translated by @haoqixu

This commit is contained in:
xu0o0 2017-10-24 20:01:17 +08:00
parent 4efd689871
commit 7302118e97
2 changed files with 421 additions and 420 deletions

View File

@ -1,420 +0,0 @@
【翻译中 @haoqixu】Your Serverless Raspberry Pi cluster with Docker
============================================================
This blog post will show you how to create your own Serverless Raspberry Pi cluster with Docker and the [OpenFaaS][33] framework. People often ask me what they should do with their cluster and this application is perfect for the credit-card sized device - want more compute power? Scale by adding more RPis.
> "Serverless" is a design pattern for event-driven architectures just like "bridge", "facade", "factory" and "cloud" are also abstract concepts - [so is "serverless"][21].
Here's my cluster for the blog post - with brass stand-offs used to separate each device.
### What is Serverless and why does it matter to you?
> As an industry we have some explaining to do regarding what the term "serverless" means. For the sake of this blog post let us assume that it is a new architectural pattern for event-driven architectures and that it lets you write tiny, reusable functions in whatever language you like. [Read more on Serverless here][22].
![](https://blog.alexellis.io/content/images/2017/08/evolution.png)
_Serverless is an architectural pattern resulting in: Functions as a Service, or FaaS_
Serverless functions can do anything, but usually work on a given input - such as an event from GitHub, Twitter, PayPal, Slack, your Jenkins CI pipeline - or in the case of a Raspberry Pi - maybe a real-world sensor input such as a PIR motion sensor, laser tripwire or even a temperature gauge.
![](https://www.raspberrypi.org/learning/parent-detector/images/pir_wiring.png)
Let's also assume that serverless functions tend to make use of third-party back-end services to become greater than the sum of their parts.
For more background information checkout my latest blog post - [Introducing Functions as a Service (FaaS)][34]
### Overview
We'll be using [OpenFaaS][35] which lets you turn any single host or cluster into a back-end to run serverless functions. Any binary, script or programming language that can be deployed with Docker will work on [OpenFaaS][36] and you can chose on a scale between speed and flexibility. The good news is a UI and metrics are also built-in.
Here's what we'll do:
* Set up Docker on one or more hosts (Raspberry Pi 2/3)
* Join them together in a Docker Swarm
* Deploy [OpenFaaS][23]
* Write our first function in Python
### Docker Swarm
Docker is a technology for packaging and deploying applications, it also has clustering built-in which is secure by default and only takes one line to set up. OpenFaaS uses Docker and Swarm to spread your serverless functions across all your available RPis.
![](https://blog.alexellis.io/content/images/2017/08/IMG_20170525_204840_crop.jpg)
_Pictured: 3x Raspberry Pi Zero_
I recommend using Raspberry Pi 2 or 3 for this project along with an Ethernet switch and a [powerful USB multi-adapter][37].
### Prepare Raspbian
Flash [Raspbian Jessie Lite][38] to an SD card, 8GB will do but 16GB is recommended.
_Note: do not download Raspbian Stretch_
> The community is helping the Docker team to ready support for Raspbian Stretch, but it's not yet seamless. Please download Jessie Lite from the [RPi foundation's archive here][24]
I recommend using [Etcher.io][39] to flash the image.
> Before booting the RPi you'll need to create a file in the boot partition called "ssh". Just keep the file blank. This enables remote logins.
* Power up and change the hostname
Now power up the RPi and connect with `ssh`
```
$ ssh pi@raspberrypi.local
```
> The password is `raspberry`.
Use the `raspi-config` utility to change the hostname to `swarm-1` or similar and then reboot.
While you're here you can also change the memory split between the GPU (graphics) and the system to 16mb.
* Now install Docker
We can use a utility script for this:
```
$ curl -sSL https://get.docker.com | sh
```
> This installation method may change in the future. As noted above you need to be running Jessie so we have a known configuration.
You may see a warning like this, but you can ignore it and you should end up with Docker CE 17.05:
```
WARNING: raspbian is no longer updated @ https://get.docker.com/
Installing the legacy docker-engine package...
```
After, make sure your user account can access the Docker client with this command:
```
$ usermod pi -aG docker
```
> If your username isn't `pi` then replace `pi` with `alex` for instance.
* Change the default password
Type in `$sudo passwd pi` and enter a new password, please don't skip this step!
