mirror of
https://github.com/LCTT/TranslateProject.git
synced 2024-12-26 21:30:55 +08:00
commit
6b8c8ba37f
@ -1,176 +0,0 @@
|
||||
[#]: subject: (3 Python 3.2 features that are still relevant today)
|
||||
[#]: via: (https://opensource.com/article/21/5/python-32)
|
||||
[#]: author: (Moshe Zadka https://opensource.com/users/moshez)
|
||||
[#]: collector: (lujun9972)
|
||||
[#]: translator: (geekpi)
|
||||
[#]: reviewer: ( )
|
||||
[#]: publisher: ( )
|
||||
[#]: url: ( )
|
||||
|
||||
3 Python 3.2 features that are still relevant today
|
||||
======
|
||||
Explore some of the underutilized but still useful Python features.
|
||||
![Business woman on laptop sitting in front of window][1]
|
||||
|
||||
This the third article in a series about features that first appeared in a version of Python 3.x. Some of those Python versions have been out for a while. For example, Python 3.2 was first released in 2011, yet some of the cool and useful features introduced in it are still underused. Here are three of them.
|
||||
|
||||
### argparse subcommands
|
||||
|
||||
The `argparse` module first appeared in Python 3.2. There are many third-party modules for command-line parsing. But the built-in `argparse` module is more powerful than many give it credit for.
|
||||
|
||||
Documenting all the ins and outs of `argparse` would take its own article series. For a small taste, here is an example of how you can do subcommands with `argparse`.
|
||||
|
||||
Imagine a command with two subcommands: `negate`, which takes one argument, and `multiply` which takes two:
|
||||
|
||||
|
||||
```
|
||||
$ computebot negate 5
|
||||
-5
|
||||
$ computebot multiply 2 3
|
||||
6
|
||||
|
||||
[/code] [code]
|
||||
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
subparsers = parser.add_subparsers()
|
||||
```
|
||||
|
||||
The `add_subparsers()` methods creates an object that you can add subcommands to. The only trick to remember is that you need to add what subcommand was called through a `set_defaults()`:
|
||||
|
||||
|
||||
```
|
||||
negate = subparsers.add_parser("negate")
|
||||
negate.set_defaults(subcommand="negate")
|
||||
negate.add_argument("number", type=float)
|
||||
|
||||
[/code] [code]
|
||||
|
||||
multiply = subparsers.add_parser("multiply")
|
||||
multiply.set_defaults(subcommand="multiply")
|
||||
multiply.add_argument("number1", type=float)
|
||||
multiply.add_argument("number2", type=float)
|
||||
```
|
||||
|
||||
One of my favorite `argparse` features is that, because it separates parsing from running, testing the parsing logic is particularly pleasant.
|
||||
|
||||
|
||||
```
|
||||
`parser.parse_args(["negate", "5"])`[/code] [code]` Namespace(number=5.0, subcommand='negate')`[/code] [code]`parser.parse_args(["multiply", "2", "3"])`[/code] [code]` Namespace(number1=2.0, number2=3.0, subcommand='multiply')`
|
||||
```
|
||||
|
||||
### contextlib.contextmanager
|
||||
|
||||
Contexts are a powerful tool in Python. While many _use_ them, writing a new context often seems like a dark art. With the `contextmanager` decorator, all you need is a one-shot generator.
|
||||
|
||||
Writing a context that prints out the time it took to do something is as simple as:
|
||||
|
||||
|
||||
```
|
||||
import contextlib, timeit
|
||||
|
||||
@contextlib.contextmanager
|
||||
def timer():
|
||||
before = timeit.default_timer()
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
after = timeit.default_timer()
|
||||
print("took", after - before)
|
||||
```
|
||||
|
||||
And you can use it with just:
|
||||
|
||||
|
||||
```
|
||||
import time
|
||||
|
||||
with timer():
|
||||
time.sleep(10.5)
|
||||
|
||||
[/code] [code]` took 10.511025413870811`
|
||||
```
|
||||
|
||||
### functools.lru_cache
|
||||
|
||||
Sometimes the caching results from a function in memory make sense. For example, imagine the classical problem: "How many ways can you make change for a dollar with quarters, dimes, nickels, and cents?"
|
||||
|
||||
The code for this can be deceptively simple:
|
||||
|
||||
|
||||
```
|
||||
def change_for_a_dollar():
|
||||
def change_for(amount, coins):
|
||||
if amount == 0:
|
||||
return 1
|
||||
if amount < 0 or len(coins) == 0:
|
||||
return 0
|
||||
some_coin = next(iter(coins))
|
||||
return (
|
||||
change_for(amount, coins - set([some_coin]))
|
||||
+
|
||||
change_for(amount - some_coin, coins)
|
||||
)
|
||||
return change_for(100, frozenset([25, 10, 5, 1]))
|
||||
```
|
||||
|
||||
On my computer, this takes around 13ms:
|
||||
|
||||
|
||||
```
|
||||
with timer():
|
||||
change_for_a_dollar()
|
||||
|
||||
[/code] [code]` took 0.013737603090703487`
|
||||
```
|
||||
|
||||
It turns out that when you calculate how many ways you can do something like making change from 50 cents, you use the same coins repeatedly. You can use `lru_cache` to avoid recalculating this over and over.
