mirror of
https://github.com/LCTT/TranslateProject.git
synced 2025-01-13 22:30:37 +08:00
Merge pull request #7974 from wxy/20150615-Let-s-Build-A-Simple-Interpreter.-Part-1-
PRF&PUB:20150615 Let s Build A Simple Interpreter. Part 1 @lujun9972 这个系列也都做了吧。
This commit is contained in:
commit
66b60f9775
@ -1,27 +1,28 @@
|
||||
让我们做个简单的解释器(1)
|
||||
让我们做个简单的解释器(一)
|
||||
======
|
||||
|
||||
> “如果你不知道编译器是怎么工作的,那你就不知道电脑是怎么工作的。如果你不能百分百确定,那就是不知道它们是如何工作的。” --Steve Yegge
|
||||
|
||||
> **" If you don't know how compilers work, then you don't know how computers work. If you're not 100% sure whether you know how compilers work, then you don't know how they work."** -- Steve Yegge
|
||||
> **“如果你不知道编译器是怎么工作的,那你就不知道电脑是怎么工作的。如果你不能百分百确定,那就是不知道他们是如何工作的。”** --Steve Yegge
|
||||
就是这样。想一想。你是萌新还是一个资深的软件开发者实际上都无关紧要:如果你不知道<ruby>编译器<rt>compiler</rt></ruby>和<ruby>解释器<rt>interpreter</rt></ruby>是怎么工作的,那么你就不知道电脑是怎么工作的。就这么简单。
|
||||
|
||||
就是这样。想一想。你是萌新还是一个资深的软件开发者实际上都无关紧要:如果你不知道编译器和解释器是怎么工作的,那么你就不知道电脑是怎么工作的。就这么简单。
|
||||
所以,你知道编译器和解释器是怎么工作的吗?我是说,你百分百确定自己知道他们怎么工作吗?如果不知道。
|
||||
|
||||
所以,你知道编译器和解释器是怎么工作的吗?我是说,你百分百确定自己知道他们怎么工作吗?如果不知道。![][1]
|
||||
![][1]
|
||||
|
||||
或者如果你不知道但你非常想要了解它。 ![][2]
|
||||
或者如果你不知道但你非常想要了解它。
|
||||
|
||||
不用担心。如果你能坚持跟着这个系列做下去,和我一起构建一个解释器和编译器,最后你将会知道他们是怎么工作的。并且你会变成一个自信满满的快乐的人。至少我希望如此。![][3]。
|
||||
![][2]
|
||||
|
||||
不用担心。如果你能坚持跟着这个系列做下去,和我一起构建一个解释器和编译器,最后你将会知道他们是怎么工作的。并且你会变成一个自信满满的快乐的人。至少我希望如此。
|
||||
|
||||
![][3]
|
||||
|
||||
为什么要学习编译器和解释器?有三点理由。
|
||||
|
||||
1. 要写出一个解释器或编译器,你需要有很多的专业知识,并能融会贯通。写一个解释器或编译器能帮你加强这些能力,成为一个更厉害的软件开发者。而且,你要学的技能对写软件非常有用,而不是仅仅局限于解释器或编译器。
|
||||
2. 你确实想要了解电脑是怎么工作的。一般解释器和编译器看上去很魔幻。你或许不习惯这种魔力。你会想去揭开构建解释器和编译器那层神秘的面纱,了解他们的原理,把事情做好。
|
||||
1. 要写出一个解释器或编译器,你需要有很多的专业知识,并能融会贯通。写一个解释器或编译器能帮你加强这些能力,成为一个更厉害的软件开发者。而且,你要学的技能对编写软件非常有用,而不是仅仅局限于解释器或编译器。
|
||||
2. 你确实想要了解电脑是怎么工作的。通常解释器和编译器看上去很魔幻。你或许不习惯这种魔力。你会想去揭开构建解释器和编译器那层神秘的面纱,了解它们的原理,把事情做好。
|
||||
3. 你想要创建自己的编程语言或者特定领域的语言。如果你创建了一个,你还要为它创建一个解释器或者编译器。最近,兴起了对新的编程语言的兴趣。你能看到几乎每天都有一门新的编程语言横空出世:Elixir,Go,Rust,还有很多。
|
||||
|
||||
|
||||
|
||||
|
||||
好,但什么是解释器和编译器?