* Repeat
Now repeat the above for each of the RPis.
### Create your Swarm cluster
Log into the first RPi and type in the following:
```
$ docker swarm init
Swarm initialized: current node (3ra7i5ldijsffjnmubmsfh767) is now a manager.
To add a worker to this swarm, run the following command:
docker swarm join \
--token SWMTKN-1-496mv9itb7584pzcddzj4zvzzfltgud8k75rvujopw15n3ehzu-af445b08359golnzhncbdj9o3 \
192.168.0.79:2377
```
You'll see the output with your join token and the command to type into the other RPis. So log into each one with `ssh` and paste in the command.
Give this a few seconds to connect then on the first RPi check all your nodes are listed:
```
$ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
3ra7i5ldijsffjnmubmsfh767 * swarm1 Ready Active Leader
k9mom28s2kqxocfq1fo6ywu63 swarm3 Ready Active
y2p089bs174vmrlx30gc77h4o swarm4 Ready Active
```
Congratulations! You have a Raspberry Pi cluster!
_*More on clusters_
You can see my three hosts up and running. Only one is a manager at this point. If our manager were to go  _down_  then we'd be in an unrecoverable situation. The way around this is to add redundancy by promoting more of the nodes to managers - they will still run workloads, unless you specifically set up your services to only be placed on workers.
To upgrade a worker to a manager, just type in `docker node promote <node_name>`from one of your managers.
> Note: Swarm commands such as `docker service ls` or `docker node ls` can only be done on the manager.
For a deeper dive into how managers and workers keep "quorum" head over to the [Docker Swarm admin guide][40].
### OpenFaaS
Now let's move on to deploying a real application to enable Serverless functions to run on our cluster. [OpenFaaS][41] is a framework for Docker that lets any process or container become a serverless function - at scale and on any hardware or cloud. Thanks to Docker and Golang's portability it also runs very well on a Raspberry Pi.
![](https://blog.alexellis.io/content/images/2017/08/faas_side.png)
> Please show your support and **star** the [OpenFaaS][25] repository on GitHub.
Log into the first RPi (where we ran `docker swarm init`) and clone/deploy the project:
```
$ git clone https://github.com/alexellis/faas/
$ cd faas
$ ./deploy_stack.armhf.sh
Creating network func_functions
Creating service func_gateway
Creating service func_prometheus
Creating service func_alertmanager
Creating service func_nodeinfo
Creating service func_markdown
Creating service func_wordcount
Creating service func_echoit
```
Your other RPis will now be instructed by Docker Swarm to start pulling the Docker images from the internet and extracting them to the SD card. The work will be spread across all the RPis so that none of them are overworked.
This could take a couple of minutes, so you can check when it's done by typing in:
```
$ watch 'docker service ls'
ID NAME MODE REPLICAS IMAGE PORTS
57ine9c10xhp func_wordcount replicated 1/1 functions/alpine:latest-armhf
d979zipx1gld func_prometheus replicated 1/1 alexellis2/prometheus-armhf:1.5.2 *:9090->9090/tcp
f9yvm0dddn47 func_echoit replicated 1/1 functions/alpine:latest-armhf
lhbk1fc2lobq func_markdown replicated 1/1 functions/markdownrender:latest-armhf
pj814yluzyyo func_alertmanager replicated 1/1 alexellis2/alertmanager-armhf:0.5.1 *:9093->9093/tcp
q4bet4xs10pk func_gateway replicated 1/1 functions/gateway-armhf:0.6.0 *:8080->8080/tcp
v9vsvx73pszz func_nodeinfo replicated 1/1 functions/nodeinfo:latest-armhf
```
We want to see 1/1 listed on all of our services.
Given any service name you can type in the following to see which RPi it was scheduled to:
```
$ docker service ps func_markdown
ID IMAGE NODE STATE
func_markdown.1 functions/markdownrender:latest-armhf swarm4 Running
```
The state should be `Running` - if it says `Pending` then the image could still be on its way down from the internet.
At that point, find the IP address of your RPi and open that in a web-browser on port 8080:
```
$ ifconfig
```
For example if your IP was: 192.168.0.100 - then go to [http://192.168.0.100:8080][42]
At this point you should see the FaaS UI also called the API Gateway. This is where you can define, test and invoke your functions.
Click on the Markdown conversion function called func_markdown and type in some Markdown (this is what Wikipedia uses to write its content).