|
||||
|
||||
|
||||
```
|
||||
import functools
|
||||
|
||||
def change_for_a_dollar():
|
||||
@functools.lru_cache
|
||||
def change_for(amount, coins):
|
||||
if amount == 0:
|
||||
return 1
|
||||
if amount < 0 or len(coins) == 0:
|
||||
return 0
|
||||
some_coin = next(iter(coins))
|
||||
return (
|
||||
change_for(amount, coins - set([some_coin]))
|
||||
+
|
||||
change_for(amount - some_coin, coins)
|
||||
)
|
||||
return change_for(100, frozenset([25, 10, 5, 1]))
|
||||
|
||||
[/code] [code]
|
||||
|
||||
with timer():
|
||||
change_for_a_dollar()
|
||||
|
||||
[/code] [code]` took 0.004180959425866604`
|
||||
```
|
||||
|
||||
A three-fold improvement for the cost of one line. Not bad.
|
||||
|
||||
### Welcome to 2011
|
||||
|
||||
Although Python 3.2 was released 10 years ago, many of its features are still cool—and underused. Add them to your toolkit if you haven't already.
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
via: https://opensource.com/article/21/5/python-32
|
||||
|
||||
作者:[Moshe Zadka][a]
|
||||
选题:[lujun9972][b]
|
||||
译者:[译者ID](https://github.com/译者ID)
|
||||
校对:[校对者ID](https://github.com/校对者ID)
|
||||
|
||||
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
|
||||
|
||||
[a]: https://opensource.com/users/moshez
|
||||
[b]: https://github.com/lujun9972
|
||||
[1]: https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/lenovo-thinkpad-laptop-concentration-focus-windows-office.png?itok=-8E2ihcF (Woman using laptop concentrating)
|
@ -0,0 +1,176 @@
|
||||
[#]: subject: (3 Python 3.2 features that are still relevant today)
|
||||
[#]: via: (https://opensource.com/article/21/5/python-32)
|
||||
[#]: author: (Moshe Zadka https://opensource.com/users/moshez)
|
||||
[#]: collector: (lujun9972)
|
||||
[#]: translator: (geekpi)
|
||||
[#]: reviewer: ( )
|
||||
[#]: publisher: ( )
|
||||
[#]: url: ( )
|
||||
|
||||
3 个 Python 3.2 到今天仍然有用的功能
|
||||
======
|
||||
探索一些未被充分利用但仍然有用的 Python 特性。
|
||||
![Business woman on laptop sitting in front of window][1]
|
||||
|
||||
这是关于首次出现在 Python 3.x 版本中的特性的系列文章中的第三篇。其中一些 Python 版本已经推出了一段时间。例如,Python 3.2 是在 2011 年首次发布的,但其中引入的一些很酷、很有用的特性仍然没有被使用。下面是其中的三个。
|
||||
|
||||
### argparse 子命令
|
||||
|
||||
`argparse` 模块首次出现在 Python 3.2 中。有许多用于命令行解析的第三方模块。但是内置的 `argparse` 模块比许多人认为的要强大。
|
||||
|
||||
记录所有的 `argparse` 的特性将需要自己的系列文章。下面是一个例子,说明如何用 `argparse` 做子命令。
|
||||
|
||||
想象一下,一个命令有两个子命令:`negate`,需要一个参数,`multiply`,需要两个参数:
|
||||
|
||||
|
||||
```
|
||||
$ computebot negate 5
|
||||
-5
|
||||
$ computebot multiply 2 3
|
||||
6
|
||||
|
||||
[/code] [code]
|
||||
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
subparsers = parser.add_subparsers()
|
||||
```
|
||||
|
||||
`add_subparsers()` 方法创建一个对象,你可以向其添加子命令。唯一需要记住的技巧是,你需要添加通过 `set_defaults()` 调用的子命令:
|
||||
|
||||
|
||||
```
|
||||
negate = subparsers.add_parser("negate")
|
||||
negate.set_defaults(subcommand="negate")
|
||||
negate.add_argument("number", type=float)
|
||||
|
||||
[/code] [code]
|
||||
|
||||
multiply = subparsers.add_parser("multiply")
|
||||
multiply.set_defaults(subcommand="multiply")
|
||||
multiply.add_argument("number1", type=float)
|
||||
multiply.add_argument("number2", type=float)
|
||||
```
|
||||
|
||||
我最喜欢的一个 `argparse` 功能是,因为它把解析和运行分开,测试解析逻辑特别令人愉快。