|
||||
|
||||
**解释器** 和 **编译器** 的任务是把用高级语言写的源程序翻译成其他的格式。很奇怪,是不是?忍一忍,稍后你会在这个系列学到到底把源程序翻译成什么东西。
|
||||
@ -32,11 +33,12 @@
|
||||
|
||||
我希望你现在确信你很想学习构建一个编译器和解释器。你期望在这个教程里学习解释器的哪些知识呢?
|
||||
|
||||
你看这样如何。你和我一起做一个简单的解释器当作 [Pascal][5] 语言的子集。在这个系列结束的时候你能做出一个可以运行的 Pascal 解释器和一个像 Python 的 [pdb][6] 那样的源代码级别的调试器。
|
||||
你看这样如何。你和我一起为 [Pascal][5] 语言的一个大子集做一个简单的解释器。在这个系列结束的时候你能做出一个可以运行的 Pascal 解释器和一个像 Python 的 [pdb][6] 那样的源代码级别的调试器。
|
||||
|
||||
你或许会问,为什么是 Pascal?有一点,它不是我为了这个系列而提出的一个虚构的语言:它是真实存在的一门编程语言,有很多重要的语言结构。有些陈旧但有用的计算机书籍使用 Pascal 编程语言作为示例(我知道对于选择一门语言来构建解释器,这个理由并不令人信服,但我认为学一门非主流的语言也不错:)。
|
||||
你或许会问,为什么是 Pascal?一方面,它不是我为了这个系列而提出的一个虚构的语言:它是真实存在的一门编程语言,有很多重要的语言结构。有些陈旧但有用的计算机书籍使用 Pascal 编程语言作为示例(我知道对于选择一门语言来构建解释器,这个理由并不令人信服,但我认为学一门非主流的语言也不错 :))。
|
||||
|
||||
这有个 Pascal 中的阶乘函数示例,你将能用自己的解释器解释代码,还能够用可交互的源码级调试器进行调试,你可以这样创造:
|
||||
|
||||
这有个 Pascal 中的阶乘函数示例,你能用自己的解释器解释代码,还能够用可交互的源码级调试器进行调试,你可以这样创造:
|
||||
```
|
||||
program factorial;
|
||||
|
||||
@ -57,15 +59,14 @@ begin
|
||||
end.
|
||||
```
|
||||
|
||||
这个 Pascal 解释器的实现语言会用 Python,但你也可以用其他任何语言,因为这里展示的思想不依赖任何特殊的实现语言。好,让我们开始干活。准备好了,出发!
|
||||
|
||||
你会从编写一个简单的算术表达式解析器,也就是常说的计算器,开始学习解释器和编译器。今天的目标非常简单:让你的计算器能处理两个个位数相加,比如 **3+5**。这是你的计算器的源代码,不好意思,是解释器:
|
||||
这个 Pascal 解释器的实现语言会使用 Python,但你也可以用其他任何语言,因为这里展示的思想不依赖任何特殊的实现语言。好,让我们开始干活。准备好了,出发!
