mirror of
https://github.com/LCTT/TranslateProject.git
synced 2024-12-26 21:30:55 +08:00
Merge pull request #11134 from StdioA/master
Finish translating Functional programming in Python
This commit is contained in:
commit
69e5e28c30
@ -1,192 +0,0 @@
|
||||
Translating by StdioA
|
||||
|
||||
Functional programming in Python: Immutable data structures
|
||||
======
|
||||
Immutability can help us better understand our code. Here's how to achieve it without sacrificing performance.
|
||||
|
||||
![](https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/metrics_graph_stats_blue.png?itok=OKCc_60D)
|
||||
|
||||
In this two-part series, I will discuss how to import ideas from the functional programming methodology into Python in order to have the best of both worlds.
|
||||
|
||||
This first post will explore how immutable data structures can help. The second part will explore higher-level functional programming concepts in Python using the **toolz** library.
|
||||
|
||||
Why functional programming? Because mutation is hard to reason about. If you are already convinced that mutation is problematic, great. If you're not convinced, you will be by the end of this post.
|
||||
|
||||
Let's begin by considering squares and rectangles. If we think in terms of interfaces, neglecting implementation details, are squares a subtype of rectangles?
|
||||
|
||||
The definition of a subtype rests on the [Liskov substitution principle][1]. In order to be a subtype, it must be able to do everything the supertype does.
|
||||
|
||||
How would we define an interface for a rectangle?
|
||||
|
||||
```
|
||||
from zope.interface import Interface
|
||||
|
||||
class IRectangle(Interface):
|
||||
def get_length(self):
|
||||
"""Squares can do that"""
|
||||
def get_width(self):
|
||||
"""Squares can do that"""
|
||||
def set_dimensions(self, length, width):
|
||||
"""Uh oh"""
|
||||
```
|
||||
|
||||
If this is the definition, then squares cannot be a subtype of rectangles; they cannot respond to a `set_dimensions` method if the length and width are different.
|
||||
|
||||
A different approach is to choose to make rectangles immutable.
|
||||
|
||||
```
|
||||
class IRectangle(Interface):
|
||||
def get_length(self):
|
||||
"""Squares can do that"""
|
||||
def get_width(self):
|
||||
"""Squares can do that"""
|
||||
def with_dimensions(self, length, width):
|
||||
"""Returns a new rectangle"""
|
||||
```
|
||||
|
||||
Now, a square can be a rectangle. It can return a new rectangle (which would not usually be a square) when `with_dimensions` is called, but it would not stop being a square.
|
||||
|
||||
This might seem like an academic problem—until we consider that squares and rectangles are, in a sense, a container for their sides. After we understand this example, the more realistic case this comes into play with is more traditional containers. For example, consider random-access arrays.
|
||||
|
||||
We have `ISquare` and `IRectangle`, and `ISquare` is a subtype of `IRectangle`.
|
||||
|
||||
We want to put rectangles in a random-access array:
|
||||
|
||||
```
|
||||
class IArrayOfRectangles(Interface):
|
||||
def get_element(self, i):
|
||||
"""Returns Rectangle"""
|
||||
def set_element(self, i, rectangle):
|
||||
"""'rectangle' can be any IRectangle"""
|
||||
```
|
||||
|
||||
We want to put squares in a random-access array too:
|
||||
|
||||
```
|
||||
class IArrayOfSquare(Interface):
|
||||
def get_element(self, i):
|
||||
"""Returns Square"""
|
||||
def set_element(self, i, square):
|
||||
"""'square' can be any ISquare"""
|
||||
```
|
||||
|
||||
Even though `ISquare` is a subtype of `IRectangle`, no array can implement both `IArrayOfSquare` and `IArrayOfRectangle`.
|
||||
|
||||
Why not? Assume `bucket` implements both.
