Finished Translating

This commit is contained in:
Ping 2016-07-07 17:29:13 +08:00
parent 31ad3c1e25
commit 5b80208b15
2 changed files with 291 additions and 281 deletions

View File

@ -1,281 +0,0 @@
Translating by Ping
Microservices with Python RabbitMQ and Nameko
==============================================
>"Micro-services is the new black" - Splitting the project in to independently scalable services is the currently the best option to ensure the evolution of the code. In Python there is a Framework called "Nameko" which makes it very easy and powerful.
### Micro services
>The term "Microservice Architecture" has sprung up over the last few years to describe a particular way of designing software applications as suites of independently deployable services. - M. Fowler
I recommend reading the [Fowler's posts][1] to understand the theory behind it.
#### Ok I so what does it mean?
In brief a Micro Service Architecture exists when your system is divided in small (single context bound) responsibilities blocks, those blocks doesn't know each other, they only have a common point of communication, generally a message queue, and does know the communication protocol and interfaces.
#### Give me a real-life example
>The code is available on github: <http://github.com/rochacbruno/nameko-example> take a look at service and api folders for more info.
Consider you have an REST API, that API has an endpoint receiving some data and you need to perform some kind of computation with that data, instead of blocking the caller you can do it asynchronously, return an status "OK - Your request will be processed" to the caller and do it in a background task.
Also you want to send an email notification when the computation is finished without blocking the main computing process, so it is better to delegate the "email sending" to another service.
#### Scenario
![](http://brunorocha.org/static/media/microservices/micro_services.png)
### Show me the code!
Lets create the system to understand it in practice.
#### Environment
We need an environment with:
- A running RabbitMQ
- Python VirtualEnv for services
- Python VirtualEnv for API
#### Rabbit
The easiest way to have a RabbitMQ in development environment is running its official docker container, considering you have Docker installed run:
```
docker run -d --hostname my-rabbit --name some-rabbit -p 15672:15672 -p 5672:5672 rabbitmq:3-management
```
Go to the browser and access <http://localhost:15672> using credentials guest:guest if you can login to RabbitMQ dashboard it means you have it running locally for development.
![](http://brunorocha.org/static/media/microservices/RabbitMQManagement.png)
#### The Service environment
Now lets create the Micro Services to consume our tasks. We'll have a service for computing and another for mail, follow the steps.
In a shell create the root project directory
```
$ mkdir myproject
$ cd myproject
```
Create and activate a virtualenv (you can also use virtualenv-wrapper)
```
$ virtualenv service_env
$ source service_env/bin/activate
```
Install nameko framework and yagmail
```
(service_env)$ pip install nameko
(service_env)$ pip install yagmail
```
#### The service code
Now having that virtualenv prepared (consider you can run service in a server and API in another) lets code the nameko RPC Services.
We are going to put both services in a single python module, but you can also split in separate modules and also run them in separate servers if needed.
In a file called `service.py`
```
import yagmail
from nameko.rpc import rpc, RpcProxy
class Mail(object):
name = "mail"
@rpc
def send(self, to, subject, contents):
yag = yagmail.SMTP('myname@gmail.com', 'mypassword')
# read the above credentials from a safe place.
# Tip: take a look at Dynaconf setting module
yag.send(to=to.encode('utf-8),
subject=subject.encode('utf-8),
contents=[contents.encode('utf-8)])
class Compute(object):
name = "compute"
mail = RpcProxy('mail')
@rpc
def compute(self, operation, value, other, email):
operations = {'sum': lambda x, y: int(x) + int(y),
'mul': lambda x, y: int(x) * int(y),
'div': lambda x, y: int(x) / int(y),
'sub': lambda x, y: int(x) - int(y)}
try:
result = operations[operation](value, other)
except Exception as e:
self.mail.send.async(email, "An error occurred", str(e))
raise
else:
self.mail.send.async(
email,
"Your operation is complete!",
"The result is: %s" % result
)
return result
```
Now with the above services definition we need to run it as a Nameko RPC service.
>NOTE: We are going to run it in a console and leave it running, but in production it is recommended to put the service to run using supervisord or an alternative.