|
||||
|
||||
你会从编写一个简单的算术表达式解析器,也就是常说的计算器,开始学习解释器和编译器。今天的目标非常简单:让你的计算器能处理两个个位数相加,比如 `3+5`。下面是你的计算器的源代码——不好意思,是解释器:
|
||||
|
||||
```
|
||||
# 标记类型
|
||||
#
|
||||
# EOF (end-of-file 文件末尾) 标记是用来表示所有输入都解析完成
|
||||
# EOF (end-of-file 文件末尾)标记是用来表示所有输入都解析完成
|
||||
INTEGER, PLUS, EOF = 'INTEGER', 'PLUS', 'EOF'
|
||||
|
||||
|
||||
@ -73,7 +74,7 @@ class Token(object):
|
||||
def __init__(self, type, value):
|
||||
# token 类型: INTEGER, PLUS, MINUS, or EOF
|
||||
self.type = type
|
||||
# token 值: 0, 1, 2. 3, 4, 5, 6, 7, 8, 9, '+', 或 None
|
||||
# token 值: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, '+', 或 None
|
||||
self.value = value
|
||||
|
||||
def __str__(self):
|
||||
@ -187,7 +188,8 @@ if __name__ == '__main__':
|
||||
```
|
||||
|
||||
|
||||
把上面的代码保存到 calc1.py 文件,或者直接从 [GitHub][7] 上下载。在你深入研究代码前,在命令行里面运行它看看效果。试一试!这是我笔记本上的示例会话(如果你想在 Python3 下运行,你要把 raw_input 换成 input):
|
||||
把上面的代码保存到 `calc1.py` 文件,或者直接从 [GitHub][7] 上下载。在你深入研究代码前,在命令行里面运行它看看效果。试一试!这是我笔记本上的示例会话(如果你想在 Python3 下运行,你要把 `raw_input` 换成 `input`):
|
||||
|
||||
```
|
||||
$ python calc1.py
|
||||
calc> 3+4
|
||||
@ -205,31 +207,32 @@ calc>
|
||||
* 此时支持的唯一一个运算符是加法
|
||||
* 输入中不允许有任何的空格符号
|
||||
|
||||
|
||||
|
||||
要让计算器变得简单,这些限制非常必要。不用担心,你很快就会让它变得很复杂。
|
||||
|
||||
好,现在让我们深入它,看看解释器是怎么工作,它是怎么评估出算术表达式的。
|
||||
|
||||
当你在命令行中输入一个表达式 3+5,解释器就获得了字符串 “3+5”。为了让解释器能够真正理解要用这个字符串做什么,它首先要把输入 “3+5” 分到叫做 **token(标记)** 的容器里。**标记** 是一个拥有类型和值的对象。比如说,对字符 “3” 而言,标记的类型是 INTEGER 整数,对应的值是 3。
|
||||
当你在命令行中输入一个表达式 `3+5`,解释器就获得了字符串 “3+5”。为了让解释器能够真正理解要用这个字符串做什么,它首先要把输入 “3+5” 分到叫做 `token`(标记)的容器里。<ruby>标记<rt>token</rt></ruby> 是一个拥有类型和值的对象。比如说,对字符 “3” 而言,标记的类型是 INTEGER 整数,对应的值是 3。
|
||||
|
||||
把输入字符串分成标记的过程叫 **词法分析**。因此解释器的需要做的第一步是读取输入字符,并将其转换成标记流。解释器中的这一部分叫做 **词法分析器**,或者简短点叫 **lexer**。你也可以给它起别的名字,诸如 **扫描器** 或者 **标记器**。他们指的都是同一个东西:解释器或编译器中将输入字符转换成标记流的那部分。
|
||||
把输入字符串分成标记的过程叫<ruby>词法分析<rt>lexical analysis</rt></ruby>。因此解释器的需要做的第一步是读取输入字符,并将其转换成标记流。解释器中的这一部分叫做<ruby>词法分析器<rt>lexical analyzer</rt></ruby>,或者简短点叫 **lexer**。你也可以给它起别的名字,诸如<ruby>扫描器<rt>scanner</rt></ruby>或者<ruby>标记器<rt>tokenizer</rt></ruby>。它们指的都是同一个东西:解释器或编译器中将输入字符转换成标记流的那部分。
|
||||
|
||||