|
||||
|
||||
```
|
||||
>>> rectangle = make_rectangle(3, 4)
|
||||
>>> bucket.set_element(0, rectangle) # This is allowed by IArrayOfRectangle
|
||||
>>> thing = bucket.get_element(0) # That has to be a square by IArrayOfSquare
|
||||
>>> assert thing.height == thing.width
|
||||
Traceback (most recent call last):
|
||||
File "<stdin>", line 1, in <module>
|
||||
AssertionError
|
||||
```
|
||||
|
||||
Being unable to implement both means that neither is a subtype of the other, even though `ISquare` is a subtype of `IRectangle`. The problem is the `set_element` method: If we had a read-only array, `IArrayOfSquare` would be a subtype of `IArrayOfRectangle`.
|
||||
|
||||
Mutability, in both the mutable `IRectangle` interface and the mutable `IArrayOf*` interfaces, has made thinking about types and subtypes much more difficult—and giving up on the ability to mutate meant that the intuitive relationships we expected to have between the types actually hold.
|
||||
|
||||
Mutation can also have non-local effects. This happens when a shared object between two places is mutated by one. The classic example is one thread mutating a shared object with another thread, but even in a single-threaded program, sharing between places that are far apart is easy. Consider that in Python, most objects are reachable from many places: as a module global, or in a stack trace, or as a class attribute.
|
||||
|
||||
If we cannot constrain the sharing, we might think about constraining the mutability.
|
||||
|
||||
Here is an immutable rectangle, taking advantage of the [attrs][2] library:
|
||||
|
||||
```
|
||||
@attr.s(frozen=True)
|
||||
class Rectange(object):
|
||||
length = attr.ib()
|
||||
width = attr.ib()
|
||||
@classmethod
|
||||
def with_dimensions(cls, length, width):
|
||||
return cls(length, width)
|
||||
```
|
||||
|
||||
Here is a square:
|
||||
|
||||
```
|
||||
@attr.s(frozen=True)
|
||||
class Square(object):
|
||||
side = attr.ib()
|
||||
@classmethod
|
||||
def with_dimensions(cls, length, width):
|
||||
return Rectangle(length, width)
|
||||
```
|
||||
|
||||
Using the `frozen` argument, we can easily have `attrs`-created classes be immutable. All the hard work of writing `__setitem__` correctly has been done by others and is completely invisible to us.
|
||||
|
||||
It is still easy to modify objects; it's just nigh impossible to mutate them.
|
||||
|
||||
```
|
||||
too_long = Rectangle(100, 4)
|
||||
reasonable = attr.evolve(too_long, length=10)
|
||||
```
|
||||
|
||||
The [Pyrsistent][3] package allows us to have immutable containers.
|
||||
|
||||
```
|
||||
# Vector of integers
|
||||
a = pyrsistent.v(1, 2, 3)
|
||||
# Not a vector of integers
|
||||
b = a.set(1, "hello")
|
||||
```
|
||||
|
||||
While `b` is not a vector of integers, nothing will ever stop `a` from being one.
|
||||
|
||||
What if `a` was a million elements long? Is `b` going to copy 999,999 of them? Pyrsistent comes with "big O" performance guarantees: All operations take `O(log n)` time. It also comes with an optional C extension to improve performance beyond the big O.
|
||||
|
||||
For modifying nested objects, it comes with a concept of "transformers:"
|
||||
|
||||
```
|
||||
blog = pyrsistent.m(
|
||||
title="My blog",
|
||||
links=pyrsistent.v("github", "twitter"),
|
||||
posts=pyrsistent.v(
|
||||
pyrsistent.m(title="no updates",
|
||||
content="I'm busy"),
|
||||
pyrsistent.m(title="still no updates",
|
||||
content="still busy")))
|
||||
new_blog = blog.transform(["posts", 1, "content"],
|
||||
"pretty busy")
|
||||
```
|
||||
|
||||
`new_blog` will now be the immutable equivalent of
|
||||
|
||||
```
|
||||
{'links': ['github', 'twitter'],
|
||||
'posts': [{'content': "I'm busy",
|
||||
'title': 'no updates'},
|
||||
{'content': 'pretty busy',
|
||||
'title': 'still no updates'}],
|
||||
'title': 'My blog'}
|
||||
```
|
||||
|
||||
But `blog` is still the same. This means anyone who had a reference to the old object has not been affected: The transformation had only local effects.
