to all comments to posts. `createComment` expects the user's ID, a title and a body. See the schema in Listing 1.
curl -XPOST http://vm:8080/graphql -d 'mutation {createComment(user:2,post:1,title:"comment1",body:"comment1"){id}}'
curl -XPOST http://vm:8080/graphql -d 'mutation {createComment(user:1,post:3,title:"comment2",body:"comment2"){id}}'
curl -XPOST http://vm:8080/graphql -d 'mutation {createComment(user:3,post:3,title:"comment3",body:"comment3"){id}}'
# Mutations to have the user3 follow users 1 and 2\. Note that the `follow` mutation only returns a boolean which doesn't need to be specified.
curl -XPOST http://vm:8080/graphql -d 'mutation {follow(follower:3, followee:1)}'
curl -XPOST http://vm:8080/graphql -d 'mutation {follow(follower:3, followee:2)}'
# Query to fetch all data for user 1
curl -XPOST http://vm:8080/graphql -d '{user(id:1)}'
# Queries to fetch the followers of user2 and, respectively, user1.
curl -XPOST http://vm:8080/graphql -d '{user(id:2){followers{id, email}}}'
curl -XPOST http://vm:8080/graphql -d '{user(id:1){followers{id, email}}}'
# Query to check if user2 is being followed by user1\. If so retrieve user1's email, otherwise return null.
curl -XPOST http://vm:8080/graphql -d '{user(id:2){follower(id:1){email}}}'
# Query to return ids and emails for all the users being followed by user3.
curl -XPOST http://vm:8080/graphql -d '{user(id:3){followees{id, email}}}'
# Query to retrieve the email of user3 if it is being followed by user1.
curl -XPOST http://vm:8080/graphql -d '{user(id:1){followee(id:3){email}}}'
# Query to fetch user1's post2 and retrieve the title and body. If post2 was not created by user1, null will be returned.
curl -XPOST http://vm:8080/graphql -d '{user(id:1){post(id:2){title,body}}}'
# Query to retrieve all data about all the posts of user1.
curl -XPOST http://vm:8080/graphql -d '{user(id:1){posts{id,title,body}}}'
# Query to retrieve the user who wrote post2, if post2 was written by user1; a contrived example that displays the flexibility of the language.
curl -XPOST http://vm:8080/graphql -d '{user(id:1){post(id:2){user{id,email}}}}'
```
_Listing 2_
By carefully desiging the mutations and type attributes, powerful and expressive queries are possible.
### Designing the PostgreSQL database
The relational database design is, as usual, driven by the need to avoid data duplication. This approach was chosen for two reasons: 1\. to show that there is no need for a specialized database technology or to learn and use new design techniques to accommodate a GraphQL API. 2\. to show that a GraphQL API can still be created on top of existing databases, more specifically databases originally designed to power REST endpoints or even traditional server-side rendered HTML websites.
See _Appendix 1_ for a discussion on differences between relational and graph databases with respect to building a GraphQL API. _Listing 3_ shows the SQL commands to create the new database. The database schema generally matches the GraphQL schema. The `followers` relation needed to be added to support the `follow/unfollow` mutations.
```
CREATE TABLE IF NOT EXISTS users (
id SERIAL PRIMARY KEY,
email VARCHAR(100) NOT NULL
);
CREATE TABLE IF NOT EXISTS posts (
id SERIAL PRIMARY KEY,
user_id INTEGER NOT NULL REFERENCES users(id) ON DELETE CASCADE,
title VARCHAR(200) NOT NULL,
body TEXT NOT NULL
);
CREATE TABLE IF NOT EXISTS comments (
id SERIAL PRIMARY KEY,
user_id INTEGER NOT NULL REFERENCES users(id) ON DELETE CASCADE,
post_id INTEGER NOT NULL REFERENCES posts(id) ON DELETE CASCADE,
title VARCHAR(200) NOT NULL,
body TEXT NOT NULL
);
CREATE TABLE IF NOT EXISTS followers (
follower_id INTEGER NOT NULL REFERENCES users(id) ON DELETE CASCADE,
followee_id INTEGER NOT NULL REFERENCES users(id) ON DELETE CASCADE,
PRIMARY KEY(follower_id, followee_id)
);
```
_Listing 3_
### Golang API Implementation
The GraphQL parser implemented in Go and used in this project is `github.com/graphql-go/graphql`. It contains a query parser, but no schema parser. This requires the programmer to build the GraphQL schema in Go using the constructs offered by the library. This is unlike the reference [nodejs implementation][4], which offers a schema parser and exposes hooks for data fetching. As such the schema in `Listing 1` is only useful as a guideline and has to be translated into Golang code. However, this _“limitation”_ offers the opportunity to peer behind the levels of abstraction and see how the schema relates to the graph traversal model for retrieving data. _Listing 4_ shows the implementation of the `Comment` vertex type:
```
var CommentType = graphql.NewObject(graphql.ObjectConfig{
Name: "Comment",
Fields: graphql.Fields{
"id": &graphql.Field{
Type: graphql.NewNonNull(graphql.ID),
