Merge pull request #21510 from geekpi/translating

translated
This commit is contained in:
geekpi 2021-04-06 08:51:49 +08:00 committed by GitHub
commit 342b5bc412
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 179 additions and 180 deletions

View File

@ -1,180 +0,0 @@
[#]: subject: (Use this open source tool to monitor variables in Python)
[#]: via: (https://opensource.com/article/21/4/monitor-debug-python)
[#]: author: (Tian Gao https://opensource.com/users/gaogaotiantian)
[#]: collector: (lujun9972)
[#]: translator: (geekpi)
[#]: reviewer: ( )
[#]: publisher: ( )
[#]: url: ( )
Use this open source tool to monitor variables in Python
======
Watchpoints is a simple but powerful tool to help you with monitoring
variables while debugging Python.
![Looking back with binoculars][1]
When debugging code, you're often faced with figuring out when a variable changes. Without any advanced tools, you have the option of using print statements to announce the variables when you expect them to change. However, this is a very ineffective way because the variables could change in many places, and constantly printing them to a terminal is noisy, while printing them to a log file becomes unwieldy.
This is a common issue, but now there is a simple but powerful tool to help you with monitoring variables: [watchpoints][2].
The [watchpoint concept is common in C and C++ debuggers][3] to monitor memories, but there's a lack of equivalent tools in Python. `watchpoints` fills in the gap.
### Installing
To use it, you must first install it by using `pip`:
```
`$ python3 -m pip install watchpoints`
```
### Using watchpoints in Python
For any variable you'd like to monitor, use the **watch** function on it.
```
from watchpoints import watch
a = 0
watch(a)
a = 1
```
As the variable changes, information about its value is printed to **stdout**:
```
====== Watchpoints Triggered ======
Call Stack (most recent call last):
  <module> (my_script.py:5):
> a = 1
a:
0
->
1
```
The information includes:
* The line where the variable was changed.
* The call stack.
* The previous/current value of the variable.
It not only works with the variable itself, but it also works with object changes:
```
from watchpoints import watch
a = []
watch(a)
a = {} # Trigger
a["a"] = 2 # Trigger
```
The callback is triggered when the variable **a** is reassigned, but also when the object assigned to a is changed.
What makes it even more interesting is that the monitor is not limited by the scope. You can watch the variable/object anywhere you want, and the callback is triggered no matter what function the program is executing.
```
from watchpoints import watch
def func(var):
    var["a"] = 1
a = {}
watch(a)
func(a)
```
For example, this code prints:
```
====== Watchpoints Triggered ======
Call Stack (most recent call last):
  <module> (my_script.py:8):
> func(a)
  func (my_script.py:4):
> var["a"] = 1
a:
{}
->
{'a': 1}
```
The **watch** function can monitor more than a variable. It can also monitor the attributes and an element of a dictionary or list.
```
from watchpoints import watch
class MyObj:
    def __init__(self):
        self.a = 0
obj = MyObj()
d = {"a": 0}
watch(obj.a, d["a"]) # Yes you can do this
obj.a = 1 # Trigger
d["a"] = 1 # Trigger
```
This could help you narrow down to some specific objects that you are interested in.
If you are not happy about the format of the output, you can customize it. Just define your own callback function:
```
watch(a, callback=my_callback)
# Or set it globally
watch.config(callback=my_callback)
```
You can even bring up **pdb** when the trigger is hit:
```
`watch.config(pdb=True)`
```
This behaves similarly to **breakpoint()**, giving you a debugger-like experience.
If you dont want to import the function in every single file, you can make it global by using **install** function:
```
`watch.install() # or watch.install("func_name") and use it as func_name()`
```
Personally, I think the coolest thing about watchpoints is its intuitive usage. Are you interested in some data? Just "watch" it, and you'll know when your variable changes.
### Try watchpoints
I developed and maintain `watchpoints` on [GitHub][2], and have released it under the licensed under Apache 2.0. Install it and use it, and of course contribution is always welcome.
--------------------------------------------------------------------------------
via: https://opensource.com/article/21/4/monitor-debug-python
作者:[Tian Gao][a]
选题:[lujun9972][b]
译者:[译者ID](https://github.com/译者ID)
校对:[校对者ID](https://github.com/校对者ID)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://opensource.com/users/gaogaotiantian
[b]: https://github.com/lujun9972
[1]: https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/look-binoculars-sight-see-review.png?itok=NOw2cm39 (Looking back with binoculars)
[2]: https://github.com/gaogaotiantian/watchpoints
[3]: https://opensource.com/article/21/3/debug-code-gdb