Then hit invoke. You'll see the invocation count go up and the bottom half of the screen shows the result of your function:
![](https://blog.alexellis.io/content/images/2017/08/faas_rpi.png)
### Deploy your first serverless function:
There is already a tutorial written for this section, but we'll need to get the RPi set up with a couple of custom steps first.
* Get the FaaS-CLI
```
$ curl -sSL cli.openfaas.com | sudo sh
armv7l
Getting package https://github.com/alexellis/faas-cli/releases/download/0.4.5-b/faas-cli-armhf
```
* Clone the samples:
```
$ git clone https://github.com/alexellis/faas-cli
$ cd faas-cli
```
* Patch the samples for Raspberry Pi
We'll temporarily update our templates so they work with the Raspberry Pi:
```
$ cp template/node-armhf/Dockerfile template/node/
$ cp template/python-armhf/Dockerfile template/python/
```
The reason for doing this is that the Raspberry Pi has a different processor to most computers we interact with on a daily basis.
> Get up to speed on Docker on the Raspberry Pi - read: [5 Things you need to know][26]
Now you can follow the same tutorial written for PC, Laptop and Cloud available below, but we are going to run a couple of commands first for the Raspberry Pi.
* [Your first serverless Python function with OpenFaaS][27]
Pick it up at step 3:
* Instead of placing your functions in `~/functions/hello-python` - place them inside the `faas-cli` folder we just cloned from GitHub.
* Also replace "localhost" for the IP address of your first RPi in the `stack.yml`file.
Note that the Raspberry Pi may take a few minutes to download your serverless function to the relevant RPi. You can check on your services to make sure you have 1/1 replicas showing up with this command:
```
$ watch 'docker service ls'
pv27thj5lftz hello-python replicated 1/1 alexellis2/faas-hello-python-armhf:latest
```
**Continue the tutorial:** [Your first serverless Python function with OpenFaaS][43]
For more information on working with Node.js or other languages head over to the main [FaaS repo][44]
### Check your function metrics
With a Serverless experience, you don't want to spend all your time managing your functions. Fortunately [Prometheus][45] metrics are built into OpenFaaS meaning you can keep track of how long each functions takes to run and how often it's being called.
_Metrics drive auto-scaling_
If you generate enough load on any of of the functions then OpenFaaS will auto-scale your function and when the demand eases off you'll get back to a single replica again.
Here is a sample query you can paste into Safari, Chrome etc:
Just change the IP address to your own.
![](https://blog.alexellis.io/content/images/2017/08/call_rate.png)
```
http://192.168.0.25:9090/graph?g0.range_input=15m&g0.stacked=1&g0.expr=rate(gateway_function_invocation_total%5B20s%5D)&g0.tab=0&g1.range_input=1h&g1.expr=gateway_service_count&g1.tab=0
```
The queries are written in PromQL - Prometheus query language. The first one shows us how often the function is being called:
```
rate(gateway_function_invocation_total[20s])
```
The second query shows us how many replicas we have of each function, there should be only one of each at the start:
```
gateway_service_count
```
If you want to trigger auto-scaling you could try the following on the RPi:
```
$ while [ true ]; do curl -4 localhost:8080/function/func_echoit --data "hello world" ; done
```
Check the Prometheus "alerts" page, and see if you are generating enough load for the auto-scaling to trigger, if you're not then run the command in a few additional Terminal windows too.
![](https://blog.alexellis.io/content/images/2017/08/alerts.png)
After you reduce the load, the replica count shown in your second graph and the `gateway_service_count` metric will go back to 1 again.
### Wrapping up
We've now set up Docker, Swarm and run OpenFaaS - which let us treat our Raspberry Pi like one giant computer - ready to crunch through code.
> Please show support for the project and **Star** the [FaaS GitHub repository][28]
How did you find setting up your Docker Swarm first cluster and running OpenFaaS? Please share a picture or a Tweet on Twitter [@alexellisuk][46]
**Watch my Dockercon video of OpenFaaS**
I presented OpenFaaS (then called FaaS) [at Dockercon in Austin][47] - watch this video for a high-level introduction and some really interactive demos Alexa and GitHub.
** 此处有iframe,请手动处理 **
Got questions? Ask in the comments below - or send your email over to me for an invite to my Raspberry Pi, Docker and Serverless Slack channel where you can chat with like-minded people about what you're working on.