|
||||
|
||||
|
||||
```
|
||||
`parser.parse_args(["negate", "5"])`[/code] [code]` Namespace(number=5.0, subcommand='negate')`[/code] [code]`parser.parse_args(["multiply", "2", "3"])`[/code] [code]` Namespace(number1=2.0, number2=3.0, subcommand='multiply')`
|
||||
```
|
||||
|
||||
### contextlib.contextmanager
|
||||
|
||||
上下文是 Python 中一个强大的工具。虽然很多人_使用_它们,但编写一个新的上下文常常看起来像一门黑暗的艺术。有了 `contextmanager` 装饰器,你所需要的只是一个一次性的生成器。
|
||||
|
||||
编写一个打印出做某事所需时间的上下文,就像这样简单:
|
||||
|
||||
|
||||
```
|
||||
import contextlib, timeit
|
||||
|
||||
@contextlib.contextmanager
|
||||
def timer():
|
||||
before = timeit.default_timer()
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
after = timeit.default_timer()
|
||||
print("took", after - before)
|
||||
```
|
||||
|
||||
你可以这样使用:
|
||||
|
||||
|
||||
```
|
||||
import time
|
||||
|
||||
with timer():
|
||||
time.sleep(10.5)
|
||||
|
||||
[/code] [code]` took 10.511025413870811`
|
||||
```
|
||||
|
||||
### functools.lru_cache
|
||||
|
||||
有时,在内存中缓存一个函数的结果是有意义的。例如,想象一下经典的问题:”有多少种方法可以用 25 美分、1 美分、2 美分和 3 美分可以来换取 1 美元?“
|
||||
|
||||
这个问题的代码可以说是非常简单:
|
||||
|
||||
|
||||
```
|
||||
def change_for_a_dollar():
|
||||
def change_for(amount, coins):
|
||||
if amount == 0:
|
||||
return 1
|
||||
if amount < 0 or len(coins) == 0:
|
||||
return 0
|
||||
some_coin = next(iter(coins))
|
||||
return (
|
||||
change_for(amount, coins - set([some_coin]))
|
||||
+
|
||||
change_for(amount - some_coin, coins)
|
||||
)
|
||||
return change_for(100, frozenset([25, 10, 5, 1]))
|
||||
```
|
||||
|
||||
在我的电脑上,这需要 13ms 左右:
|
||||
|
||||
|
||||
```
|
||||
with timer():
|
||||
change_for_a_dollar()
|
||||
|
||||
[/code] [code]` took 0.013737603090703487`
|
||||
```
|
||||
|
||||
事实证明,当你计算有多少种方法可以做一些事情,比如用 50 美分找钱,你会重复使用相同的硬币。你可以使用 `lru_cache` 来避免重复计算。
|
||||
|
||||
|
||||
```
|
||||
import functools
|
||||
|
||||
def change_for_a_dollar():
|
||||
@functools.lru_cache
|
||||
def change_for(amount, coins):
|
||||
if amount == 0:
|
||||
return 1
|
||||
if amount < 0 or len(coins) == 0:
|
||||
return 0
|
||||
some_coin = next(iter(coins))
|
||||
return (
|
||||
change_for(amount, coins - set([some_coin]))
|
||||
+
|
||||
change_for(amount - some_coin, coins)
|
||||
)
|
||||
return change_for(100, frozenset([25, 10, 5, 1]))
|
||||
|
||||
[/code] [code]
|
||||
|
||||
with timer():
|
||||
change_for_a_dollar()
|
||||
|
||||
[/code] [code]` took 0.004180959425866604`
|
||||
```
|
||||
|
||||
一行的代价是三倍的改进。不错。
|
||||
|
||||
### 欢迎来到 2011 年
|
||||
|
||||
尽管 Python 3.2 是在 10 年前发布的,但它的许多特性仍然很酷,而且没有得到充分利用。如果你还没使用,那么将他们添加到你的工具箱中。
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
via: https://opensource.com/article/21/5/python-32
|
||||
|
||||
作者:[Moshe Zadka][a]
|
||||
选题:[lujun9972][b]
|
||||
译者:[geekpi](https://github.com/geekpi)
|
||||
校对:[校对者ID](https://github.com/校对者ID)
|
||||
|
||||
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
|
||||
|
||||
[a]: https://opensource.com/users/moshez
|
||||
[b]: https://github.com/lujun9972
|
||||
[1]: https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/lenovo-thinkpad-laptop-concentration-focus-windows-office.png?itok=-8E2ihcF (Woman using laptop concentrating)
|
Loading…
Reference in New Issue
Block a user