View File

@ -0,0 +1,179 @@
[#]: subject: (Use this open source tool to monitor variables in Python)
[#]: via: (https://opensource.com/article/21/4/monitor-debug-python)
[#]: author: (Tian Gao https://opensource.com/users/gaogaotiantian)
[#]: collector: (lujun9972)
[#]: translator: (geekpi)
[#]: reviewer: ( )
[#]: publisher: ( )
[#]: url: ( )
使用这个开源工具来监控 Python 中的变量
======
Watchpoints 是一个简单但功能强大的工具,可以帮助你在调试 Python 时监控变量。
![Looking back with binoculars][1]
在调试代码时,你经常面临着要弄清楚一个变量何时发生变化。如果没有任何高级工具,那么可以选择使用打印语句在期望它们更改时输出变量。然而,这是一种非常低效的方法,因为变量可能在很多地方发生变化,并且不断地将其打印到终端上会产生很大的干扰,而将它们打印到日志文件中则变得很麻烦。
这是一个常见的问题,但现在有一个简单而强大的工具可以帮助你监控变量:[watchpoints][2]。
[watchpoint 的概念在 C 和 C++ 调试器中很常见][3],用于监控内存,但在 Python 中缺乏相应的工具。`watchpoints` 填补了这个空白。
### 安装
要使用它,你必须先用 `pip` 安装它:
```
`$ python3 -m pip install watchpoints`
```
### 在Python中使用 watchpoints
对于任何一个你想监控的变量,使用 **watch** 函数对其进行监控。
```
from watchpoints import watch
a = 0
watch(a)
a = 1
```
当变量发生变化时,它的值就会被打印到**标准输出**
```
====== Watchpoints Triggered ======
Call Stack (most recent call last):
  <module> (my_script.py:5):
> a = 1
a:
0
->
1
```
信息包括:
* 变量被改变的行。
* 调用栈。
* 变量的先前值/当前值。
它不仅适用于变量本身,也适用于对象的变化:
```
from watchpoints import watch
a = []
watch(a)
a = {} # Trigger
a["a"] = 2 # Trigger
```
当变量 **a** 被重新分配时,回调会被触发,同时当分配给 a 的对象发生变化时也会被触发。
更有趣的是,监控不受作用域的限制。你可以在任何地方观察变量/对象,而且无论程序在执行什么函数,回调都会被触发。
```
from watchpoints import watch
def func(var):
    var["a"] = 1
a = {}
watch(a)
func(a)
```
例如,这段代码打印:
```
====== Watchpoints Triggered ======
Call Stack (most recent call last):
  <module> (my_script.py:8):
> func(a)
  func (my_script.py:4):
> var["a"] = 1
a:
{}
->
{'a': 1}
```
**watch** 函数不仅可以监视一个变量,它也可以监视一个字典或列表的属性和元素。
```
from watchpoints import watch
class MyObj:
    def __init__(self):
        self.a = 0
obj = MyObj()
d = {"a": 0}
watch(obj.a, d["a"]) # Yes you can do this
obj.a = 1 # Trigger
d["a"] = 1 # Trigger
```
这可以帮助你缩小到一些你感兴趣的特定对象。
如果你对输出格式不满意,你可以自定义它。只需定义你自己的回调函数:
```
watch(a, callback=my_callback)
# 或者全局设置
watch.config(callback=my_callback)
```
当触发时,你甚至可以使用 **pdb**
```
`watch.config(pdb=True)`
```
这与 **breakpoint()** 的行为类似,会给你带来类似调试器的体验。
如果你不想在每个文件中都导入这个函数,你可以通过 **install** 函数使其成为全局:
```
`watch.install() # or watch.install("func_name") and use it as func_name()`
```
我个人认为watchpoints 最酷的地方就是使用直观。你对一些数据感兴趣吗?只要”观察“它,你就会知道你的变量何时发生变化。
### 尝试 watchpoints
我在 [GitHub][2] 上开发维护了 `watchpoints`,并在 Apache 2.0 许可下发布了它。安装并使用它,当然也欢迎大家做出贡献。
--------------------------------------------------------------------------------
via: https://opensource.com/article/21/4/monitor-debug-python
作者:[Tian Gao][a]
选题:[lujun9972][b]
译者:[geekpi](https://github.com/geekpi)
校对:[校对者ID](https://github.com/校对者ID)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://opensource.com/users/gaogaotiantian
[b]: https://github.com/lujun9972
[1]: https://opensource.com/sites/default/files/styles/image-full-size/public/lead-images/look-binoculars-sight-see-review.png?itok=NOw2cm39 (Looking back with binoculars)
[2]: https://github.com/gaogaotiantian/watchpoints
[3]: https://opensource.com/article/21/3/debug-code-gdb