**Want to learn more about Docker on the Raspberry Pi?**
I'd suggest starting with [5 Things you need to know][48] which covers things like security and and the subtle differences between RPi and a regular PC.
* [Dockercon tips: Docker & Raspberry Pi][18]
* [Control GPIO with Docker Swarm][19]
* [Is that a Docker Engine in your pocket??][20]
_Share on Twitter_
![](https://pbs.twimg.com/media/DHvTuxCXsAA2EoP.jpg)
--------------------------------------------------------------------------------
via: https://blog.alexellis.io/your-serverless-raspberry-pi-cluster/
作者:[Alex Ellis ][a]
译者:[译者ID](https://github.com/译者ID)
校对:[校对者ID](https://github.com/校对者ID)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]:https://twitter.com/alexellisuk
[1]:https://twitter.com/alexellisuk
[2]:https://twitter.com/intent/tweet?in_reply_to=898978596773138436
[3]:https://twitter.com/intent/retweet?tweet_id=898978596773138436
[4]:https://twitter.com/intent/like?tweet_id=898978596773138436
[5]:https://twitter.com/alexellisuk
[6]:https://twitter.com/alexellisuk
[7]:https://twitter.com/Docker
[8]:https://twitter.com/Raspberry_Pi
[9]:https://twitter.com/alexellisuk/status/898978596773138436
[10]:https://twitter.com/alexellisuk/status/899545370916728832/photo/1
[11]:https://twitter.com/alexellisuk
[12]:https://twitter.com/alexellisuk/status/898978596773138436/photo/1
[13]:https://twitter.com/alexellisuk/status/898978596773138436/photo/1
[14]:https://twitter.com/alexellisuk/status/898978596773138436/photo/1
[15]:https://twitter.com/alexellisuk/status/898978596773138436/photo/1
[16]:https://twitter.com/alexellisuk/status/899545370916728832/photo/1
[17]:https://support.twitter.com/articles/20175256
[18]:https://blog.alexellis.io/dockercon-tips-docker-raspberry-pi/
[19]:https://blog.alexellis.io/gpio-on-swarm/
[20]:https://blog.alexellis.io/docker-engine-in-your-pocket/
[21]:https://news.ycombinator.com/item?id=15052192
[22]:https://blog.alexellis.io/introducing-functions-as-a-service/
[23]:https://github.com/alexellis/faas
[24]:http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2017-07-05/
[25]:https://github.com/alexellis/faas
[26]:https://blog.alexellis.io/5-things-docker-rpi/
[27]:https://blog.alexellis.io/first-faas-python-function
[28]:https://github.com/alexellis/faas
[29]:https://blog.alexellis.io/tag/docker/
[30]:https://blog.alexellis.io/tag/raspberry-pi/
[31]:https://blog.alexellis.io/tag/openfaas/
[32]:https://blog.alexellis.io/tag/faas/
[33]:https://github.com/alexellis/faas
[34]:https://blog.alexellis.io/introducing-functions-as-a-service/
[35]:https://github.com/alexellis/faas
[36]:https://github.com/alexellis/faas
[37]:https://www.amazon.co.uk/Anker-PowerPort-Family-Sized-Technology-Smartphones/dp/B00PK1IIJY
[38]:http://downloads.raspberrypi.org/raspbian/images/raspbian-2017-07-05/
[39]:https://etcher.io/
[40]:https://docs.docker.com/engine/swarm/admin_guide/
[41]:https://github.com/alexellis/faas
[42]:http://192.168.0.100:8080/
[43]:https://blog.alexellis.io/first-faas-python-function
[44]:https://github.com/alexellis/faas
[45]:https://prometheus.io/
[46]:https://twitter.com/alexellisuk
[47]:https://blog.alexellis.io/dockercon-2017-captains-log/
[48]:https://blog.alexellis.io/5-things-docker-rpi/

View File

@ -0,0 +1,421 @@
使用 Docker 构建你的 Serverless 树莓派集群
============================================================
这篇博文将向你展示如何使用 Docker 和 [OpenFaaS][33] 框架构建你自己的 Serverless 树莓派集群。大家常常问我他们能用他们的集群来做些什么?这个应用完美匹配卡片尺寸的设备——只需添加更多的树莓派就能获取更强的计算能力。