Run the service and let it running in a shell
```
(service_env)$ nameko run service --broker amqp://guest:guest@localhost
starting services: mail, compute
Connected to amqp://guest:**@127.0.0.1:5672//
Connected to amqp://guest:**@127.0.0.1:5672//
```
#### Testing it
Go to another shell (with the same virtenv) and test it using nameko shell
```
(service_env)$ nameko shell --broker amqp://guest:guest@localhost
Nameko Python 2.7.9 (default, Apr 2 2015, 15:33:21)
[GCC 4.9.2] shell on linux2
Broker: amqp://guest:guest@localhost
>>>
```
You are now in the RPC client testing shell exposing the n.rpc object, play with it
```
>>> n.rpc.mail.send("name@email.com", "testing", "Just testing")
```
The above should sent an email and we can also call compute service to test it, note that it also spawns an async mail sending with result.
```
>>> n.rpc.compute.compute('sum', 30, 10, "name@email.com")
40
>>> n.rpc.compute.compute('sub', 30, 10, "name@email.com")
20
>>> n.rpc.compute.compute('mul', 30, 10, "name@email.com")
300
>>> n.rpc.compute.compute('div', 30, 10, "name@email.com")
3
```
### Calling the micro-service through the API
In a different shell (or even a different server) prepare the API environment
Create and activate a virtualenv (you can also use virtualenv-wrapper)
```
$ virtualenv api_env
$ source api_env/bin/activate
```
Install Nameko, Flask and Flasgger
```
(api_env)$ pip install nameko
(api_env)$ pip install flask
(api_env)$ pip install flasgger
```
>NOTE: In api you dont need the yagmail because it is service responsability
Lets say you have the following code in a file `api.py`
```
from flask import Flask, request
from flasgger import Swagger
from nameko.standalone.rpc import ClusterRpcProxy
app = Flask(__name__)
Swagger(app)
CONFIG = {'AMQP_URI': "amqp://guest:guest@localhost"}
@app.route('/compute', methods=['POST'])
def compute():
"""
Micro Service Based Compute and Mail API
This API is made with Flask, Flasgger and Nameko
---
parameters:
- name: body
in: body
required: true
schema:
id: data
properties:
operation:
type: string
enum:
- sum
- mul
- sub
- div
email:
type: string
value:
type: integer
other:
type: integer
responses:
200:
description: Please wait the calculation, you'll receive an email with results
"""
operation = request.json.get('operation')
value = request.json.get('value')
other = request.json.get('other')
email = request.json.get('email')
msg = "Please wait the calculation, you'll receive an email with results"
subject = "API Notification"
with ClusterRpcProxy(CONFIG) as rpc:
# asynchronously spawning and email notification
rpc.mail.send.async(email, subject, msg)
# asynchronously spawning the compute task
result = rpc.compute.compute.async(operation, value, other, email)
return msg, 200
app.run(debug=True)
```
Put the above API to run in a different shell or server
```
(api_env) $ python api.py
* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
```
and then access the url <http://localhost:5000/apidocs/index.html> you will see the Flasgger UI and you can interact with the api and start producing tasks on queue to the service to consume.
![](http://brunorocha.org/static/media/microservices/Flasgger_API_documentation.png)
>NOTE: You can see the shell where service is running for logging, prints and error messages. You can also access the RabbitMQ dashboard to see if there is some message in process there.
There is a lot of more advanced things you can do with Nameko framework you can find more information on <https://nameko.readthedocs.org/en/stable/>
Let's Micro Serve!
--------------------------------------------------------------------------------
via: http://brunorocha.org/python/microservices-with-python-rabbitmq-and-nameko.html
作者: [Bruno Rocha][a]
译者: [译者ID](https://github.com/译者ID)
校对: [校对者ID](https://github.com/校对者ID)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]:http://facebook.com/rochacbruno
[1]:http://martinfowler.com/articles/microservices.html

View File

@ -0,0 +1,291 @@
基于 Python、 RabbitMQ 和 Nameko 的微服务
==============================================
>"微服务是一股新浪潮" - 现如今,将项目拆分成多个独立的、可扩展的服务是保障代码演变的最好选择。在 Python 的世界里,有个叫做 “Nameko” 的框架,它将微服务的实现变得简单并且强大。
### 微服务
> 在最近的几年里,“微服务架构”如雨后春笋般涌现。它用于描述一种特定的软件应用设计方式,这种方式使得应用可以由多个独立部署的服务以服务套件的形式组成。 - M. Fowler