Interpreter 类中的 get_next_token 方法就是词法分析器。每次调用它的时候,你都能从传入解释器的输入字符中获得创建的下一个标记。仔细看看这个方法,看看它是如何完成把字符转换成标记的任务的。输入被存在可变文本中,它保存了输入的字符串和关于该字符串的索引(把字符串想象成字符数组)。pos 开始时设为 0,指向 ‘3’.这个方法一开始检查字符是不是数字,如果是,就将 pos 加 1,并返回一个 INTEGER 类型的标记实例,并把字符 ‘3’ 的值设为整数,也就是整数 3:
|
||||
`Interpreter` 类中的 `get_next_token` 方法就是词法分析器。每次调用它的时候,你都能从传入解释器的输入字符中获得创建的下一个标记。仔细看看这个方法,看看它是如何完成把字符转换成标记的任务的。输入被存在可变文本中,它保存了输入的字符串和关于该字符串的索引(把字符串想象成字符数组)。`pos` 开始时设为 0,指向字符 ‘3’。这个方法一开始检查字符是不是数字,如果是,就将 `pos` 加 1,并返回一个 INTEGER 类型的标记实例,并把字符 ‘3’ 的值设为整数,也就是整数 3:
|
||||
|
||||
![][8]
|
||||
|
||||
现在 pos 指向文本中的 ‘+’ 号。下次调用这个方法的时候,它会测试 pos 位置的字符是不是个数字,然后检测下一个字符是不是个加号,就是这样。结果这个方法把 pos 加一,返回一个新创建的标记,类型是 PLUS,值为 ‘+’。
|
||||
现在 `pos` 指向文本中的 ‘+’ 号。下次调用这个方法的时候,它会测试 `pos` 位置的字符是不是个数字,然后检测下一个字符是不是个加号,就是这样。结果这个方法把 `pos` 加 1,返回一个新创建的标记,类型是 PLUS,值为 ‘+’。
|
||||
|
||||
![][9]
|
||||
|
||||
pos 现在指向字符 ‘5’。当你再调用 get_next_token 方法时,该方法会检查这是不是个数字,就是这样,然后它把 pos 加一,返回一个新的 INTEGER 标记,该标记的值被设为 5:
|
||||
`pos` 现在指向字符 ‘5’。当你再调用 `get_next_token` 方法时,该方法会检查这是不是个数字,就是这样,然后它把 `pos` 加 1,返回一个新的 INTEGER 标记,该标记的值被设为整数 5:
|
||||
|
||||
![][10]
|
||||
|
||||
因为 pos 索引现在到了字符串 “3+5” 的末尾,你每次调用 get_next_token 方法时,它将会返回 EOF 标记:
|
||||
因为 `pos` 索引现在到了字符串 “3+5” 的末尾,你每次调用 `get_next_token` 方法时,它将会返回 EOF 标记:
|
||||
|
||||
![][11]
|
||||
|
||||
自己试一试,看看计算器里的词法分析器的运行:
|
||||
|
||||
```
|
||||
>>> from calc1 import Interpreter
|
||||
>>>
|
||||
@ -248,17 +251,16 @@ Token(EOF, None)
|
||||
>>>
|
||||
```
|
||||
|
||||
既然你的解释器能够从输入字符中获取标记流,解释器需要做点什么:它需要在词法分析器 get_next_token 中获取的标记流中找出相应的结构。你的解释器应该能够找到流中的结构:INTEGER -> PLUS -> INTEGER。就是这样,它尝试找出标记的序列:整数后面要跟着加号,加号后面要跟着整数。
|
||||
既然你的解释器能够从输入字符中获取标记流,解释器需要对它做点什么:它需要在词法分析器 `get_next_token` 中获取的标记流中找出相应的结构。你的解释器应该能够找到流中的结构:INTEGER -> PLUS -> INTEGER。就是这样,它尝试找出标记的序列:整数后面要跟着加号,加号后面要跟着整数。
|
||||
|
||||
负责找出并解释结构的方法就是 expr。该方法检验标记序列确实与期望的标记序列是对应的,比如 INTEGER -> PLUS -> INTEGER。成功确认了这个结构后,就会生成加号左右两边的标记的值相加的结果,这样就成功解释你输入到解释器中的算术表达式了。
|
||||
负责找出并解释结构的方法就是 `expr`。该方法检验标记序列确实与期望的标记序列是对应的,比如 INTEGER -> PLUS -> INTEGER。成功确认了这个结构后,就会生成加号左右两边的标记的值相加的结果,这样就成功解释你输入到解释器中的算术表达式了。
|
||||
|
||||
expr 方法用了一个助手方法 eat 来检验传入的标记类型是否与当前的标记类型相匹配。在匹配到传入的标记类型后,eat 方法获取下一个标记,并将其赋给 current_token 变量,然后高效地 “吃掉” 当前匹配的标记,并将标记流的虚拟指针向后移动。如果标记流的结构与期望的 INTEGER PLUS INTEGER 标记序列不对应,eat 方法就抛出一个异常。
|
||||