> “Serverless” 是事件驱动架构的一种设计模式,与“桥接模式”、“外观模式”、“工厂模式”和“云”这些名词一样,都是一种抽象概念。
这是我在本文中描述的集群,用黄铜支架分隔每个设备。
### Serverless 是什么?它为何重要?
行业对于“serverless”这个术语的含义有几种解释。在这篇博文中我们就把它理解为一种事件驱动的架构模式它能让你用自己喜欢的任何语言编写轻量可复用的功能。[更多关于 Serverless 的资料][22]。
![](https://blog.alexellis.io/content/images/2017/08/evolution.png)
_Serverless 架构也引出了“功能即服务服务”模式,简称 FaaS_
Serverless 的“功能”可以做任何事,但通常用于处理给定的输入——例如来自 GitHub、Twitter、PayPal、Slack、Jenkins CI pipeline 的事件;或者以树莓派为例,处理像红外运动传感器、激光绊网、温度计等真实世界的传感器的输入。
![](https://www.raspberrypi.org/learning/parent-detector/images/pir_wiring.png)
Serverless 功能能够更好地结合第三方的后端服务,使系统整体的能力大于各部分之和。
了解更多背景信息,可以阅读我最近一偏博文:[Introducing Functions as a Service (FaaS)][34]。
### 概述
我们将使用 [OpenFaaS][35] 它能够让主机或者集群作为支撑 Serverless 功能运行的后端。任何能够使用 Docker 部署的可执行二进制文件、脚本或者编程语言都能在 [OpenFaaS][36] 上运作,你可以根据速度和伸缩性选择部署的规模。另一个优点是,它还内建了用户界面和监控系统。
这是我们要执行的步骤:
* 在一个或多个主机上配置 Docker (树莓派 2 或者 3
* 利用 Docker Swarm 将它们连接;
* 部署 [OpenFaaS][23]
* 使用 Python 编写我们的第一个功能。
### Docker Swarm
Docker 是一项打包和部署应用的技术支持集群上运行有着安全的默认设置而且在搭建集群时只需要一条命令。OpenFaaS 使用 Docker 和 Swarm 在你的可用树莓派上传递你的 Serverless 功能。
![](https://blog.alexellis.io/content/images/2017/08/IMG_20170525_204840_crop.jpg)
_图片3 个 Raspberry Pi Zero_
我推荐你在这个项目中使用带树莓派 2 或者 3以太网交换机和[强大的 USB 多端口电源适配器][37]。
### 准备 Raspbian
把 [Raspbian Jessie Lite][38] 写入 SD 卡8GB 容量就正常工作了,但还是推荐使用 16GB 的 SD 卡)。
_注意不要下载成 Raspbian Stretch 了_
> 社区在努力让 Docker 支持 Raspbian Stretch但是还未能做到完美运行。请从[树莓派基金会网站][24]下载 Jessie Lite 镜像。
我推荐使用 [Etcher.io][39] 烧写镜像。
> 在引导树莓派之前你需要在引导分区创建名为“ssh”的空白文件。这样才能允许远程登录。
* 接通电源,然后修改主机名
现在启动树莓派的电源并且使用`ssh`连接:
```
$ ssh pi@raspberrypi.local
```
> 默认密码是`raspberry`
使用 `raspi-config` 工具把主机名改为 `swarm-1` 或者类似的名字,然后重启。
当你到了这一步,你还可以把划分给 GPU (显卡)的内存设置为 16MB。
* 现在安装 Docker
我们可以使用通用脚本来安装:
```
$ curl -sSL https://get.docker.com | sh
```
> 这个安装方式在将来可能会发生变化。如上文所说,你的系统需要是 Jessie这样才能得到一个确定的配置。
你可能会看到类似下面的警告,不过你可以安全地忽略它并且成功安装上 Docker CE 17.05
```
WARNING: raspbian is no longer updated @ https://get.docker.com/
Installing the legacy docker-engine package...
```
之后,用下面这个命令确保你的用户帐号可以访问 Docker 客户端:
```
$ usermod pi -aG docker
```
> 如果你的用户名不是 `pi`,那就把它替换成你的用户名。
* 修改默认密码
输入 `$sudo passwd pi`,然后设置一个新密码,请不要跳过这一步!
* 重复以上步骤
现在为其它的树莓派重复上述步骤。
### 创建你的 Swarm 集群
登录你的第一个树莓派,然后输入下面的命令:
```
$ docker swarm init
Swarm initialized: current node (3ra7i5ldijsffjnmubmsfh767) is now a manager.