|
||||
|
||||
This is useful when sharing is rampant. For example, consider default arguments:
|
||||
|
||||
```
|
||||
def silly_sum(a, b, extra=v(1, 2)):
|
||||
extra = extra.extend([a, b])
|
||||
return sum(extra)
|
||||
```
|
||||
|
||||
In this post, we have learned why immutability can be useful for thinking about our code, and how to achieve it without an extravagant performance price. Next time, we will learn how immutable objects allow us to use powerful programming constructs.
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
via: https://opensource.com/article/18/10/functional-programming-python-immutable-data-structures
|
||||
|
||||
作者:[Moshe Zadka][a]
|
||||
选题:[lujun9972](https://github.com/lujun9972)
|
||||
译者:[译者ID](https://github.com/译者ID)
|
||||
校对:[校对者ID](https://github.com/校对者ID)
|
||||
|
||||
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
|
||||
|
||||
[a]: https://opensource.com/users/moshez
|
||||
[1]: https://en.wikipedia.org/wiki/Liskov_substitution_principle
|
||||
[2]: https://www.attrs.org/en/stable/
|
||||
[3]: https://pyrsistent.readthedocs.io/en/latest/
|
@ -0,0 +1,191 @@
|
||||
Python 函数式编程 —— 不可变数据结构
|
||||
======
|
||||
不可变性可以帮助我们更好地理解我们的代码。下面我将讲述如何在不牺牲性能的条件下来实现它。
|
||||
|
||||
![](https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/metrics_graph_stats_blue.png?itok=OKCc_60D)
|
||||
|
||||
在这个由两篇文章构成的系列中,我将讨论如何将函数式编程方法论中的观点引入至 Python 中,来充分发挥这两个领域的优势。
|
||||
|
||||
本文(也就是第一篇文章)中,我们将探讨不可变数据结构的优势。第二部分会探讨如何在 `toolz` 库的帮助下,用 Python 实现高层次的函数式编程理念。
|
||||
|
||||
为什么要用函数式编程?因为变化的东西更难推理。如果你已经确信变化会带来麻烦,那很棒。如果你还没有被说服,在文章结束时,你会明白这一点的。
|
||||
|
||||
我们从思考正方形和矩形开始。如果我们抛开实现细节,单从接口的角度考虑,正方形是矩形的子类吗?
|
||||
|
||||
子类的定义基于[里氏替换原则][1]。一个子类必须能够完成超类所做的一切。
|
||||
|
||||
如何为矩形定义接口?