Resolve: func(p graphql.ResolveParams) (interface{}, error) {
if comment, ok := p.Source.(*Comment); ok == true {
return comment.ID, nil
}
return nil, nil
},
},
"title": &graphql.Field{
Type: graphql.NewNonNull(graphql.String),
Resolve: func(p graphql.ResolveParams) (interface{}, error) {
if comment, ok := p.Source.(*Comment); ok == true {
return comment.Title, nil
}
return nil, nil
},
},
"body": &graphql.Field{
Type: graphql.NewNonNull(graphql.ID),
Resolve: func(p graphql.ResolveParams) (interface{}, error) {
if comment, ok := p.Source.(*Comment); ok == true {
return comment.Body, nil
}
return nil, nil
},
},
},
})
func init() {
CommentType.AddFieldConfig("user", &graphql.Field{
Type: UserType,
Resolve: func(p graphql.ResolveParams) (interface{}, error) {
if comment, ok := p.Source.(*Comment); ok == true {
return GetUserByID(comment.UserID)
}
return nil, nil
},
})
CommentType.AddFieldConfig("post", &graphql.Field{
Type: PostType,
Args: graphql.FieldConfigArgument{
"id": &graphql.ArgumentConfig{
Description: "Post ID",
Type: graphql.NewNonNull(graphql.ID),
},
},
Resolve: func(p graphql.ResolveParams) (interface{}, error) {
i := p.Args["id"].(string)
id, err := strconv.Atoi(i)
if err != nil {
return nil, err
}
return GetPostByID(id)
},
})
}
```
_Listing 4_
Just like in the schema in _Listing 1_, the `Comment` type is a structure with three attributes defined statically; `id`, `title` and `body`. Two other attributes `user` and `post` are defined dynamically to avoid circular dependencies.
Go does not lend itself well to this kind of dynamic modeling, there is little type-checking support, most of the variables in the code are of type `interface{}` and need to be type asserted before use. `CommentType` itself is a variable of type `graphql.Object` and its attributes are of type `graphql.Field`. So, theres no direct translation between the GraphQL DSL and the data structures used in Go.
The `resolve` function for each field exposes the `Source` parameter which is a data type vertex representing the previous node in the traversal. All the attributes of a `Comment` have, as source, the current `CommentType` vertex. Retrieving the `id`, `title` and `body` is a straightforward attribute access, while retrieving the `user` and the `post` requires graph traversals, and thus database queries. The SQL queries are left out of this document because of their simplicity, but they are available in the github repository listed in the _References_ section.
### Comparison with REST in common scenarios
In this section we will present a common blog page rendering scenario and compare the REST and the GraphQL implementations. The focus will be on the number of inbound/outbound requests, because these are the biggest contributors to the latency of rendering the page.
The scenario: render a blog post page. It should contain information about the author (email), about the blog post (title, body), all comments (title, body) and whether the user that made the comment follows the author of the blog post or not. _Figure 1_ and _Figure 2_ show the interaction between the client SPA, the API server and the database, for a REST API and, respectively, for a GraphQL API.
```
+------+ +------+ +--------+
|client| |server| |database|
+--+---+ +--+---+ +----+---+
| GET /blogs/:id | |
1\. +-------------------------> SELECT * FROM blogs... |
| +--------------------------->
| <---------------------------+
<-------------------------+ |
| | |
| GET /users/:id | |
2\. +-------------------------> SELECT * FROM users... |
| +--------------------------->
| <---------------------------+
<-------------------------+ |
| | |
| GET /blogs/:id/comments | |
3\. +-------------------------> SELECT * FROM comments... |
| +--------------------------->
| <---------------------------+
<-------------------------+ |
| | |
| GET /users/:id/followers| |
4\. +-------------------------> SELECT * FROM followers.. |
| +--------------------------->
| <---------------------------+
<-------------------------+ |
| | |
+ + +
```
_Figure 1_
```
+------+ +------+ +--------+
|client| |server| |database|
+--+---+ +--+---+ +----+---+
| GET /graphql | |
1\. +-------------------------> SELECT * FROM blogs... |
| +--------------------------->
| <---------------------------+
| | |
| | |
| | |
2\. | | SELECT * FROM users... |
| +--------------------------->
| <---------------------------+
| | |
| | |
| | |
3\. | | SELECT * FROM comments... |
| +--------------------------->
| <---------------------------+
| | |
| | |
| | |
4\. | | SELECT * FROM followers.. |
| +--------------------------->
| <---------------------------+
<-------------------------+ |
| | |
+ + +
```
_Figure 2_
_Listing 5_ contains the single GraphQL query which will fetch all the data needed to render the blog post.