To add a worker to this swarm, run the following command:
docker swarm join \
--token SWMTKN-1-496mv9itb7584pzcddzj4zvzzfltgud8k75rvujopw15n3ehzu-af445b08359golnzhncbdj9o3 \
192.168.0.79:2377
```
你会看到它显示了一个口令,以及其它结点加入集群的命令。接下来使用 `ssh` 登录每个树莓派,运行这个加入集群的命令。
等待连接完成后,在第一个树莓派上查看集群的结点:
```
$ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
3ra7i5ldijsffjnmubmsfh767 * swarm1 Ready Active Leader
k9mom28s2kqxocfq1fo6ywu63 swarm3 Ready Active
y2p089bs174vmrlx30gc77h4o swarm4 Ready Active
```
恭喜你!你现在拥有一个树莓派集群了!
* _更多关于集群的内容_
你可以看到三个结点启动运行。这时只有一个结点是集群管理者。如果我们的管理结点_死机_了集群就进入了不可修复的状态。我们可以通过添加冗余的管理结点解决这个问题。而且它们依然会运行工作负载除非你明确设置了让你的服务只运作在工作结点上。
要把一个工作结点升级为管理结点,只需要在其中一个管理结点上运行 `docker node promote <node_name>` 命令。
> 注意: Swarm 命令,例如 `docker service ls` 或者 `docker node ls` 只能在管理结点上运行。
想深入了解管理结点与工作结点如何保持一致性,可以查阅 [Docker Swarm 管理指南][40]。
### OpenFaaS
现在我们继续部署程序,让我们的集群能够运行 Serverless 功能。[OpenFaaS][41] 是一个利用 Docker 在任何硬件或者云上让任何进程或者容器成为一个 Serverless 功能的框架。因为 Docker 和 Golang 的可移植性,它也能很好地运行在树莓派上。
![](https://blog.alexellis.io/content/images/2017/08/faas_side.png)
> 如果你支持 [OpenFaaS][41],希望你能 **start** [OpenFaaS][25] 的 GitHub 仓库。
登录你的第一个树莓派(你运行 `docker swarm init` 的结点),然后部署这个项目:
```
$ git clone https://github.com/alexellis/faas/
$ cd faas
$ ./deploy_stack.armhf.sh
Creating network func_functions
Creating service func_gateway
Creating service func_prometheus
Creating service func_alertmanager
Creating service func_nodeinfo
Creating service func_markdown
Creating service func_wordcount
Creating service func_echoit
```
你的其它树莓派会收到 Docer Swarm 的指令,开始从网上拉取这个 Docker 镜像,并且解压到 SD 卡上。这些工作会分布到各个结点上,所以没有哪个结点产生过高的负载。
这个过程会持续几分钟,你可以用下面指令查看它的完成状况:
```
$ watch 'docker service ls'
ID NAME MODE REPLICAS IMAGE PORTS
57ine9c10xhp func_wordcount replicated 1/1 functions/alpine:latest-armhf
d979zipx1gld func_prometheus replicated 1/1 alexellis2/prometheus-armhf:1.5.2 *:9090->9090/tcp
f9yvm0dddn47 func_echoit replicated 1/1 functions/alpine:latest-armhf
lhbk1fc2lobq func_markdown replicated 1/1 functions/markdownrender:latest-armhf
pj814yluzyyo func_alertmanager replicated 1/1 alexellis2/alertmanager-armhf:0.5.1 *:9093->9093/tcp
q4bet4xs10pk func_gateway replicated 1/1 functions/gateway-armhf:0.6.0 *:8080->8080/tcp
v9vsvx73pszz func_nodeinfo replicated 1/1 functions/nodeinfo:latest-armhf
```
我们希望看到每个服务都显示“1/1”。
你可以根据服务名查看该服务被调度到哪个树莓派上:
```
$ docker service ps func_markdown
ID IMAGE NODE STATE
func_markdown.1 functions/markdownrender:latest-armhf swarm4 Running
```
状态一项应该显示 `Running`,如果它是 `Pending`,那么镜像可能还在下载中。
在这时,查看树莓派的 IP 地址,然后在浏览器中访问它的 8080 端口:
```
$ ifconfig
```
例如,如果你的 IP 地址是 192.168.0.100,那就访问 [http://192.168.0.100:8080][42]。
这是你会看到 FaaS UI也叫 API 网关)。这是你定义、测试、调用功能的地方。
点击名称为 func_markdown 的 Markdown 转换功能,输入一些 Markdown这是 Wikipedia 用来组织内容的语言)文本。
然后点击 `invoke`。你会看到调用计数增加,屏幕下方显示功能调用的结果。