|
||||
|
||||
```
|
||||
from zope.interface import Interface
|
||||
|
||||
class IRectangle(Interface):
|
||||
def get_length(self):
|
||||
"""正方形能做到"""
|
||||
def get_width(self):
|
||||
"""正方形能做到"""
|
||||
def set_dimensions(self, length, width):
|
||||
"""啊哦"""
|
||||
```
|
||||
|
||||
如果我们这么定义,那正方形就不能成为矩形的子类:如果长度和宽度不等,它就无法对 `set_dimensions` 方法做出响应。
|
||||
|
||||
另一种方法,是选择将矩形做成不可变对象。
|
||||
|
||||
```
|
||||
class IRectangle(Interface):
|
||||
def get_length(self):
|
||||
"""正方形能做到"""
|
||||
def get_width(self):
|
||||
"""正方形能做到"""
|
||||
def with_dimensions(self, length, width):
|
||||
"""返回一个新矩形"""
|
||||
```
|
||||
|
||||
现在,我们可以将正方形视为矩形了。在调用 `with_dimensions` 时,它可以返回一个新的矩形(它不一定是个正方形),但它本身并没有变,依然是一个正方形。
|
||||
|
||||
这似乎像是个学术问题 —— 直到我们认为正方形和矩形可以在某种意义上看做一个容器的侧面。在理解了这个例子以后,我们会处理更传统的容器,以解决更现实的案例。比如,考虑一下随机存取数组。
|
||||
|
||||
我们现在有 `ISquare` 和 `IRectangle`,`ISequere` 是 `IRectangle` 的子类。
|
||||
|
||||
我们希望把矩形放进随机存取数组中:
|
||||
|
||||
```
|
||||
class IArrayOfRectangles(Interface):
|
||||
def get_element(self, i):
|
||||
"""返回一个矩形"""
|
||||
def set_element(self, i, rectangle):
|
||||
"""'rectangle' 可以是任意 IRectangle 对象"""
|
||||
```
|
||||
|
||||
我们同样希望把正方形放进随机存取数组:
|
||||
|
||||
```
|
||||
class IArrayOfSquare(Interface):
|
||||
def get_element(self, i):
|
||||
"""返回一个正方形"""
|
||||
def set_element(self, i, square):
|
||||
"""'square' 可以是任意 ISquare 对象"""
|
||||
```
|
||||
|
||||
尽管 `ISquare` 是 `IRectangle` 的子集,但没有任何一个数组可以同时实现 `IArrayOfSquare` 和 `IArrayOfRectangle`.
|
||||
|
||||
为什么不能呢?假设 `bucket` 实现了这两个类的功能。
|
||||
|
||||
```
|
||||
>>> rectangle = make_rectangle(3, 4)
|
||||
>>> bucket.set_element(0, rectangle) # 这是 IArrayOfRectangle 中的合法操作
|
||||
>>> thing = bucket.get_element(0) # IArrayOfSquare 要求 thing 必须是一个正方形
|
||||
>>> assert thing.height == thing.width
|
||||
Traceback (most recent call last):
|
||||
File "<stdin>", line 1, in <module>
|
||||
AssertionError
|
||||
```
|
||||
|
||||
无法同时实现这两类功能,意味着这两个类无法构成继承关系,即使 `ISquare` 是 `IRectangle` 的子类。问题来自 `set_element` 方法:如果我们实现一个只读的数组,那 `IArrayOfSquare` 就可以是 `IArrayOfRectangle` 的子类了。
|
||||
|
||||
在可变的 `IRectangle` 和可变的 `IArrayOf*` 接口中,可变性都会使得对类型和子类的思考变得更加困难 —— 放弃变换的能力,意味着我们的直觉所希望的类型间关系能够成立了。
|
||||
|
||||
可变性还会带来作用域方面的影响。当一个共享对象被两个地方的代码改变时,这种问题就会发生。一个经典的例子是两个线程同时改变一个共享变量。不过在单线程程序中,即使在两个相距很远的地方共享一个变量,也是一件简单的事情。从 Python 语言的角度来思考,大多数对象都可以从很多位置来访问:比如在模块全局变量,或在一个堆栈跟踪中,或者以类属性来访问。
|
||||
|
||||
如果我们无法对共享做出约束,那我们可能要考虑对可变性来进行约束了。
|
||||
|
||||
这是一个不可变的矩形,它利用了 [attr][2] 库:
|
||||
|
||||
```
|
||||
@attr.s(frozen=True)
|
||||
class Rectange(object):
|
||||
length = attr.ib()
|
||||
width = attr.ib()
|
||||
@classmethod
|
||||
def with_dimensions(cls, length, width):