```
{
user(id: 1) {
email
followers
post(id: 1) {
title
body
comments {
id
title
user {
id
email
}
}
}
}
}
```
_Listing 5_
The number of queries to the database for this scenario is deliberately identical, but the number of HTTP requests to the API server has been reduced to just one. We argue that the HTTP requests over the Internet are the most costly in this type of application.
The backend doesnt have to be designed differently to start reaping the benefits of GraphQL, transitioning from REST to GraphQL can be done incrementally. This allows to measure performance improvements and optimize. From this point, the API developer can start to optimize (potentially merge) SQL queries to improve performance. The opportunity for caching is greatly increased, both on the database and API levels.
Abstractions on top of SQL (for instance ORM layers) usually have to contend with the `n+1` problem. In step `4.` of the REST example, a client could have had to request the follower status for the author of each comment in separate requests. This is because in REST there is no standard way of expressing relationships between more than two resources, whereas GraphQL was designed to prevent this problem by using nested queries. Here, we cheat by fetching all the followers of the user. We defer to the client the logic of determining the users who commented and also followed the author.
Another difference is fetching more data than the client needs, in order to not break the REST resource abstractions. This is important for bandwidth consumption and battery life spent parsing and storing unneeded data.
### Conclusions
GraphQL is a viable alternative to REST because:
* while it is more difficult to design the API, the process can be done incrementally. Also for this reason, its easy to transition from REST to GraphQL, the two paradigms can coexist without issues.
* it is more efficient in terms of network requests, even with naive implementations like the one in this document. It also offers more opportunities for query optimization and result caching.
* it is more efficient in terms of bandwidth consumption and CPU cycles spent parsing results, because it only returns what is needed to render the page.
REST remains very useful if:
* your API is simple, either has a low number of resources or simple relationships between them.
* you already work with REST APIs inside your organization and you have the tooling all set up or your clients expect REST APIs from your organization.
* you have complex ACL policies. In the blog example, a potential feature could allow users fine-grained control over who can see their email, their posts, their comments on a particular post, whom they follow etc. Optimizing data retrieval while checking complex business rules can be more difficult.
### Appendix 1: Graph Databases And Efficient Data Storage
While it is intuitive to think about application domain data as a graph, as this document demonstrates, the question of efficient data storage to support such an interface is still open.
In recent years graph databases have become more popular. Deferring the complexity of resolving the request by translating the GraphQL query into a specific graph database query language seems like a viable solution.
The problem is that graphs are not an efficient data structure compared to relational databases. A vertex can have links to any other vertex in the graph and access patterns are less predictable and thus offer less opportunity for optimization.
For instance, the problem of caching, ie. which vertices need to be kept in memory for fast access? Generic caching algorithms may not be very efficient in the context of graph traversal.
The problem of database sharding: splitting the database into smaller, non-interacting databases, living on separate hardware. In academia, the problem of splitting a graph on the minimal cut is well understood but it is suboptimal and may potentially result in highly unbalanced cuts due to pathological worst-case scenarios.
With relational databases, data is modeled in records (or rows, or tuples) and columns, tables and database names are simply namespaces. Most databases are row-oriented, which means that each record is a contiguous chunk of memory, all records in a table are neatly packed one after the other on the disk (usually sorted by some key column). This is efficient because it is optimal for the way physical storage works. The most expensive operation for an HDD is to move the read/write head to another sector on the disk, so minimizing these accesses is critical.
There is also a high probability that, if the application is interested in a particular record, it will need the whole record, not just a single key from it. There is a high probabilty that if the application is interested in a record, it will be interested in its neighbours as well, for instance a table scan. These two observations make relational databases quite efficient. However, for this reason also, the worst use-case scenario for a relational database is random access across all data all the time. This is exactly what graph databases do.
