Merge pull request #18751 from geekpi/translating

translated
This commit is contained in:
geekpi 2020-06-15 08:42:35 +08:00 committed by GitHub
commit 43a3219c0a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -7,27 +7,27 @@
[#]: via: (https://opensource.com/article/20/6/pygal-python)
[#]: author: (Shaun Taylor-Morgan https://opensource.com/users/shaun-taylor-morgan)
Style your data plots in Python with Pygal
使用 Pygal 在 Python 中设置数据图的样式
======
An introduction one of the more stylish Python plotting libraries.
介绍一种更时尚的 Python 绘图库。
![Python in a coffee cup.][1]
[Python][2] is full of libraries that can visualize data. One of the more interactive options comes from Pygal, which I consider the library for people who like things to look good. It generates beautiful SVG (Scalable Vector Graphics) files that users can interact with. SVG is a standard format for interactive graphics, and it can lead to rich user experiences with only a few lines of Python.
[Python][2] 一个可以可视化数据的库。一个更具互动性的选择是 Pygal我认为这个库适合喜欢好看的人。它生成用户可以与之交互的漂亮的 SVG可缩放矢量图形文件。SVG 是交互式图形的标准格式,仅使用几行 Python 就可以带来丰富的用户体验。
### Using Pygal for stylish Python plots
### 使用 Pygal 进行时尚的 Python 绘图
In this introduction, we want to recreate this multi-bar plot, which represents the UK election results from 1966 to 2020:
在本文中,我们要重新创建多柱状图,它代表了 1966 年至 2020 年英国大选的结果:
![Pygal plot][3]
Before we go further, note that you may need to tune your Python environment to get this code to run, including the following. 
在继续之前,请注意你可能需要调整 Python 环境以使此代码运行,包括:
* Running a recent version of Python (instructions for [Linux][4], [Mac][5], and [Windows][6])
* Verify you're running a version of Python that works with these libraries
* 运行最新版本的 Python[Linux][4]、[Mac][5] 和 [Windows][6] 的说明)
* 确认你运行的是与这些库兼容的 Python 版本
The data is available online and can be imported using pandas:
数据可在线获得,并可使用 pandas 导入:
```
@ -35,7 +35,7 @@ import pandas as pd
df = pd.read_csv('<https://anvil.works/blog/img/plotting-in-python/uk-election-results.csv>')
```
Now we're ready to go. The data looks like this:
现在可以了。数据如下所示:
```
@ -51,7 +51,7 @@ Now we're ready to go. The data looks like this:
 
Plotting this in Pygal builds up in a way that I find easy to read. First, we define the style object in a way that will simplify our bar chart definition. Then we pass the custom style along with other metadata to a `Bar` object:
在 Pygal 中进行绘制会以一种易于阅读的方式显示。首先,我们以简化柱状图定义的方式定义样式对象。然后我们将自定义样式以及其他元数据传递给 `Bar` 对象:
```
@ -74,7 +74,7 @@ c = pygal.Bar(
)
```
Then, we `add` our data into the `Bar` object:
然后,我们将数据`添加`到 `Bar` 对象中:
```
@ -86,26 +86,27 @@ c.add('Others', df['others'])
c.x_labels = df['year']
```
Finally, we save the plot as an SVG file:
最后,我们将图另存为 SVG 文件:
```
`c.render_to_file('pygal.svg')`
```
The result is an interactive SVG plot you can see in this gif:
结果是一个交互式 SVG 图,你可以在此 gif 中看到:
![The Python pygal library can generate rich SVG files as seen here][7]
Beautifully simple, and with beautiful results.
精美简单,并且效果漂亮。
### Conclusion
### 总结
、Python 中的某些绘图工具需要非常详细地构建每个对象,而 Pygal 从一开始就为你提供这些。如果你手边有数据并且想做一个干净、漂亮、简单的交互式图表,请尝试一下 Pygal。
Some plotting options in Python require building every object in great detail, and Pygal gives you that functionality from the start. Give Pygal a go if you have data on hand and you want to make a clean, beautiful, and simple plot for user interaction.
\---
_This article was first shared [here][8] and is edited and republished with permission._
_本文最初发表于[此][8],并获得许可编辑并重新发布。_
--------------------------------------------------------------------------------
@ -113,7 +114,7 @@ via: https://opensource.com/article/20/6/pygal-python
作者:[Shaun Taylor-Morgan][a]
选题:[lujun9972][b]
译者:[译者ID](https://github.com/译者ID)
译者:[geekpi](https://github.com/geekpi)
校对:[校对者ID](https://github.com/校对者ID)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出