![](https://blog.alexellis.io/content/images/2017/08/faas_rpi.png)
### 部署你的第一个 Serverless 功能:
这一节的内容已经有相关的教程,但是我们需要几个步骤来配置树莓派。
* 获取 FaaS-CLI
```
$ curl -sSL cli.openfaas.com | sudo sh
armv7l
Getting package https://github.com/alexellis/faas-cli/releases/download/0.4.5-b/faas-cli-armhf
```
* 下载样例:
```
$ git clone https://github.com/alexellis/faas-cli
$ cd faas-cli
```
* 为树莓派修补样例:
我们临时修改我们的模版,让它们能在树莓派上工作:
```
$ cp template/node-armhf/Dockerfile template/node/
$ cp template/python-armhf/Dockerfile template/python/
```
这么做是因为树莓派和我们平时关注的大多数计算机使用不一样的处理器架构。
> 了解 Docker 在树莓派上的最新状况,请查阅: [5 Things you need to know][26]
现在你可以跟着下面为 PC笔记本和云端所写的教程操作但我们在树莓派上要先运行一些命令。
* [使用 OpenFaaS 运行你的第一个 Serverless Python 功能][27]
注意第 3 步:
* 把你的功能放到先前从 GitHub 下载的 `faas-cli` 文件夹中,而不是 `~/functinos/hello-python` 里。
* 同时,在 `stack.yml` 文件中把 `localhost` 替换成第一个树莓派的 IP 地址。
集群可能会花费几分钟把 Serverless 功能下载到相关的树莓派上。你可以用下面的命令查看你的服务确保副本一项显示“1/1”
```
$ watch 'docker service ls'
pv27thj5lftz hello-python replicated 1/1 alexellis2/faas-hello-python-armhf:latest
```
**继续阅读教程:** [使用 OpenFaaS 运行你的第一个 Serverless Python 功能][43]
关于 Node.js 或者其它语言的更多信息,可以进一步访问 [FaaS 仓库][44]。
### 检查功能的指标
既然使用 Serverless你也不想花时间监控你的功能。幸运的是OpenFaaS 内建了 [Prometheus][45] 指标检测,这意味着你可以追踪每个功能的运行时长和调用频率。
_指标驱动自动伸缩_
如果你给一个功能生成足够的负载OpenFaaS 将自动扩展你的功能;当需求消失时,你又会回到单一副本的状态。
这个请求样例你可以复制到浏览器中:
只要把 IP 地址改成你的即可。
![](https://blog.alexellis.io/content/images/2017/08/call_rate.png)
```
http://192.168.0.25:9090/graph?g0.range_input=15m&g0.stacked=1&g0.expr=rate(gateway_function_invocation_total%5B20s%5D)&g0.tab=0&g1.range_input=1h&g1.expr=gateway_service_count&g1.tab=0
```
这些请求使用 PromQLPrometheus 请求语言)编写。第一个请求返回功能调用的频率:
```
rate(gateway_function_invocation_total[20s])
```
第二个请求显示每个功能的副本数量,最开始应该是每个功能只有一个副本。
```
gateway_service_count
```
如果你想触发自动扩展,你可以在树莓派上尝试下面指令:
```
$ while [ true ]; do curl -4 localhost:8080/function/func_echoit --data "hello world" ; done
```
查看 Prometheus 的“alerts”页面可以知道你是否产生足够的负载来触发自动扩展。如果没有你可以尝试在多个终端同时运行上面的指令。
![](https://blog.alexellis.io/content/images/2017/08/alerts.png)
当你降低负载,副本数量显示在你的第二个图表中,并且 `gateway_service_count` 指标再次降回 1。
### 结束演讲
我们现在配置好了 Docker、Swarm 并且让 OpenFaaS 运行代码,把树莓派像大型计算机一样使用。
> 希望大家支持这个项目,**Star** [FaaS 的 GitHub 仓库][28]。
你是如何搭建好了自己的 Docker Swarm 集群并且运行 OpenFaaS 的呢?在 Twitter [@alexellisuk][46] 上分享你的照片或推文吧。
**观看我在 Dockercon 上关于 OpenFaaS 的视频**
我在 [Austin 的 Dockercon][47] 上展示了 OpenFaaS。——观看介绍和互动例子的视频
** 此处有iframe,请手动处理 **
有问题在下面的评论中提出或者给我发邮件邀请我进入你和志同道合者讨论树莓派、Docker、Serverless 的 Slack channel。
**想要学习更多关于树莓派上运行 Docker 的内容?**
我建议从 [5 Things you need to know][48] 开始,它包含了安全性、树莓派和普通 PC 间微妙差别等话题。
* [Dockercon tips: Docker & Raspberry Pi][18]
* [Control GPIO with Docker Swarm][19]
* [Is that a Docker Engine in your pocket??][20]
_在 Twitter 上分享_
![](https://pbs.twimg.com/media/DHvTuxCXsAA2EoP.jpg)