With the advent of SSD drives which have faster random access, cheap RAM memory which makes caching large portions of a graph database possible, better techniques to optimize graph caching and partitioning, graph databases have become a viable storage solution. And most large companies use it: Facebook has the Social Graph, Google has the Knowledge Graph.
--------------------------------------------------------------------------------
via: http://alexandrutopliceanu.ro/post/graphql-with-go-and-postgresql
作者:[Alexandru Topliceanu][a]
译者:[译者ID](https://github.com/译者ID)
校对:[校对者ID](https://github.com/校对者ID)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]:https://github.com/topliceanu
[1]:http://graphql.org/learn/
[2]:https://github.com/topliceanu/graphql-go-example
[3]:https://github.com/topliceanu/graphql-go-example
[4]:https://github.com/graphql/graphql-js

View File

@ -0,0 +1,402 @@
GraphQL 用例:使用 Golang 和 PostgreSQL 构建一个博客引擎 API
============================================================
### 摘要
GraphQL 在生产环境中似乎难以使用:虽然对于建模功能来说图接口非常灵活,但是并不适用于关系型存储,不管是在实现还是性能方面。
在这篇博客中,我们会设计并实现一个简单的博客引擎 API它支持以下功能
* 三种类型的资源(用户、博文以及评论)支持多种功能(创建用户、创建博文、给博文添加评论、关注其它用户的博文和评论,等等。)
* 使用 PostgreSQL 作为后端数据存储(选择它因为它是一个流行的关系型数据库)。
* 使用 Golang开发 API 的一个流行语言)进行 API 实现。
我们会比较简单的 GraphQL 实现和纯 REST 替代方案,在一种普通场景(呈现博客文章页面)下对比它们的实现复杂性和效率。
### 介绍
GraphQL 是一种 IDLInterface Definition Language接口定义语言设计者定义数据类型和并把数据建模为一个图。每个顶点都是一种数据类型的一个实例边代表了节点之间的关系。这种方式非常灵活能适应任何业务领域。然而问题是设计过程更加复杂而且传统的数据存储不能很好地映射到图模型。阅读_附录1_了解更多关于这个问题的详细信息。
GraphQL 在 2014 年由 Facebook 的工程师团队首次提出。尽管它的优点和功能非常有趣而且引人注目,它并没有得到大规模应用。开发者需要权衡 REST 的设计简单性、熟悉性、丰富的工具和 GraphQL 不会受限于 CRUDLCTT 译注Create、Read、Update、Delete 以及网络性能(它优化了往返服务器的网络)的灵活性。
大部分关于 GraphQL 的教程和指南都跳过了从数据存储获取数据以便解决查询的问题。也就是,如何使用通用目的、流行存储方案(例如关系型数据库)为 GraphQL API 设计一个支持高效数据提取的数据库。
这篇博客介绍构建一个博客引擎 GraphQL API 的流程。它的功能相当复杂。为了和基于 REST 的方法进行比较,它的范围被限制为一个熟悉的业务领域。
这篇博客的文章结构如下:
* 第一部分我们会设计一个 GraphQL 模式并介绍所使用语言的一些功能。
* 第二部分是 PostgreSQL 数据库的设计。
* 第三部分介绍了使用 Golang 实现第一部分设计的 GraphQL 模式。
* 第四部分我们以从后端获取所需数据的角度来比较呈现博客文章页面的任务。
### 相关阅读
* 很棒的 [GraphQL 介绍文档][1]。
* 该项目的完整实现代码在 [github.com/topliceanu/graphql-go-example][2]。
### 在 GraphQL 中建模一个博客引擎
_列表1_包括了博客引擎 API 的全部模式。它显示了组成图的顶点的数据类型。顶点之间的关系,也就是边,被建模为指定类型的属性。
```
type User {
id: ID
email: String!
post(id: ID!): Post
posts: [Post!]!
follower(id: ID!): User
followers: [User!]!
followee(id: ID!): User
followees: [User!]!
}
type Post {
id: ID
user: User!
title: String!
body: String!
comment(id: ID!): Comment
comments: [Comment!]!
}
type Comment {
id: ID
user: User!
post: Post!
title: String
body: String!