|
||||
return cls(length, width)
|
||||
```
|
||||
|
||||
这是一个正方形:
|
||||
|
||||
```
|
||||
@attr.s(frozen=True)
|
||||
class Square(object):
|
||||
side = attr.ib()
|
||||
@classmethod
|
||||
def with_dimensions(cls, length, width):
|
||||
return Rectangle(length, width)
|
||||
```
|
||||
|
||||
使用 `frozen` 参数,我们可以轻易地使 `attrs` 创建的类成为不可变类型。正确实现 `__setitem__` 方法的工作都交给别人完成了,对我们是不可见的。
|
||||
|
||||
修改对象仍然很容易;但是我们不可能改变它的本质。
|
||||
|
||||
```
|
||||
too_long = Rectangle(100, 4)
|
||||
reasonable = attr.evolve(too_long, length=10)
|
||||
```
|
||||
|
||||
[Pyrsistent][3] 能让我们拥有不可变的容器。
|
||||
|
||||
```
|
||||
# 由整数构成的向量
|
||||
a = pyrsistent.v(1, 2, 3)
|
||||
# 并非由整数构成的向量
|
||||
b = a.set(1, "hello")
|
||||
```
|
||||
|
||||
尽管 `b` 不是一个由整数构成的向量,但没有什么能够改变 `a` 只由整数构成的性质。
|
||||
|
||||
如果 `a` 有一百万个元素呢?`b` 会将其中的 999999 个元素复制一遍吗?`Pyrsistent` 包含“大 O”性能保证:所有操作的时间复杂度都是 `O(log n)`. 它还带有一个可选的 C 语言扩展,以提高大 O 之外的性能。
|
||||
|
||||
|
||||
修改嵌套对象时,会涉及到“变换器”的概念:
|
||||
|
||||
```
|
||||
blog = pyrsistent.m(
|
||||
title="My blog",
|
||||
links=pyrsistent.v("github", "twitter"),
|
||||
posts=pyrsistent.v(
|
||||
pyrsistent.m(title="no updates",
|
||||
content="I'm busy"),
|
||||
pyrsistent.m(title="still no updates",
|
||||
content="still busy")))
|
||||
new_blog = blog.transform(["posts", 1, "content"],
|
||||
"pretty busy")
|
||||
```
|
||||
|
||||
`new_blog` 现在将是如下对象的不可变等价物:
|
||||
|
||||
```
|
||||
{'links': ['github', 'twitter'],
|
||||
'posts': [{'content': "I'm busy",
|
||||
'title': 'no updates'},
|
||||
{'content': 'pretty busy',
|
||||
'title': 'still no updates'}],
|
||||
'title': 'My blog'}
|
||||
```
|
||||
|
||||
不过 `blog` 依然不变。这意味着任何拥有旧对象引用的人都没有受到影响:转换只会有局部效果。
|
||||
|
||||
当共享行为猖獗时,这会很有用。例如,函数的默认参数:
|
||||
|
||||
```
|
||||
def silly_sum(a, b, extra=v(1, 2)):
|
||||
extra = extra.extend([a, b])
|
||||
return sum(extra)
|
||||
```
|
||||
|
||||
在本文中,我们了解了为什么不可变性有助于我们来思考我们的代码,以及如何在不带来过大性能代价的条件下实现它。下一篇,我们将学习如何借助不可变对象来实现强大的程序结构。
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
via: https://opensource.com/article/18/10/functional-programming-python-immutable-data-structures
|
||||
|
||||
作者:[Moshe Zadka][a]
|
||||
选题:[lujun9972](https://github.com/lujun9972)
|
||||
译者:[StdioA](https://github.com/StdioA)
|
||||
校对:[校对者ID](https://github.com/校对者ID)
|
||||
|
||||
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
|
||||
|
||||
[a]: https://opensource.com/users/moshez
|
||||
[1]: https://en.wikipedia.org/wiki/Liskov_substitution_principle
|
||||
[2]: https://www.attrs.org/en/stable/
|
||||
[3]: https://pyrsistent.readthedocs.io/en/latest/
|
Loading…
Reference in New Issue
Block a user