`expr` 方法用了一个助手方法 `eat` 来检验传入的标记类型是否与当前的标记类型相匹配。在匹配到传入的标记类型后,`eat` 方法会获取下一个标记,并将其赋给 `current_token` 变量,然后高效地 “吃掉” 当前匹配的标记,并将标记流的虚拟指针向后移动。如果标记流的结构与期望的 INTEGER -> PLUS -> INTEGER 标记序列不对应,`eat` 方法就抛出一个异常。
|
||||
|
||||
让我们回顾下解释器做了什么来对算术表达式进行评估的:
|
||||
|
||||
* 解释器接受输入字符串,就把它当作 “3+5”
|
||||
* 解释器调用 expr 方法,在词法分析器 get_next_token 返回的标记流中找出结构。这个结构就是 INTEGER PLUS INTEGER 这样的格式。在确认了格式后,它就通过把两个整型标记相加解释输入,因为此时对于解释器来说很清楚,他要做的就是把两个整数 3 和 5 进行相加。
|
||||
|
||||
* 解释器接受输入字符串,比如说 “3+5”
|
||||
* 解释器调用 `expr` 方法,在词法分析器 `get_next_token` 返回的标记流中找出结构。这个结构就是 INTEGER -> PLUS -> INTEGER 这样的格式。在确认了格式后,它就通过把两个整型标记相加来解释输入,因为此时对于解释器来说很清楚,它要做的就是把两个整数 3 和 5 进行相加。
|
||||
|
||||
恭喜。你刚刚学习了怎么构建自己的第一个解释器!
|
||||
|
||||
@ -272,7 +274,6 @@ expr 方法用了一个助手方法 eat 来检验传入的标记类型是否与
|
||||
2. 添加一个方法忽略空格符,让你的计算器能够处理带有空白的输入,比如 “12 + 3”
|
||||
3. 修改代码,用 ‘-’ 号而非 ‘+’ 号去执行减法比如 “7-5”
|
||||
|
||||
|
||||
**检验你的理解**
|
||||
|
||||
1. 什么是解释器?
|
||||
@ -283,27 +284,24 @@ expr 方法用了一个助手方法 eat 来检验传入的标记类型是否与
|
||||
6. 解释器中进行词法分析的部分叫什么?
|
||||
7. 解释器或编译器中进行词法分析的部分有哪些其他的常见名字?
|
||||
|
||||
|
||||
|
||||
在结束本文前,我衷心希望你能留下学习解释器和编译器的承诺。并且现在就开始做。不要把它留到以后。不要拖延。如果你已经看完了本文,就开始吧。如果已经仔细看完了但是还没做什么练习 —— 现在就开始做吧。如果已经开始做练习了,那就把剩下的做完。你懂得。而且你知道吗?签下承诺书,今天就开始学习解释器和编译器!
|
||||
|
||||
> 本人, ______,身体健全,思想正常,在此承诺从今天开始学习解释器和编译器,直到我百分百了解它们是怎么工作的!
|
||||
|
||||
_本人, ______,身体健全,思想正常,在此承诺从今天开始学习解释器和编译器,直到我百分百了解它们是怎么工作的!_
|
||||
>
|
||||
|
||||
签字人:
|
||||
> 签字人:
|
||||
|
||||
日期:
|
||||
> 日期:
|
||||
|
||||
![][13]
|
||||
|
||||
签字,写上日期,把它放在你每天都能看到的地方,确保你能坚守承诺。谨记你的承诺:
|
||||
|
||||
> "Commitment is doing the thing you said you were going to do long after the mood you said it in has left you." -- Darren Hardy
|
||||
> “承诺就是,你说自己会去做的事,在你说完就一直陪着你的东西。” —— Darren Hardy
|
||||
|
||||
好,今天的就结束了。这个系列的下一篇文章里,你将会扩展自己的计算器,让它能够处理更复杂的算术表达式。敬请期待。
|
||||
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
via: https://ruslanspivak.com/lsbasi-part1/
|
||||
@ -311,7 +309,7 @@ via: https://ruslanspivak.com/lsbasi-part1/
|
||||
|
||||
作者:[Ruslan Spivak][a]
|
||||
译者:[BriFuture](https://github.com/BriFuture)
|
||||
校对:[校对者ID](https://github.com/校对者ID)
|
||||
校对:[wxy](https://github.com/wxy)
|
||||
|
||||
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
|
||||
|
Loading…
Reference in New Issue
Block a user