}
type Query {
user(id: ID!): User
}
type Mutation {
createUser(email: String!): User
removeUser(id: ID!): Boolean
follow(follower: ID!, followee: ID!): Boolean
unfollow(follower: ID!, followee: ID!): Boolean
createPost(user: ID!, title: String!, body: String!): Post
removePost(id: ID!): Boolean
createComment(user: ID!, post: ID!, title: String!, body: String!): Comment
removeComment(id: ID!): Boolean
}
```
_列表1_
模式使用 GraphQL DSL 编写,它用于定义自定义数据类型,例如 `User`、`Post` 和 `Comment`。该语言也提供了一系列原始数据类型,例如 `String`、`Boolean` 和 `ID`(是`String` 的别名,但是有顶点唯一标识符的额外语义)。
`Query` 和 `Mutation` 是语法解析器能识别并用于查询图的可选类型。从 GraphQL API 读取数据等同于遍历图。需要提供这样一个起始顶点;该角色通过 `Query` 类型来实现。在这种情况中,所有图的查询都要从一个由 id `user(id:ID!)` 指定的用户开始。对于写数据,定义了 `Mutation` 顶点。它提供了一系列操作建模为能遍历并返回新创建顶点类型的参数化属性。_列表2_是这些查询的一些例子。
顶点属性能被参数化,也就是能接受参数。在图遍历场景中,如果一个博文顶点有多个评论顶点,你可以通过指定 `comment(id: ID)` 只遍历其中的一个。所有这些都取决于设计,设计者可以选择不提供到每个独立顶点的直接路径。
`!` 字符是一个类型后缀,适用于原始类型和用户定义类型,它有两种语义:
* 当被用于参数化属性的参数类型时,表示这个参数是必须的。
* 当被用于一个属性的返回类型时,表示当顶点被获取时该属性不会为空。
* 也可以把它们组合起来,例如 `[Comment!]!` 表示一个非空 Comment 顶点链表,其中 `[]`、`[Comment]` 是有效的,但 `null, [null], [Comment, null]` 就不是。
_列表2_ 包括一系列用于博客 API 的 _curl_ 命令,它们会使用 mutation 填充图然后查询图以便获取数据。要运行它们,按照 [topliceanu/graphql-go-example][3] 仓库中的指令编译并运行服务。
```
# 创建用户 1、2 和 3 的更改。更改和查询类似,在该情景中我们检索新创建用户的 id 和 email。
curl -XPOST http://vm:8080/graphql -d 'mutation {createUser(email:"user1@x.co"){id, email}}'
curl -XPOST http://vm:8080/graphql -d 'mutation {createUser(email:"user2@x.co"){id, email}}'
curl -XPOST http://vm:8080/graphql -d 'mutation {createUser(email:"user3@x.co"){id, email}}'
# 为用户添加博文的更改。为了和模式匹配我们需要检索他们的 id否则会出现错误。
curl -XPOST http://vm:8080/graphql -d 'mutation {createPost(user:1,title:"post1",body:"body1"){id}}'
curl -XPOST http://vm:8080/graphql -d 'mutation {createPost(user:1,title:"post2",body:"body2"){id}}'
curl -XPOST http://vm:8080/graphql -d 'mutation {createPost(user:2,title:"post3",body:"body3"){id}}'
# 博文所有评论的更改。`createComment` 需要用户 id标题和正文。看列表 1 的模式。
curl -XPOST http://vm:8080/graphql -d 'mutation {createComment(user:2,post:1,title:"comment1",body:"comment1"){id}}'
curl -XPOST http://vm:8080/graphql -d 'mutation {createComment(user:1,post:3,title:"comment2",body:"comment2"){id}}'
curl -XPOST http://vm:8080/graphql -d 'mutation {createComment(user:3,post:3,title:"comment3",body:"comment3"){id}}'
# 让用户 3 关注用户 1 和用户 2 的更改。注意 `follow` 更改只返回一个布尔值而不需要指定。
curl -XPOST http://vm:8080/graphql -d 'mutation {follow(follower:3, followee:1)}'
curl -XPOST http://vm:8080/graphql -d 'mutation {follow(follower:3, followee:2)}'
# 用户获取用户 1 所有数据的查询。
curl -XPOST http://vm:8080/graphql -d '{user(id:1)}'
# 用户获取用户 2 和用户 1 的关注者的查询。
curl -XPOST http://vm:8080/graphql -d '{user(id:2){followers{id, email}}}'