推荐各位读一下 [Fowler's posts][1] 以理解它背后的原理。
#### 好吧,那它究竟意味着什么呢?
简单来说,**微服务架构**可以将你的系统拆分成多个负责不同任务的小块儿,它们之间互不依赖,各自只提供用于通讯的通用指向。这个指向通常是已经将通讯协议和接口定义好的消息队列。
#### 这里给大家提供一个真实案例
>案例的代码可以通过github: <http://github.com/rochacbruno/nameko-example> 访问,查看 service 和 api 文件夹可以获取更多信息。
想象一下,你有一个 REST API ,这个 API 有一个端点译者注REST 风格的 API 可以有多个端点用于处理对同一资源的不同类型的请求)用来接受数据,并且你需要将接收到的数据进行一些运算。那么相比阻塞接口调用者的请求来说,异步实现此接口是一个更好的选择。你可以先给用户返回一个 "OK - 你的请求稍后会处理" 的状态,然后在后台任务中完成运算。
同样,如果你想要在不阻塞主进程的前提下,在计算完成后发送一封提醒邮件,那么将“邮件发送”委托给其他服务去做会更好一些。
#### 场景描述
![](http://brunorocha.org/static/media/microservices/micro_services.png)
### 用代码说话:
让我们将系统创建起来,在实践中理解它:
#### 环境
我们需要的环境:
- 运行良好的 RabbitMQ译者注[RabbitMQ][2]是一个流行的消息队列实现)
- 由 VirtualEnv 提供的 Services 虚拟环境
- 由 VirtualEnv 提供的 API 虚拟环境
#### Rabbit
在开发环境中使用 RabbitMQ 最简单的方式就是运行其官方的 docker 容器。在你已经拥有 Docker 的情况下,运行:
```
docker run -d --hostname my-rabbit --name some-rabbit -p 15672:15672 -p 5672:5672 rabbitmq:3-management
```
在浏览器中访问 <http://localhost:15672> ,如果能够使用 guest:guest 验证信息登录 RabbitMQ 的控制面板,说明它已经在你的开发环境中运行起来了。
![](http://brunorocha.org/static/media/microservices/RabbitMQManagement.png)
#### 服务环境
现在让我们创建微服务来消费我们的任务。其中一个服务用来执行计算任务,另一个用来发送邮件。按以下步骤执行:
在 Shell 中创建项目的根目录
```
$ mkdir myproject
$ cd myproject
```
用 virtualenv 工具创建并且激活一个虚拟环境(你也可以使用virtualenv-wrapper)
```
$ virtualenv service_env
$ source service_env/bin/activate
```
安装 nameko 框架和 yagmail
```
(service_env)$ pip install nameko
(service_env)$ pip install yagmail
```
#### 服务的代码
现在我们已经准备好了 virtualenv 所提供的虚拟环境(可以想象成我们的服务是运行在一个独立服务器上的,而我们的 API 运行在另一个服务器上),接下来让我们编码,实现 nameko 的 RPC 服务。
我们会将这两个服务放在同一个 python 模块中,当然如果你乐意,也可以把它们放在单独的模块里并且当成不同的服务运行:
在名为 `service.py` 的文件中
```python
import yagmail
from nameko.rpc import rpc, RpcProxy
class Mail(object):
name = "mail"
@rpc
def send(self, to, subject, contents):
yag = yagmail.SMTP('myname@gmail.com', 'mypassword')
# 以上的验证信息请从安全的地方进行读取
# 贴士: 可以去看看 Dynaconf 设置模块
yag.send(to=to.encode('utf-8),
subject=subject.encode('utf-8),
contents=[contents.encode('utf-8)])
class Compute(object):
name = "compute"
mail = RpcProxy('mail')
@rpc
def compute(self, operation, value, other, email):
operations = {'sum': lambda x, y: int(x) + int(y),
'mul': lambda x, y: int(x) * int(y),
'div': lambda x, y: int(x) / int(y),
'sub': lambda x, y: int(x) - int(y)}
try:
result = operations[operation](value, other)
except Exception as e:
self.mail.send.async(email, "An error occurred", str(e))
raise
else:
self.mail.send.async(
email,
"Your operation is complete!",
"The result is: %s" % result
)
return result
```
现在我们已经用以上代码定义好了两个服务,下面让我们将 Nameko RPC service 运行起来。
>注意:我们会在控制台中启动并运行它。但在生产环境中,建议大家使用 supervisord 替代控制台命令。
在 Shell 中启动并运行服务
```
(service_env)$ nameko run service --broker amqp://guest:guest@localhost
starting services: mail, compute
Connected to amqp://guest:**@127.0.0.1:5672//
Connected to amqp://guest:**@127.0.0.1:5672//
```
#### 测试
在另外一个 Shell 中(使用相同的虚拟环境),用 nameko shell 进行测试:
```
(service_env)$ nameko shell --broker amqp://guest:guest@localhost
Nameko Python 2.7.9 (default, Apr 2 2015, 15:33:21)
