[提交译文][news]: 20220526 DeepMind-s Open Source MuJoCo Is Available On GitHub.md

This commit is contained in:
lkxed 2022-05-29 15:50:26 +08:00
parent 5a93083bca
commit 29b0ae5f5f
2 changed files with 60 additions and 45 deletions

View File

@ -1,45 +0,0 @@
[#]: subject: "DeepMinds Open Source MuJoCo Is Available On GitHub"
[#]: via: "https://www.opensourceforu.com/2022/05/deepminds-open-source-mujoco-is-available-on-github/"
[#]: author: "Laveesh Kocher https://www.opensourceforu.com/author/laveesh-kocher/"
[#]: collector: "lkxed"
[#]: translator: "lkxed"
[#]: reviewer: " "
[#]: publisher: " "
[#]: url: " "
DeepMinds Open Source MuJoCo Is Available On GitHub
======
![deepmind1][1]
DeepMind, an Alphabet subsidiary and AI research lab, acquired the MuJoCo physics engine for robotics research and development in October 2021. The simulator was to be open-sourced and maintained as a free, open source, community-driven project. DeepMind claims that the open sourcing is now complete, with the entire codebase [available on GitHub][2].
MuJoCo, which stands for Multi-Joint Dynamics with Contact, is a physics engine designed to aid research and development in robotics, biomechanics, graphics and animation, and other fields that require fast and accurate simulation. MuJoCo can be used to implement model-based computations for machine learning applications such as control synthesis, state estimation, system identification, mechanism design, data analysis through inverse dynamics, and parallel sampling. It can also be used as a standard simulator, such as for gaming and interactive virtual environments.
According to DeepMind, the following are some of the features that make MuJoCo appealing for collaboration:
* Comprehensive simulator capable of simulating complex mechanisms
* Readable, performant, portable code
* Codebase that is easily extensible
* Extensive documentation, including both user-facing and code comments We hope that colleagues from academia and the OSS community will use this platform and contribute to the codebase, thereby improving research for all.
DeepMind has more to say:
“As a C library with no dynamic memory allocation, MuJoCo is very fast. Unfortunately, raw physics speed has historically been hindered by Python wrappers, which made batched, multi-threaded operations non-performant due to the presence of the Global Interpreter Lock (GIL) and non-compiled code. In our roadmap below, we address this issue going forward.
“For now, wed like to share some benchmarking results for two common models. The results were obtained on a standard AMD Ryzen 9 5950X machine, running Windows 10.”
--------------------------------------------------------------------------------
via: https://www.opensourceforu.com/2022/05/deepminds-open-source-mujoco-is-available-on-github/
作者:[Laveesh Kocher][a]
选题:[lkxed][b]
译者:[译者ID](https://github.com/译者ID)
校对:[校对者ID](https://github.com/校对者ID)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://www.opensourceforu.com/author/laveesh-kocher/
[b]: https://github.com/lkxed
[1]: https://www.opensourceforu.com/wp-content/uploads/2022/05/deepmind1.jpg
[2]: https://github.com/deepmind/mujoco

View File

@ -0,0 +1,60 @@
[#]: subject: "DeepMinds Open Source MuJoCo Is Available On GitHub"
[#]: via: "https://www.opensourceforu.com/2022/05/deepminds-open-source-mujoco-is-available-on-github/"
[#]: author: "Laveesh Kocher https://www.opensourceforu.com/author/laveesh-kocher/"
[#]: collector: "lkxed"
[#]: translator: "lkxed"
[#]: reviewer: " "
[#]: publisher: " "
[#]: url: " "
DeepMind 的开源物理引擎 MuJoCo 已搬至 GitHub
======
![deepmind1][1]
DeepMind 是 Alphabet 的子公司和 AI 研究实验室,在 2021 年 10 月,它收购了用于机器人研发的 MuJoCo 物理引擎并承诺该模拟器将作为免费、开源、社区驱动的项目进行维护。现在DeepMind 声称开源计划已完成,它的整个代码库 [可在 GitHub 上获得][2]。
MuJoCo 是 Multi-Joint Dynamics with Contact 的缩写它是一个物理引擎旨在帮助机器人、生物力学、图形和动画等领域的研究和开发也包括其他需要快速准确模拟的领域。MuJoCo 可用于帮助机器学习应用实现基于模型的计算,例如<ruby>控制综合<rt>control synthesis</rt></ruby><ruby>状态估计<rt>state estimation</rt></ruby><ruby>系统识别<rt>system identification</rt></ruby><ruby>机制设计<rt>mechanism design</rt></ruby>、通过<ruby>逆动力学<rt>inverse dynamics</rt></ruby>来进行数据分析,以及<ruby>并行采样<rt>parallel sampling</rt></ruby>。它也可以用作标准模拟器例如用于游戏和交互式虚拟环境。LCTT 译注:这段话中涉及到不少专业词汇,鉴于译者水平有限,若有谬误,请在评论中指出,同时也欢迎在评论中科普,一起学习~)
根据 DeepMind 的说法,以下是 MuJoCo 适合协作的一些功能:
* 能够模拟复杂机制的综合模拟器
* 可读、高性能、可移植的代码
* 易于扩展的代码库
* 丰富的文档,包括面向用户的和代码注释 —— 我们希望学术界和 OSS 社区的同事能够使用这个平台并为代码库做出贡献,从而改善所有人的研究
DeepMind 还说:
> “作为没有动态内存分配的 C 库MuJoCo 非常快。不幸的是,原始物理速度一直受到 Python 包装器的阻碍:全局解释器锁 (GIL) 和非编译代码的存在,使得批处理、多线程操作无法执行。在下面的路线图中,我们将解决这个问题。”
LCTT 译注:原文忘记贴上路线图了,这里补上。)
路线图:
* 通过批处理、多线程模拟释放 MuJoCo 的速度潜力
* 通过改进内部内存管理支持更大的场景
* 新的增量编译器,带来更好的模型可组合性
* 通过 Unity 集成支持更好的渲染
* 对物理导数的原生支持,包括解析和有限差分
> “目前,我们想分享两个常见模型的基准测试结果。注意,这个结果是在运行 Windows 10 的标准 AMD Ryzen 9 5950X 机器上获得的。”
LCTT 译注:原文忘记贴上测试结果了,这里补上。)
![基准测试结果][3]
--------------------------------------------------------------------------------
via: https://www.opensourceforu.com/2022/05/deepminds-open-source-mujoco-is-available-on-github/
作者:[Laveesh Kocher][a]
选题:[lkxed][b]
译者:[lkxed](https://github.com/lkxed)
校对:[校对者ID](https://github.com/校对者ID)
本文由 [LCTT](https://github.com/LCTT/TranslateProject) 原创编译,[Linux中国](https://linux.cn/) 荣誉推出
[a]: https://www.opensourceforu.com/author/laveesh-kocher/
[b]: https://github.com/lkxed
[1]: https://www.opensourceforu.com/wp-content/uploads/2022/05/deepmind1.jpg
[2]: https://github.com/deepmind/mujoco
[3]: https://assets-global.website-files.com/621e749a546b7592125f38ed/628b971675cb60d74f5fa189_2A54E864-FE90-49E4-8E58-FE40298303E2.jpeg