curl -XPOST http://vm:8080/graphql -d '{user(id:1){followers{id, email}}}'
# 检测用户 2 是否被用户 1 关注的查询。如果是,检索用户 1 的 email否则返回空。
curl -XPOST http://vm:8080/graphql -d '{user(id:2){follower(id:1){email}}}'
# 返回用户 3 关注的所有用户 id 和 email 的查询。
curl -XPOST http://vm:8080/graphql -d '{user(id:3){followees{id, email}}}'
# 如果用户 3 被用户 1 关注,就获取用户 3 email 的查询。
curl -XPOST http://vm:8080/graphql -d '{user(id:1){followee(id:3){email}}}'
# 获取用户 1 的第二篇博文的查询,检索它的标题和正文。如果博文 2 不是由用户 1 创建的,就会返回空。
curl -XPOST http://vm:8080/graphql -d '{user(id:1){post(id:2){title,body}}}'
# 获取用户 1 的所有博文的所有数据的查询。
curl -XPOST http://vm:8080/graphql -d '{user(id:1){posts{id,title,body}}}'
# 获取写博文 2 用户的查询,如果博文 2 是由 用户 1 撰写;一个现实语言灵活性的例证。
curl -XPOST http://vm:8080/graphql -d '{user(id:1){post(id:2){user{id,email}}}}'
```
_列表2_
通过仔细设计 mutation 和类型属性,可以实现强大而富有表达力的查询。
### 设计 PostgreSQL 数据库
关系型数据库的设计一如以往由避免数据冗余的需求驱动。选择该方式有两个原因1\. 表明实现 GraphQL API 不需要定制化的数据库技术或者学习和使用新的设计技巧。2\. 表明 GraphQL API 能在现有的数据库之上创建,更具体地说,最初设计用于 REST 后端甚至传统的呈现 HTML 站点的服务器端数据库。
阅读 _附录1_ 了解关于关系型和图数据库在构建 GraphQL API 方面的区别。_列表3_ 显示了用于创建新数据库的 SQL 命令。数据库模式和 GraphQL 模式相对应。为了支持 `follow/unfollow` 更改,需要添加 `followers` 关系。
```
CREATE TABLE IF NOT EXISTS users (
id SERIAL PRIMARY KEY,
email VARCHAR(100) NOT NULL
);
CREATE TABLE IF NOT EXISTS posts (
id SERIAL PRIMARY KEY,
user_id INTEGER NOT NULL REFERENCES users(id) ON DELETE CASCADE,
title VARCHAR(200) NOT NULL,
body TEXT NOT NULL
);
CREATE TABLE IF NOT EXISTS comments (
id SERIAL PRIMARY KEY,
user_id INTEGER NOT NULL REFERENCES users(id) ON DELETE CASCADE,
post_id INTEGER NOT NULL REFERENCES posts(id) ON DELETE CASCADE,
title VARCHAR(200) NOT NULL,
body TEXT NOT NULL
);
CREATE TABLE IF NOT EXISTS followers (
follower_id INTEGER NOT NULL REFERENCES users(id) ON DELETE CASCADE,
followee_id INTEGER NOT NULL REFERENCES users(id) ON DELETE CASCADE,
PRIMARY KEY(follower_id, followee_id)
);
```
_列表3_
### Golang API 实现
本项目使用的用 Go 实现的 GraphQL 语法解析器是 `github.com/graphql-go/graphql`。它包括一个查询解析器,但不包括模式解析器。这要求开发者利用库提供的结构使用 Go 构建 GraphQL 模式。这和 [nodejs 实现][3] 不同,后者提供了一个模式解析器并为数据获取暴露了钩子。因此 `列表1` 中的模式只是作为指导使用,需要转化为 Golang 代码。然而这个_“限制”_提供了与抽象级别对等的机会并且了解模式如何和用于检索数据的图遍历模型相关。_列表4_ 显示了 `Comment` 顶点类型的实现:
```
var CommentType = graphql.NewObject(graphql.ObjectConfig{
Name: "Comment",
Fields: graphql.Fields{
"id": &graphql.Field{
Type: graphql.NewNonNull(graphql.ID),
Resolve: func(p graphql.ResolveParams) (interface{}, error) {
if comment, ok := p.Source.(*Comment); ok == true {
return comment.ID, nil
}
return nil, nil
},
},
"title": &graphql.Field{
Type: graphql.NewNonNull(graphql.String),
Resolve: func(p graphql.ResolveParams) (interface{}, error) {
if comment, ok := p.Source.(*Comment); ok == true {
return comment.Title, nil
}
return nil, nil
},
},