--------------------------------------------------------------------------------
via: https://blog.alexellis.io/your-serverless-raspberry-pi-cluster/
作者:[Alex Ellis ][a]
译者:[haoqixu](https://github.com/haoqixu)
校对:[校对者ID](https://github.com/校对者ID)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]:https://twitter.com/alexellisuk
[1]:https://twitter.com/alexellisuk
[2]:https://twitter.com/intent/tweet?in_reply_to=898978596773138436
[3]:https://twitter.com/intent/retweet?tweet_id=898978596773138436
[4]:https://twitter.com/intent/like?tweet_id=898978596773138436
[5]:https://twitter.com/alexellisuk
[6]:https://twitter.com/alexellisuk
[7]:https://twitter.com/Docker
[8]:https://twitter.com/Raspberry_Pi
[9]:https://twitter.com/alexellisuk/status/898978596773138436
[10]:https://twitter.com/alexellisuk/status/899545370916728832/photo/1
[11]:https://twitter.com/alexellisuk
[12]:https://twitter.com/alexellisuk/status/898978596773138436/photo/1
[13]:https://twitter.com/alexellisuk/status/898978596773138436/photo/1
[14]:https://twitter.com/alexellisuk/status/898978596773138436/photo/1
[15]:https://twitter.com/alexellisuk/status/898978596773138436/photo/1
[16]:https://twitter.com/alexellisuk/status/899545370916728832/photo/1
[17]:https://support.twitter.com/articles/20175256
[18]:https://blog.alexellis.io/dockercon-tips-docker-raspberry-pi/
[19]:https://blog.alexellis.io/gpio-on-swarm/
[20]:https://blog.alexellis.io/docker-engine-in-your-pocket/
[21]:https://news.ycombinator.com/item?id=15052192
[22]:https://blog.alexellis.io/introducing-functions-as-a-service/
[23]:https://github.com/alexellis/faas
[24]:http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2017-07-05/
[25]:https://github.com/alexellis/faas
[26]:https://blog.alexellis.io/5-things-docker-rpi/
[27]:https://blog.alexellis.io/first-faas-python-function
[28]:https://github.com/alexellis/faas
[29]:https://blog.alexellis.io/tag/docker/
[30]:https://blog.alexellis.io/tag/raspberry-pi/
[31]:https://blog.alexellis.io/tag/openfaas/
[32]:https://blog.alexellis.io/tag/faas/
[33]:https://github.com/alexellis/faas
[34]:https://blog.alexellis.io/introducing-functions-as-a-service/
[35]:https://github.com/alexellis/faas
[36]:https://github.com/alexellis/faas
[37]:https://www.amazon.co.uk/Anker-PowerPort-Family-Sized-Technology-Smartphones/dp/B00PK1IIJY
[38]:http://downloads.raspberrypi.org/raspbian/images/raspbian-2017-07-05/
[39]:https://etcher.io/
[40]:https://docs.docker.com/engine/swarm/admin_guide/
[41]:https://github.com/alexellis/faas
[42]:http://192.168.0.100:8080/
[43]:https://blog.alexellis.io/first-faas-python-function
[44]:https://github.com/alexellis/faas
[45]:https://prometheus.io/
[46]:https://twitter.com/alexellisuk
[47]:https://blog.alexellis.io/dockercon-2017-captains-log/
[48]:https://blog.alexellis.io/5-things-docker-rpi/