translate

This commit is contained in:
KevinZonda 2022-10-09 06:27:34 +01:00
parent 92e14049e4
commit 648054fb63
2 changed files with 38 additions and 38 deletions

View File

@ -1,38 +0,0 @@
[#]: subject: "Google AI Unveils A New Open Source Library for Array Storage"
[#]: via: "https://www.opensourceforu.com/2022/10/google-ai-unveils-a-new-open-source-library-for-array-storage/"
[#]: author: "Laveesh Kocher https://www.opensourceforu.com/author/laveesh-kocher/"
[#]: collector: "lkxed"
[#]: translator: "KevinZonda"
[#]: reviewer: " "
[#]: publisher: " "
[#]: url: " "
Google AI Unveils A New Open Source Library for Array Storage
======
*TensorStore, a High-Performance Open Source Library for Array Storage, has been introduced by Google AI.*
The open source C++ and Python framework TensorStore, developed by Google, aims to accelerate the design for reading and writing huge multidimensional arrays. Multidimensional datasets that cover a single large coordinate system are commonly used in contemporary computer science and machine learning applications. These datasets are challenging to work with because customers frequently wish to conduct investigations involving numerous workstations operating in parallel and may receive and output data at unpredictable intervals and varied scales.
Google Research developed TensorStore, a library that provides users with access to an API that can manage huge datasets without the requirement for sophisticated hardware, to address issues with data storage and manipulation. Numerous storage systems, including local and network filesystems, Google Cloud Storage, and others are supported by this library.
To load and work with enormous arrays of data, TensorStore provides a simple Python API. Any arbitrary big underlying datasets can be loaded and updated without having to store the complete dataset in memory because no actual data is read or kept in memory until the precise slice is required.
This is made possible by the indexing and manipulation grammar, which is quite similar to the syntax used for NumPy operations. Along with virtual views, broadcasting, alignment, and other sophisticated indexing features like data type conversion, downsampling, and haphazardly created arrays, TensorStore also supports these.
Additionally, TensorStore includes an asynchronous API that enables read or write operations to go concurrently. While performing other duties, a software can perform configurable in-memory caching, which reduces the need to deal with a slower storage system when accessing frequently used data.
Large numerical datasets demand a lot of processing power to examine and analyse. The usual method for accomplishing this is via parallelizing tasks among a sizable number of CPU or accelerator cores scattered across many devices. The ability to analyse individual datasets in parallel while retaining excellent speed has been a key goal of TensorStore. PaLM, brain mapping, and other complex large-scale machine learning models are some examples of TensorStore application cases.
--------------------------------------------------------------------------------
via: https://www.opensourceforu.com/2022/10/google-ai-unveils-a-new-open-source-library-for-array-storage/
作者:[Laveesh Kocher][a]
选题:[lkxed][b]
译者:[译者ID](https://github.com/译者ID)
校对:[校对者ID](https://github.com/校对者ID)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://www.opensourceforu.com/author/laveesh-kocher/
[b]: https://github.com/lkxed

View File

@ -0,0 +1,38 @@
[#]: subject: "Google AI Unveils A New Open Source Library for Array Storage"
[#]: via: "https://www.opensourceforu.com/2022/10/google-ai-unveils-a-new-open-source-library-for-array-storage/"
[#]: author: "Laveesh Kocher https://www.opensourceforu.com/author/laveesh-kocher/"
[#]: collector: "lkxed"
[#]: translator: "KevinZonda"
[#]: reviewer: " "
[#]: publisher: " "
[#]: url: " "
谷歌 AI 推出新的阵列存储开源库
======
*TensorStore一个用于阵列存储的高性能开源库已被谷歌 AI 创造。*
谷歌开发的开源 C++ 和 Python 框架 TensorStore 旨在加速读写大型多维数组的设计。覆盖单个大型坐标系的多维数据集通常用于当代计算机科学和机器学习应用程序中。使用这些数据集具有挑战性,因为客户经常希望进行涉及多个工作站并行操作的调查,并且可能会以不可预测的间隔和不同的规模接收和输出数据。
谷歌研究院开发了 TensorStore这是一个为用户提供 API 访问权限的库,该 API 无需复杂的硬件即可管理庞大的数据集以解决数据存储和操作问题。该库支持许多存储系统包括本地和网络文件系统、Google Cloud Storage 等。
为了加载和处理大量数据TensorStore 提供了一个简单的 Python API。任何大型基础数据集都可以加载和更新而无需将完整的数据集存储在内存中因为在需要精确切片之前不会读取或保存实际数据。
这是通过索引和操作语法实现的,这与用于 NumPy 操作的语法非常相似。除了虚拟视图、广播、对齐和其他复杂的索引功能TensorStore 还支持,如数据类型转换、降低取样和随意创建的数组这些功能。
此外TensorStore 包含一个异步 API可以同时进行读取或写入操作。在执行其他工作时软件可以执行可配置的内存缓存从而减少在访问常用数据时处理较慢存储系统的需要。
大型数值数据集需要大量的处理能力来检查和分析。实现这一点的常用方法是在分散在许多设备上的大量 CPU 或加速器内核之间并行化任务。在保持出色速度的同时并行分析单个数据集的能力一直是 TensorStore 的关键目标。 PaLM、脑图和其他复杂的大规模机器学习模型是 TensorStore 应用案例的一些例子。
--------------------------------------------------------------------------------
via: https://www.opensourceforu.com/2022/10/google-ai-unveils-a-new-open-source-library-for-array-storage/
作者:[Laveesh Kocher][a]
选题:[lkxed][b]
译者:[译者ID](https://github.com/译者ID)
校对:[校对者ID](https://github.com/校对者ID)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://www.opensourceforu.com/author/laveesh-kocher/
[b]: https://github.com/lkxed