"body": &graphql.Field{
Type: graphql.NewNonNull(graphql.ID),
Resolve: func(p graphql.ResolveParams) (interface{}, error) {
if comment, ok := p.Source.(*Comment); ok == true {
return comment.Body, nil
}
return nil, nil
},
},
},
})
func init() {
CommentType.AddFieldConfig("user", &graphql.Field{
Type: UserType,
Resolve: func(p graphql.ResolveParams) (interface{}, error) {
if comment, ok := p.Source.(*Comment); ok == true {
return GetUserByID(comment.UserID)
}
return nil, nil
},
})
CommentType.AddFieldConfig("post", &graphql.Field{
Type: PostType,
Args: graphql.FieldConfigArgument{
"id": &graphql.ArgumentConfig{
Description: "Post ID",
Type: graphql.NewNonNull(graphql.ID),
},
},
Resolve: func(p graphql.ResolveParams) (interface{}, error) {
i := p.Args["id"].(string)
id, err := strconv.Atoi(i)
if err != nil {
return nil, err
}
return GetPostByID(id)
},
})
}
```
_列表4_
正如 _列表1_ 中的模式,`Comment` 类型是静态定义的一个有三个属性的结构体:`id`、`title` 和 `body`。为了避免循环依赖,动态定义了 `user` 和 `post` 两个其它属性。
Go 并不适用于这种动态建模,它只支持一些类型检查,代码中大部分变量都是 `interface{}` 类型,在使用之前都需要进行类型断言。`CommentType` 是一个 `graphql.Object` 类型的变量,它的属性是 `graphql.Field` 类型。因此GraphQL DSL 和 Go 中使用的数据结构并没有直接的转换。
每个字段的 `resolve` 函数暴露了 `Source` 参数,它是表示遍历时前一个节点的数据类型顶点。`Comment` 的所有属性都有作为 source 的当前 `CommentType` 顶点。检索`id`、`title` 和 `body` 是一个直接属性访问,而检索 `user` 和 `post` 要求图遍历,也需要数据库查询。由于它们非常简单,这篇文章并没有介绍这些 SQL 查询但在_参考文献_部分列出的 github 仓库中有。
### 普通场景下和 REST 的对比
在这一部分,我们会展示一个普通的博客文章呈现场景,并比较 REST 和 GraphQL 的实现。关注重点会放在入站/出站请求数量,因为这些是造成页面呈现延迟的最主要原因。
场景呈现一个博客文章页面。它应该包含关于作者email、博客文章标题、正文、所有评论标题、正文以及评论人是否关注博客文章作者的信息。_图1_ 和 _图2_ 显示了客户端 SPA、API 服务器以及数据库之间的交互,一个是 REST API、另一个对应是 GraphQL API。
```
+------+ +------+ +--------+
|client| |server| |database|
+--+---+ +--+---+ +----+---+
| GET /blogs/:id | |
1\. +-------------------------> SELECT * FROM blogs... |
| +--------------------------->
| <---------------------------+
<-------------------------+ |
| | |
| GET /users/:id | |
2\. +-------------------------> SELECT * FROM users... |
| +--------------------------->
| <---------------------------+
<-------------------------+ |
| | |
| GET /blogs/:id/comments | |
3\. +-------------------------> SELECT * FROM comments... |
| +--------------------------->
| <---------------------------+
<-------------------------+ |
| | |
| GET /users/:id/followers| |
4\. +-------------------------> SELECT * FROM followers.. |
| +--------------------------->
| <---------------------------+
<-------------------------+ |
| | |
+ + +
```
_图1_
```
+------+ +------+ +--------+
|client| |server| |database|
+--+---+ +--+---+ +----+---+
| GET /graphql | |
1\. +-------------------------> SELECT * FROM blogs... |
| +--------------------------->
| <---------------------------+
| | |
| | |
| | |