[GCC 4.9.2] shell on linux2
Broker: amqp://guest:guest@localhost
>>>
```
现在你已经处在 RPC 客户端中了Shell 的测试工作是通过 n.rpc 对象来进行的,它的使用方法如下:
```
>>> n.rpc.mail.send("name@email.com", "testing", "Just testing")
```
上边的代码会发送一封邮件,我们同样可以调用计算服务对其进行测试。需要注意的是,此测试还会附带进行异步的邮件发送。
```
>>> n.rpc.compute.compute('sum', 30, 10, "name@email.com")
40
>>> n.rpc.compute.compute('sub', 30, 10, "name@email.com")
20
>>> n.rpc.compute.compute('mul', 30, 10, "name@email.com")
300
>>> n.rpc.compute.compute('div', 30, 10, "name@email.com")
3
```
### 在 API 中调用微服务
在另外一个 Shell 中(甚至可以是另外一台服务器上),准备好 API 环境。
用 virtualenv 工具创建并且激活一个虚拟环境(你也可以使用virtualenv-wrapper)
```
$ virtualenv api_env
$ source api_env/bin/activate
```
安装 Nameko, Flask 和 Flasgger
```
(api_env)$ pip install nameko
(api_env)$ pip install flask
(api_env)$ pip install flasgger
```
>注意: 在 API 中并不需要 yagmail ,因为在这里,处理邮件是服务的职责
创建含有以下内容的 `api.py` 文件:
```python
from flask import Flask, request
from flasgger import Swagger
from nameko.standalone.rpc import ClusterRpcProxy
app = Flask(__name__)
Swagger(app)
CONFIG = {'AMQP_URI': "amqp://guest:guest@localhost"}
@app.route('/compute', methods=['POST'])
def compute():
"""
Micro Service Based Compute and Mail API
This API is made with Flask, Flasgger and Nameko
---
parameters:
- name: body
in: body
required: true
schema:
id: data
properties:
operation:
type: string
enum:
- sum
- mul
- sub
- div
email:
type: string
value:
type: integer
other:
type: integer
responses:
200:
description: Please wait the calculation, you'll receive an email with results
"""
operation = request.json.get('operation')
value = request.json.get('value')
other = request.json.get('other')
email = request.json.get('email')
msg = "Please wait the calculation, you'll receive an email with results"
subject = "API Notification"
with ClusterRpcProxy(CONFIG) as rpc:
# asynchronously spawning and email notification
rpc.mail.send.async(email, subject, msg)
# asynchronously spawning the compute task
result = rpc.compute.compute.async(operation, value, other, email)
return msg, 200
app.run(debug=True)
```
在其他的 shell 或者服务器上运行此文件
```
(api_env) $ python api.py
* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
```
然后访问 <http://localhost:5000/apidocs/index.html> 这个 url就可以看到 Flasgger 的界面了,利用它可以进行 API 的交互并可以发布任务到队列以供服务进行消费。
![](http://brunorocha.org/static/media/microservices/Flasgger_API_documentation.png)
>注意: 你可以在 shell 中查看到服务的运行日志,打印信息和错误信息。也可以访问 RabbitMQ 控制面板来查看消息在队列中的处理情况。
Nameko 框架还为我们提供了很多高级特性,你可以从 <https://nameko.readthedocs.org/en/stable/> 获取更多的信息。
别光看了,撸起袖子来,实现微服务!
--------------------------------------------------------------------------------
via: http://brunorocha.org/python/microservices-with-python-rabbitmq-and-nameko.html
作者: [Bruno Rocha][a]
译者: [译者ID](http://www.mr-ping.com)
校对: [校对者ID](https://github.com/校对者ID)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]:http://facebook.com/rochacbruno
[1]:http://martinfowler.com/articles/microservices.html
[2]:http://rabbitmq.mr-ping.com/description.html