2\. | | SELECT * FROM users... |
| +--------------------------->
| <---------------------------+
| | |
| | |
| | |
3\. | | SELECT * FROM comments... |
| +--------------------------->
| <---------------------------+
| | |
| | |
| | |
4\. | | SELECT * FROM followers.. |
| +--------------------------->
| <---------------------------+
<-------------------------+ |
| | |
+ + +
```
_图2_
_列表5_ 是一条用于获取所有呈现博文所需数据的简单 GraphQL 查询。
```
{
user(id: 1) {
email
followers
post(id: 1) {
title
body
comments {
id
title
user {
id
email
}
}
}
}
}
```
_列表5_
对于这种情况,对数据库的查询次数是故意相同的,但是到 API 服务器的 HTTP 请求已经减少到只有一个。我们认为在这种类型的应用程序中通过互联网的 HTTP 请求是最昂贵的。
为了获取 GraphQL 的优势,后端并不需要进行特别设计,从 REST 到 GraphQL 的转换可以逐步完成。这使得可以测量性能提升和优化。从这一点API 设计者可以开始优化(潜在的合并) SQL 查询从而提高性能。缓存的机会在数据库和 API 级别都大大增加。
SQL 之上的抽象(例如 ORM 层)通常会和 `n+1` 问题想抵触。在 REST 事例的步骤 4 中,客户端可能不得不在单独的请求中为每个评论的作者请求关注状态。这是因为在 REST 中没有标准的方式来表达两个以上资源之间的关系,而 GraphQL 旨在通过使用嵌套查询来防止这类问题。这里我们通过获取用户的所有关注者进行欺骗。我们向客户推荐确定评论和关注作者用户的逻辑。
另一个区别是获取比客户端所需更多的数据,以免破坏 REST 资源抽象。这对于用于解析和存储不需要数据的带宽消耗和电池寿命非常重要。
### 总结
GraphQL 是 REST 的一个可用替代方案,因为:
* 尽管设计 API 更加困难,该过程可以逐步完成。也是由于这个原因,从 REST 转换到 GraphQL 非常容易,两个流程可以没有任何问题地共存。
* 在网络请求方面更加高效,即使是类似本博客中的简单实现。它还提供了更多查询优化和结果缓存的机会。
* 在用于解析结果的带宽消耗和 CPU 周期方面它更加高效,因为它只返回呈现页面所需的数据。
REST 仍然非常有用,如果:
* 你的 API 非常简单,只有少量的资源或者资源之间关系简单。
* 在你的组织中已经在使用 REST API而且你已经配置好了所有工具或者你的客户希望获取 REST API。
* 你有复杂的 ACLLCTT 译注Access Control List 策略。在博客例子中,可能的功能是允许用户良好地控制谁能查看他们的电子邮箱、博客、特定博客的评论、他们关注了谁,等等。优化数据获取同时检查复杂的业务规则可能会更加困难。
### 附录1图数据库和高效数据存储
尽管将应用领域数据想象为一个图非常直观,正如这篇博文介绍的那样,但是支持这种接口的高效数据存储问题仍然没有解决。
近年来图数据库变得越来越流行。通过将 GraphQL 查询转换为特定的图数据库查询语言从而延迟解决请求的复杂性似乎是一种可行的方案。
问题是和关系型数据库相比图并不是一种高效的数据结构。图中一个顶点可能有到任何其它顶点的连接,访问模式比较难以预测因此提供了较少的优化机会。
例如缓存的问题,为了快速访问需要将哪些顶点保存在内存中?通用缓存算法在图遍历场景中可能没那么高效。
数据库分片问题:把数据库切分为更小、没有交叉的数据库并保存到独立的硬件。在学术上,最小切割的图划分问题已经得到了很好的理解,但可能是次优的而且由于病态的最坏情况可能导致高度不平衡切割。
在关系型数据库中数据被建模为记录行或者元组和列表和数据库名称都只是简单的命名空间。大部分数据库都是面向行的意味着每个记录都是一个连续的内存块一个表中的所有记录在磁盘上一个接一个地整齐地打包通常按照某个关键列排序。这非常高效因为这是物理存储最优的工作方式。HDD 最昂贵的操作是将磁头移动到磁盘上的另一个扇区,因此最小化此类访问非常重要。
很有可能如果应用程序对一条特定记录感兴趣,它需要获取整条记录,而不仅仅是记录中的其中一列。也很有可能如果应用程序对一条记录感兴趣,它也会对该记录周围的记录感兴趣,例如全表扫描。这两点使得关系型数据库相当高效。然而,也是因为这个原因,关系型数据库的最差使用场景就是总是随机访问所有数据。图数据库正是如此。
随着支持更快随机访问的 SSD 驱动器的出现更便宜的内存使得缓存大部分图数据库成为可能更好的优化图缓存和分区的技术图数据库开始成为可选的存储解决方案。大部分大公司也使用它Facebook 有 Social GraphGoogle 有 Knowledge Graph。
--------------------------------------------------------------------------------
via: http://alexandrutopliceanu.ro/post/graphql-with-go-and-postgresql
作者:[Alexandru Topliceanu][a]
译者:[ictlyh](https://github.com/ictlyh)
校对:[校对者ID](https://github.com/校对者ID)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]:https://github.com/topliceanu
[1]:http://graphql.org/learn/
[2]:https://github.com/topliceanu/graphql-go-example
[3]:https://github.com/graphql/graphql-js